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Preface

This book contains 104 of the best problems used in the training and testing of
the U.S. International Mathematical Olympiad (IMO) team. It is not a collection
of very difficult, and impenetrable questions. Rather, the book gradually builds
students’ number-theoretic skills and techniques. The first chapter provides a
comprehensive introduction to number theory and its mathematical structures.
This chapter can serve as a textbook for a short course in number theory. This
work aims to broaden students’ view of mathematics and better prepare them for
possible participation in various mathematical competitions. It provides in-depth
enrichment in important areas of number theory by reorganizing and enhancing
students’ problem-solving tactics and strategies. The book further stimulates stu-
dents’ interest for the future study of mathematics.

In the United States of America, the selection process leading to participation
in the International Mathematical Olympiad (IMO) consists of a series of national
contests called the American Mathematics Contest 10 (AMC 10), the American
Mathematics Contest 12 (AMC 12), the American Invitational Mathematics Ex-
amination (AIME), and the United States of America Mathematical Olympiad
(USAMO). Participation in the AIME and the USAMO is by invitation only,
based on performance in the preceding exams of the sequence. The Mathematical
Olympiad Summer Program (MOSP) is a four-week intensive training program
for approximately fifty very promising students who have risen to the top in the
American Mathematics Competitions. The six students representing the United
States of America in the IMO are selected on the basis of their USAMO scores
and further testing that takes place during MOSP. Throughout MOSP, full days of
classes and extensive problem sets give students thorough preparation in several
important areas of mathematics. These topics include combinatorial arguments
and identities, generating functions, graph theory, recursive relations, sums and
products, probability, number theory, polynomials, functional equations, complex
numbers in geometry, algorithmic proofs, combinatorial and advanced geometry,
functional equations, and classical inequalities.

Olympiad-style exams consist of several challenging essay problems. Correct
solutions often require deep analysis and careful argument. Olympiad questions
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can seem impenetrable to the novice, yet most can be solved with elementary high
school mathematics techniques, when cleverly applied.

Here is some advice for students who attempt the problems that follow.

• Take your time! Very few contestants can solve all the given problems.

• Try to make connections between problems. An important theme of this
work is that all important techniques and ideas featured in the book appear
more than once!

• Olympiad problems don’t “crack” immediately. Be patient. Try different
approaches. Experiment with simple cases. In some cases, working back-
ward from the desired result is helpful.

• Even if you can solve a problem, do read the solutions. They may con-
tain some ideas that did not occur in your solutions, and they may discuss
strategic and tactical approaches that can be used elsewhere. The solutions
are also models of elegant presentation that you should emulate, but they
often obscure the tortuous process of investigation, false starts, inspiration,
and attention to detail that led to them. When you read the solutions, try to
reconstruct the thinking that went into them. Ask yourself, “What were the
key ideas? How can I apply these ideas further?”

• Go back to the original problem later, and see whether you can solve it in
a different way. Many of the problems have multiple solutions, but not all
are outlined here.

• Meaningful problem solving takes practice. Don’t get discouraged if you
have trouble at first. For additional practice, use the books on the reading
list.

Titu Andreescu
Dorin Andrica
Zuming Feng

October 2006
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Abbreviations
AHSME American High School Mathematics Examination
AIME American Invitational Mathematics Examination
AMC10 American Mathematics Contest 10
AMC12 American Mathematics Contest 12, which replaces AHSME
APMC Austrian–Polish Mathematics Competition
ARML American Regional Mathematics League
Balkan Balkan Mathematical Olympiad
Baltic Baltic Way Mathematical Team Contest
HMMT Harvard–MIT Math Tournament
IMO International Mathematical Olympiad
USAMO United States of America Mathematical Olympiad
MOSP Mathematical Olympiad Summer Program
Putnam The William Lowell Putnam Mathematical Competition
St. Petersburg St. Petersburg (Leningrad) Mathematical Olympiad

Notation for Numerical Sets and Fields
Z the set of integers
Zn the set of integers modulo n
N the set of positive integers
N0 the set of nonnegative integers
Q the set of rational numbers
Q+ the set of positive rational numbers
Q0 the set of nonnegative rational numbers
Qn the set of n-tuples of rational numbers
R the set of real numbers
R+ the set of positive real numbers
R0 the set of nonnegative real numbers
Rn the set of n-tuples of real numbers
C the set of complex numbers
[xn](p(x)) the coefficient of the term xn in the polynomial p(x)



xii Abbreviations and Notation

Notation for Sets, Logic, and Number Theory

|A| the number of elements in the set A
A ⊂ B A is a proper subset of B
A ⊆ B A is a subset of B
A \ B A without B (set difference)
A ∩ B the intersection of sets A and B
A ∪ B the union of sets A and B
a ∈ A the element a belongs to the set A
n | m n divides m
gcd(m, n) the greatest common divisor of m, n
lcm(m, n) the least common multiple of m, n
π(n) the number of primes ≤ n
τ(n) number of divisors of n
σ(n) sum of positive divisors of n
a ≡ b (mod m) a and b are congruent modulo m
ϕ Euler’s totient function
ordm(a) order of a modulo m
µ Möbius function
akak−1 . . . a0(b) base-b representation
S(n) the sum of digits of n
( f1, f2, . . . , fm) factorial base expansion
�x	 floor of x

x� celling of x
{x} fractional part of x
ep Legendre’s function
pk‖n pk fully divides n
fn Fermat number
Mn Mersenne number



1

Foundations of Number Theory

Divisibility

Back in elementary school, we learned four fundamental operations on numbers
(integers), namely, addition (+), subtraction (−), multiplication (× or ·), and di-
vision (÷ or / or c ). For any two integers a and b, their sum a + b, differences
a − b and b − a, and product ab are all integers, while their quotients a ÷ b (or
a/b or a

b ) and b ÷ a are not necessarily integers.
For an integer m and a nonzero integer n, we say that m is divisible by n or n

divides m if there is an integer k such that m = kn; that is, m
n is an integer. We

denote this by n | m. If m is divisible by n, then m is called a multiple of n; and
n is called a divisor (or factor) of m.

Because 0 = 0 · n, it follows that n | 0 for all integers n. For a fixed integer
n, the multiples of n are 0, ±n, ±, 2n, . . . . Hence it is not difficult to see that
there is a multiple of n among every n consecutive integers. If m is not divisible
by n, then we write n � m. (Note that 0 � m for all nonzero integers m, since
m = 0 = k · 0 for all integers k.)

Proposition 1.1. Let x, y, and z be integers. We have the following basic prop-
erties:

(a) x | x (reflexivity property);

(b) If x | y and y | z, then x | z (transitivity property);

(c) If x | y and y = 0, then |x | ≤ |y|;
(d) If x | y and x | z, then x | αy + βz for any integers α and β;

(e) If x | y and x | y ± z, then x | z;

(f) If x | y and y | x , then |x | = |y|;
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(g) If x | y and y = 0, then y
x | y;

(h) for z = 0, x | y if and only if xz | yz.

The proofs of the above properties are rather straightforward from the defini-
tion. We present these proofs only to give the reader some relevant examples of
writing proofs.

Proof: For (a), we note that x = 1 · x . In (b) to (h), the condition x | y is given;
that is, y = kx for some integer k.

For (b), we have y | z; that is, z = k1 y for some integer k1. Then z = (kk1)x ,
or x | z.

For (c), we note that if y = 0, then |k| ≥ 1, and so |y| = |k| · |x | ≥ |x |.
For (d), we further assume that z = k2x . Then αy + βz = (kα + k2β)x .
For (e), we obtain y ± z = k3x , or ±z = k3x − y = (k3 − k)x . It follows that

z = ±(k − k3)x .
For (f), because x | y and y | x , it follows that x = 0 and y = 0. By (c), we

have |y| ≥ |x | and |x | ≥ |y|. Hence |x | = |y|.
For (g), y

x = k = 0 is an integer. Since y = x · k, k | y.
For (h), since z = 0, x = 0 if and only if xz = 0. Note that y = kx if and

only if yz = kxz. �
The property (g) is simple but rather helpful. For a nonzero integer n, there

is an even number of positive divisors of n unless n is a perfect square; that is,
n = m2 for some integer m. (If an integer is not divisible by any perfect square,
then it is called square free. If n = m3 for some integer m, then n is called a
perfect cube. In general, if n = ms for integers m and s with s ≥ 2, then n
is called a perfect power.) This is because all the divisors of y appear in pairs,
namely, x and y

x (observe that x = y
x if y is not a perfect square). Here is a classic

brain teaser:

Example 1.1. Twenty bored students take turns walking down a hall that con-
tains a row of closed lockers, numbered 1 to 20. The first student opens all the
lockers; the second student closes all the lockers numbered 2, 4, 6, 8, 10, 12, 14,
16, 18, 20; the third student operates on the lockers numbered 3, 6, 9, 12, 15, 18:
if a locker was closed, he opens it, and if a locker was open, he closes it; and so
on. For the i th student, he works on the lockers numbered by multiples of i : if a
locker was closed, he opens it, and if a locker was open, he closes it. What is the
number of the lockers that remain open after all the students finish their walks?

Solution: Note that the i th locker will be operated by student j if and only if
j | i . By property (g), this can happen if and only if the locker will also be
operated by student i

j . Thus, only the lockers numbered 1 = 12, 4 = 22, 9 = 32,
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and 16 = 42 will be operated on an odd number of times, and these are the lockers
that will be left open after all the operations. Hence the answer is 4. �

The set of integers, denoted by Z, can be partitioned into two subsets, the set
of odd integers and the set of even integers:

{±1, ±3, ±5, . . . } and {0, ±2, ±4, . . . },
respectively. Although the concepts of odd and even integers appear straightfor-
ward, they come handy in tackling various number-theoretic problems. Here are
some basic ideas:

(1) an odd number is of the form 2k + 1, for some integer k;

(2) an even number is of the form 2m, for some integer m;

(3) the sum of two odd numbers is an even number;

(4) the sum of two even numbers is an even number;

(5) the sum of an odd and even number is an odd number;

(6) the product of two odd numbers is an odd number;

(7) a product of integers is even if and only if at least one of its factors is even.

Example 1.2. Let n be an integer greater than 1. Prove that

(a) 2n is the sum of two odd consecutive integers;

(b) 3n is the sum of three consecutive integers.

Proof: For (a), the relation 2n = (2k − 1) + (2k + 1) implies k = 2n−2 and we
obtain 2n = (2n−1 − 1) + (2n−1 + 1).

For (b), the relation 3n = (s − 1) + s + (s + 1) implies s = 3n−1 and we
obtain the representation 3n = (3n−1 − 1) + 3n−1 + (3n−1 + 1). �
Example 1.3. Let k be an even number. Is it possible to write 1 as the sum of
the reciprocals of k odd integers?

Solution: The answer is negative.
We approach indirectly. Assume that

1 = 1

n1
+ · · · + 1

nk

for some odd integers n1, . . . , nk ; then clearing denominators we obtain
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n1 · · · nk = s1 + · · · + sk , where si are all odd. But this is impossible since the
left-hand side is odd and the right-hand side is even. �

If k is odd, such representations are possible. Here is one example for k = 9
and n1, . . . , n9 are distinct odd positive integers:

1 = 1

3
+ 1

5
+ 1

7
+ 1

9
+ 1

11
+ 1

15
+ 1

35
+ 1

45
+ 1

231
.

Example 1.4. [HMMT 2004] Zach has chosen five numbers from the set {1, 2,
3, 4, 5, 6, 7}. If he told Claudia what the product of the chosen numbers was, that
would not be enough information for Claudia to figure out whether the sum of the
chosen numbers was even or odd. What is the product of the chosen numbers?

Solution: The answer is 420.
Providing the product of the chosen numbers is equivalent to telling the prod-

uct of the two unchosen numbers. The only possible products that are achieved by
more than one pair of numbers are 12 ({3, 4} and {2, 6}) and 6 ({1, 6} and {2, 3}).
But in the second case, the sum of the two (unchosen) numbers is odd (and so the
five chosen numbers have odd sum too). Therefore, the first must hold, and the
product of the five chosen numbers is equal to

1 · 2 · 3 · · · 7

12
= 420. �

Division Algorithm

The following result is called the division algorithm, and it plays an important
role in number theory:

Theorem 1.2a. For any positive integers a and b there exists a unique pair (q, r)

of nonnegative integers such that b = aq + r and r < a. We say that q is the
quotient and r the remainder when b is divided by a.

To prove this result, we need to consider two parts: the existence of such a
pair and its uniqueness.

Proof: To show the existence, we consider three cases.

(1) In this case, we assume that a > b. We can set q = 0 and r = b < a; that
is, (q, r) = (0, b).

(2) Suppose that a = b. We can set q = 1 and r = 0 < a; that is, (q, r) =
(1, 0).

(3) Finally, assume that a < b. There exist positive integers n such that na > b.
Let q be the least positive integer for which (q + 1)a > b. Then qa ≤ b.
Let r = b − aq. It follows that b = aq + r and 0 ≤ r < a.
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Combining the three cases, we have established the existence.
For uniqueness, assume that b = aq ′+r ′, where q ′ and r ′ are also nonnegative

integers satisfying 0 ≤ r ′ < a. Then aq + r = aq ′ + r ′, implying a(q − q ′) =
r ′ − r , and so a | r ′ − r . Hence |r ′ − r | ≥ a or |r ′ − r | = 0. Because 0 ≤ r ,
r ′ < a yields |r ′ − r | < a, we are left with |r ′ − r | = 0, implying r ′ = r , and
consequently, q ′ = q . �
Example 1.5. Let n be a positive integer. Prove that 32n + 1 is divisible by 2,
but not by 4.

Proof: Clearly, 32n
is odd and 32n + 1 is even. Note that 32n = (32)2n−1 =

92n−1 = (8 + 1)2n−1
. Recall the Binomial theorem

(x + y)m = xm +
(

m

1

)
xm−1 y +

(
m

2

)
xm−2 y2 + · · · +

(
n

n − 1

)
xym−1 + ym .

Setting x = 8, y = 1, and m = 2n−1 in the above equation, we see that each
summand besides the last (that is, ym = 1) is a multiple of 8 (which is a multiple
of 4). Hence the remainder of 32n

on dividing by 4 is equal to 1, and the remainder
of 32n + 1 on dividing by 4 is equal to 2. �

The above argument can be simplified in the notation of congruence modulo 4.
Congruence is an important part of number theory. We will discuss it extensively.

The division algorithm can be extended for integers:

Theorem 1.2b. For any integers a and b, a = 0, there exists a unique pair (q, r)

of integers such that b = aq + r and 0 ≤ r < |a|.
We leave the proof of this extended version to the reader.

Primes

The integer p > 1 is called a prime (or a prime number) if there is no integer d
with d > 1 and d = p such that d | p. Any integer n > 1 has at least one prime
divisor. If n is a prime, then that prime divisor is n itself. If n is not a prime,
then let a > 1 be its least divisor. Then n = ab, where 1 < a ≤ b. If a were
not a prime, then a = a1a2 with 1 < a1 ≤ a2 < a and a1 | n, contradicting the
minimality of a.

An integer n > 1 that is not a prime is called composite. If n is a composite
integer, then it has a prime divisor p not exceeding

√
n. Indeed, as above, n = ab,

where 1 < a ≤ b and a is the least divisor of n. Then n ≥ a2; hence a ≤ √
n.

This idea belongs to the ancient Greek mathematician Eratosthenes (250 BCE).
Note that all positive even numbers greater than 2 are composite. In other

words, 2 is the only even (and the smallest) prime. All other primes are odd; that
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is, they are not divisible by 2. The first few primes are 2, 3, 5, 7, 11, 13, 17, 19,
23, 29. How many primes are there? Are we really sure that there are infinitely
many primes? Please see Theorem 1.3 below. A comparison between the number
of elements in two infinite sets might be vague, but it is obvious that there are
more (in the sense of density) composite numbers than primes. We see that 2 and
3 are the only consecutive primes. Odd consecutive primes such as 3 and 5, 5 and
7, 41 and 43, are called twin primes. It is still an open question whether there are
infinitely many twin primes. Brun has shown that even if there are infinitely many
twin primes, the sum of their inverses converges. The proof is however extremely
difficult.

Example 1.6. Find all positive integers n for which 3n − 4, 4n − 5, and 5n − 3
are all prime numbers.

Solution: The sum of the three numbers is an even number, so at least one of
them is even. The only even prime number is 2. Only 3n − 4 and 5n − 3 can be
even. Solving the equations 3n − 4 = 2 and 5n − 3 = 2 yields n = 2 and n = 1,
respectively. It is trivial to check that n = 2 does make all three given numbers
prime. �
Example 1.7. [AHSME 1976] If p and q are primes and x2 − px + q = 0 has
distinct positive integral roots, find p and q .

Solution: Let x1 and x2, with x1 < x2, be the two distinct positive integer roots.
Then x2 − px + q = (x − x1)(x − x2), implying that p = x1 + x2 and q = x1x2.
Since q is prime, x1 = 1. Thus, q = x2 and p = x2 + 1 are two consecutive
primes; that is, q = 2 and p = 3. �
Example 1.8. Find 20 consecutive composite numbers.

Solution: Numbers 20! + 2, 20! + 3, . . . , 20! + 21 will do the trick. �
The following result by Euclid has been known for more than 2000 years:

Theorem 1.3a. There are infinitely many primes.

Proof: Assume by way of contradiction that there are only a finite number of
primes: p1 < p2 < · · · < pm . Consider the number P = p1 p2 · · · pm + 1.

If P is a prime, then P > pm , contradicting the maximality of pm . Hence P
is composite, and consequently, it has a prime divisor p > 1, which is one of the
primes p1, p2, . . . , pm , say pk . It follows that pk divides p1 · · · pk · · · pm + 1.
This, together with the fact that pk divides p1 · · · pk · · · pm , implies pk divides 1,
a contradiction. �

Even though there are infinitely many primes, there are no particular formulas
to find them. Theorem 1.3b in the next section will reveal part of the reasoning.
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The Fundamental Theorem of Arithmetic

The fundamental result in arithmetic (i.e., number theory) pertains to the prime
factorization of integers:

Theorem 1.4. [The Fundamental Theorem of Arithmetic] Any integer n greater
than 1 has a unique representation (up to a permutation) as a product of primes.

Proof: The existence of such a representation can be obtained as follows: Let p1
be a prime divisor of n. If p1 = n, then n = p1 is a prime factorization of n. If
p1 < n, then n = p1r1, where r1 > 1. If r1 is a prime, then n = p1 p2, where
p2 = r1 is the desired factorization of n. If r1 is composite, then r1 = p2r2, where
p2 is a prime, r2 > 1, and so n = p1 p2r2. If r2 is a prime, then n = p1 p2 p3,
where r2 = p3 and r3 = 1, and we are done. If r2 is composite, then we continue
this algorithm, obtaining a sequence of integers r1 > r2 > · · · ≥ 1. After a finite
number of steps, we reach rk+1 = 1, that is, n = p1 p2 · · · pk .

For uniqueness, let us assume that there is at least one positive integer n that
has two distinct prime factorizations; that is,

n = p1 p2 · · · pk = q1q2 · · · qh

where p1, p2, . . . , pk, q1, q2, . . . , qh are primes with p1 ≤ p2 ≤ · · · pk and q1 ≤
q2 · · · qh such that the k-tuple (p1, p2, . . . , pk) is not the same as the h-tuple
(q1, q2, . . . , qh). It is clear that k ≥ 2 and h ≥ 2. Let n be the minimal such
integer. We will derive a contradiction by finding a smaller positive integer that
also has two distinct prime factorizations.

We claim that pi = q j for any i = 1, 2, . . . , k, j = 1, 2, . . . , h. If, for
example, pk = qh = p, then n′ = n/p = p1 · · · pk−1 = q1 · · · qh−1 and 1 <

n′ < n, contradicting the minimality of n. Assume without loss of generality that
p1 ≤ q1; that is, p1 is the least prime factor of n in the above representations. By
applying the division algorithm it follows that

q1 = p1c1 + r1,

q2 = p1c2 + r2,
...

qh = p1ch + rh,

where 1 ≤ ri < p1, i = 1, . . . , h.
We have

n = q1q2 · · · qh = (p1c1 + r1)(p1c2 + r2) · · · (p1ch + rh).

Expanding the last product we obtain n = mp1 + r1r2 · · · rh for some positive
integer m. Setting n′ = r1r2 · · · rh we have n = p1 p2 · · · pk = mp1 + n′. It
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follows that p1 | n′ and n′ = p1s. As we have shown, s can be written as a
product of primes. We write s = s1s2 · · · si , where s1, s2, . . . , si are primes.

On the other hand, using the factorization of r1, r2, . . . , rh into primes, all
their factors are less than ri < p1. From n′ = r1r2 · · · rh , it follows that n′
has a factorization into primes of the form n′ = t1t2 · · · t j , where ts < p1,
s = 1, 2, . . . , j . This factorization is different from n′ = p1s1s2 · · · si . But
n′ < n, contradicting the minimality of n. �

From the above theorem it follows that any integer n > 1 can be written
uniquely in the form

n = pα1
1 · · · pαk

k ,

where p1, . . . , pk are distinct primes and α1, . . . , αk are positive integers. This
representation is called the canonical factorization (or factorization) of n. It is
not difficult to see that the canonical factorization of the product of two integers is
the product of the canonical factorizations of the two integers. This factorization
allows us to establish the following fundamental property of primes.

Corollary 1.5. Let a and b be integers. If a prime p divides ab, then p divides
either a or b.

Proof: Because p divides ab, p must appear in the canonical factorization of
ab. The canonical factorizations of a, b, and ab are unique, and the canonical
factorization of ab is the product of the canonical factorizations of a and b. Thus
p must appear in at least one of the canonical factorizations of a and b, implying
the desired result. �

Another immediate application of the prime factorization theorem is an alter-
native way of proving that there are infinitely many primes.

As in the proof of Theorem 1.3, assume that there are only finitely many
primes: p1 < p2 < · · · < pm . Let

N =
m∏

i=1

(
1 + 1

pi
+ 1

p2
i

+ · · ·
)

=
m∏

i=1

1

1 − 1
pi

.

On the other hand, by expanding and by using the canonical factorization of pos-
itive integers, we obtain

N = 1 + 1

2
+ 1

3
+ · · · ,

yielding

m∏
i=1

pi

pi − 1
= ∞,

a contradiction. We have used the well-known facts:
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(a) the harmonic series

1 + 1

2
+ 1

3
+ · · ·

diverges;

(b) the expansion formula

1

1 − x
= 1 + x + x2 + · · ·

holds for real numbers x with |x | < 1. This expansion formula can also be
interpreted as the summation formula for the infinite geometric progression
1, x, x2, . . . .

From the formula ∞∏
i=1

pi

pi − 1
= ∞,

using the inequality 1 + t ≤ et , t ∈ R, we can easily derive

∞∑
i=1

1

pi
= ∞.

For a prime p we say that pk fully divides n and write pk‖n if k is the greatest
positive integer such that pk |n.

Example 1.9. [ARML 2003] Find the largest divisor of 1001001001 that does
not exceed 10000.

Solution: We have

1001001001 = 1001 · 106 + 1001 = 1001 · (106 + 1) = 7 · 11 · 13 · (106 + 1).

Note that x6 + 1 = (x2)3 + 1 = (x2 + 1)(x4 − x2 + 1). We conclude that
106 + 1 = 101 · 9901, and so 1001001001 = 7 · 11 · 13 · 101 · 9901. It is not
difficult to check that no combination of 7, 11, 13, and 101 can generate a product
greater than 9901 but less than 10000, so the answer is 9901. �
Example 1.10. Find n such that 2n‖31024 − 1.

Solution: The answer is 12.
Note that 210 = 1024 and x2 − y2 = (x + y)(x − y). We have

3210 − 1 = (329 + 1)(329 − 1) = (329 + 1)(328 + 1)(328 − 1)

= · · · = (329 + 1)(328 + 1)(327 + 1) · · · (321 + 1)(320 + 1)(3 − 1).

By Example 1.5, 2‖32k + 1, for positive integers k. Thus the answer is
9 + 2 + 1 = 12. �
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Theorem 1.4 indicates that all integers are generated (productively) by primes.
Because of the importance of primes, many people have tried to find (explicit)
formulas to generate primes. So far, all the efforts are incomplete. On the other
hand, there are many negative results. The following is a typical one, due to
Goldbach:

Theorem 1.3b. For any given integer m, there is no polynomial p(x) with inte-
ger coefficients such that p(n) is prime for all integers n with n ≥ m.

Proof: For the sake of contradiction, assume that there is such a polynomial

p(x) = ak xk + ak−1xk−1 + · · · + a1x + a0

with ak, ak−1, . . . , a0 being integers and ak = 0.
If p(m) is composite, then our assumption was wrong. If not, assume that

p(m) = p is a prime. Then

p(m) = akmk + ak−1mk−1 + · · · + a1m + a0

and for positive integers i ,

p(m + pi) = ak(m + pi)k + ak−1(m + pi)k−1 + · · · + a1(m + pi) + a0.

Note that

(m + pi) j = m j +
(

j

i

)
m j−1(pi) +

(
j

2

)
m j−2(pi)2

+ · · · +
(

j

j − 1

)
m(pi) j−1 + (pi) j .

Hence (m + pj) j − m j is a multiple of p. It follows that p(m + pi) − p(m)

is a multiple of p. Because p(m) = p, p(m + pi) is a multiple of p. By our
assumption, p(m + pi) is also prime. Thus, the possible values of p(m + pi)
are 0, p, and −p for all positive integers i . On the other hand, the equations
p(x) = 0, p(x) = p, and p(x) = −p can have at most 3k roots. Therefore, there
exist (infinitely many) i such that m + pi is not a solution of any of the equations
p(x) = 0, p(x) = p, and p(x) = −p. We obtain a contradiction. Hence our
assumption was wrong. Therefore, such polynomials do not exist. �

Even though there are no definitive ways to find primes, the density of primes
(that is, the average appearance of primes among integers) has been known for
about 100 years. This was a remarkable result in the mathematical field of analytic
number theory showing that

lim
n→∞

π(n)

n/log n
= 1,

where π(n) denotes the number of primes ≤ n. The relation above is known as
the prime number theorem. It was proved by Hadamard and de la Vallée Poussin
in 1896. An elementary but difficult proof was given by Erdös and Selberg.
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G.C.D.

For a positive integer k we denote by Dk the set of all its positive divisors. It is
clear that Dk is a finite set. For positive integers m and n the maximal element in
the set Dm ∩ Dn is called the greatest common divisor (or G.C.D.) of m and n
and is denoted by gcd(m, n). In the case Dm ∩ Dn = {1}, we have gcd(m, n) = 1
and we say that m and n are relatively prime (or coprime). The following are
some basic properties of G.C.D.

Proposition 1.6.

(a) if p is a prime, then gcd(p, m) = p or gcd(p, m) = 1.

(b) If d = gcd(m, n), m = dm′, n = dn′, then gcd(m′, n′) = 1.

(c) If d = gcd(m, n), m = d ′m′′, n = d ′n′′, gcd(m′′, n′′) = 1, then d ′ = d.

(d) If d ′ is a common divisor of m and n, then d ′ divides gcd(m, n).

(e) If px‖m and py‖n, then pmin x,y‖ gcd(m, n). Furthermore, if m =
pα1

1 · · · pαk
k and n = pβ1

1 · · · pβk
k , αi , βi ≥ 0, i = 1, . . . , k, then

gcd(m, n) = pmin(α1,β1)

1 · · · pmin(αk ,βk )
k .

(f) If m = nq + r , then gcd(m, n) = gcd(n, r).

Proof: The proofs of these properties are rather straightforward from the def-
inition. We present only the proof property (f). Set d = gcd(m, n) and d ′ =
gcd(n, r). Because d | m and d | n it follows that d | r . Hence d | d ′. Con-
versely, from d ′ | n and d ′ | r it follows that d ′ | m, so d ′ | d. Thus d = d ′. �

The definition of G.C.D. can easily be extended to more than two numbers.
For given integers a1, a2, . . . , an , gcd(a1, a2, . . . , an) is the common greatest di-
visor of all the numbers a1, a2, . . . , an . We can define the greatest common divi-
sor of a1, a2, . . . , an by considering

d1 = gcd(a1, a2), d2 = gcd(d1, a3), . . . , dn−1 = gcd(dn−2, an).

We leave to the reader to convince himself that dn−1 = gcd(a1, . . . , an). We also
leave the simple proofs of the following properties to the reader.

Proposition 1.6. (Continuation)

(g) gcd(gcd(m, n), p) = gcd(m, gcd(n, p)); proving that gcd(m, n, p) is well-
defined;

(h) If d | ai , i = 1, . . . , s, then d | gcd(a1, . . . , as);
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(i) If ai = pα1i
1 · · · pαki

k , i = 1, . . . , s, then

gcd(a1, . . . , as) = pmin(α11,...,α1k )
1 · · · pmin(αk1,...,αkk )

k .

We say that a1, a2, . . . , an are relatively prime if their greatest common divi-
sor is equal to 1. Note that gcd(a1, a2, . . . , an) = 1 does not imply that
gcd(ai , a j ) = 1 for 1 ≤ i < j ≤ n. (For example, we can set a1 = 2, a2 = 3,
and a3 = 6.) If a1, a2, . . . , an are such that gcd(ai , a j ) = 1 for 1 ≤ i < j ≤ n,
we say that these numbers are pairwise relatively prime (or coprime).

Euclidean Algorithm

Canonical factorizations help us to determine the greatest common divisors of
integers. But it is not easy to factor numbers, especially large numbers. (This
is why we need to study divisibility of numbers.) A useful algorithm for finding
the greatest common divisor of two positive integers m and n is the Euclidean
algorithm. It consists of repeated application of the division algorithm:

m = nq1 + r1, 1 ≤ r1 < n,

n = r1q2 + r2, 1 ≤ r2 < r1,

...

rk−2 = rk−1qk + rk, 1 ≤ rk < rk−1,

rk−1 = rkqk+1 + rk+1, rk+1 = 0.

This chain of equalities is finite because n > r1 > r2 > · · · > rk .
The last nonzero remainder, rk , is the greatest common divisor of m and n.

Indeed, by applying successively property (f) above we obtain

gcd(m, n) = gcd(n, r1) = gcd(r1, r2) = · · · = gcd(rk−1, rk) = rk .

Example 1.11. [HMMT 2002] If a positive integer multiple of 864 is chosen
randomly, with each multiple having the same probability of being chosen, what
is the probability that it is divisible by 1944?

First Solution: The probability that a multiple of 864 = 25 · 33 is divisible by
1944 = 23 · 35 is the same as the probability that a multiple of 22 = 4 is divisible
by 32 = 9. Since 4 and 9 are relatively prime, the probability is 1

9 . �
Second Solution: By the Euclidean algorithm, we have gcd(1944, 864) =
gcd(1080, 864) = gcd(864, 216) = 216. Hence 1944 = 9·216 and 864 = 4·216.
We can finish as in the first solution. �
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Example 1.12. [HMMT 2002] Compute

gcd(2002 + 2, 20022 + 2, 20023 + 2, . . . ).

Solution: Let g denote the desired greatest common divisor. Note that 20022 +
2 = 2002(2000 + 2) + 2 = 2000(2002 + 2) + 6. By the Euclidean algorithm, we
have

gcd(2002 + 2, 20022 + 2) = gcd(2004, 6) = 6.

Hence g | gcd(2002 + 2, 20022 + 2) = 6. On the other hand, every number
in the sequence 2002 + 2, 20022 + 2, . . . is divisible by 2. Furthermore, since
2002 = 2001 + 1 = 667 · 3 + 1, for all positive integers k, 2002k = 3ak + 1 for
some integer ak . Thus 2002k + 2 is divisible by 3. Because 2 and 3 are relatively
prime, every number in the sequence is divisible by 6. Therefore, g = 6. �

Bézout’s Identity

Let’s start with two classic brain teasers.

Example 1.13. In a special football game, a team scores 7 points for a touch-
down and 3 points for a field goal. Determine the largest mathematically unreach-
able number of points scored by a team in an (infinitely long) game.

Solution: The answer is 11. It’s not difficult to check that we cannot obtain
11 points. Note that 12 = 3 + 3 + 3 + 3, 13 = 7 + 3 + 3, and 14 = 7 + 7.
For all integers n greater than 11, the possible remainders when n is divided by 3
are 0, 1, and 2. If n has remainder 0, we can clearly obtain n points by scoring
enough field goals; if n has remainder 1, then n − 13 has remainder 0, and we
can obtain n points by scoring one touchdown and enough field goals; if n has
remainder 2, then n − 14 has remainder 0, and we can obtain n points by scoring
two touchdowns and enough field goals. In short, all integers n greater than 11
can be written in the form n = 7a + 3b for some nonnegative integers a and
b. �
Example 1.14 There is an ample supply of milk in a milk tank. Mr. Fat is given
a 5-liter (unmarked) container and a 9-liter (unmarked) container. How can he
measure out 2 liters of milk?

Solution: Let T, L5, and L9 denote the milk tank, the 5-liter container, and
the 9-liter container, respectively. We can use the following table to achieve the
desired result.
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T L5 L9

x 0 0
x − 5 5 0
x − 5 0 5

x − 10 5 5
x − 10 1 9
x − 1 1 0
x − 1 0 1
x − 6 5 1
x − 6 0 6

x − 11 5 6
x − 11 2 9

�
The key is to make the connection between 2 = 4 × 5 − 2 × 9. We leave it to

the reader to use the equation 2 = 3×9−5×5 to set up another process. For given
integers a1, a2, . . . , an , we call α1a1 + α2a2 + · · · + αnan , where α1, α2, . . . , αn

are arbitrary integers, linear combinations of a1, a2, . . . , an . Examples 1.13 and
1.14 are seemingly unrelated problems. But they both involve linear combinations
of two given integers. What if we replace (7, 3) by (6, 3) in Example 1.13, and
(5, 9) by (6, 9) in Example 1.14? We have the following general result.

Theorem 1.7. [Bézout] For positive integers m and n, there exist integers x and
y such that mx + ny = gcd(m, n).

Proof: From the Euclidean algorithm it follows that

r1 = m − nq1, r2 = −mq2 + n(1 + q1q2), . . . .

In general, ri = mαi + nβi , for i = 1, . . . , k. Because ri+1 = ri−1 − ri qi+1, it
follows that

αi+1 = αi−1 − qi+1αi ,

βi+1 = βi−1 − qi+1βi ,

for i = 2, . . . , k − 1. Finally, we obtain gcd(m, n) = rk = αkm + βkn. �
Note that gcd(a, b) divides ax + by. In view of Bézout’s identity, for given

integers a, b, and c, the equation ax + by = c is solvable for integers (x, y) if
and only if gcd(a, b) divides c. In algebra, we solve systems of equations. In
number theory, we usually try to find special solutions for systems of equations,
namely, integer solutions, rational solutions, and so on. Hence most of the these
systems have more variables than the number of equations in the system. These
are called Diophantine equations, attributed to the ancient Greek mathematician
Diophantus, which will be studied extensively in the sequel to this book: 105 Dio-
phantine Equations and Integer Function Problems. For fixed integers a, b, and
c, ax + by = c is a two-variable linear Diophantine equation.
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Corollary 1.8. If a | bc and gcd(a, b) = 1, then a | c.

Proof: If c = 0, the assertion is clearly true. Assume that c = 0. Since
gcd(a, b) = 1, by Bézout’s identity, ax + by = 1 for some integers x and y.
Hence acx+bcy = c. Because a divides acx and bcy, a divides c, as desired. �
Corollary 1.9. Let a and b be two coprime numbers. If c is an integer such that
a | c and b | c, then ab | c.

Proof: Because a | c, we have c = ax for some integer x . Hence b divides ax .
Because gcd(a, b) = 1, b | x , and by Corollary 1.8, it follows that x = by for
some integer y, and so c = aby, or ab | c. �
Corollary 1.10. Let p be a prime, and let k be an integer with 1 ≤ k < p. Then
p | (p

k

)
.

Proof: Note that from relation

k

(
p

k

)
= p

(
p − 1

k − 1

)
it follows that p divides k

(p
k

)
. Because gcd(p, k) = 1, the relation p divides

(p
k

)
is obtained via Corollary 1.8. �
Example 1.15. [Russia 2001] Let a and b be distinct positive integers such that
ab(a + b) is divisible by a2 + ab + b2. Prove that |a − b| >

3
√

ab.

Proof: Set g = gcd(a, b) and write a = xg and b = yg with gcd(x, y) = 1.
Then

ab(a + b)

a2 + ab + b2
= xy(x + y)g

x2 + xy + y2

is an integer. Note that gcd(x2 + xy + y2, x) = gcd(y2, x) = 1. Similarly,
gcd(x2 + xy + y2, y) = 1. Because gcd(x + y, y) = 1, we have

gcd(x2 + xy + y2, x + y) = gcd(y2, x + y) = 1.

By Corollary 1.9,

x2 + xy + y2 | g,

implying that g ≥ x2 + xy + y2. Therefore,

|a − b|3 = |g(x − y)|3 = g2|x − y|3 · g

≥ g2 · 1 · (x2 + xy + y2)

> g2xy = ab.

It follows that |a − b| >
3
√

ab. �
Note that the key step x2 + xy + y2 divides g can also be obtained by clever

algebraic manipulations such as a3 = (a2 + ab + b2)a − ab(a + b).
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L.C.M.

For a positive integer k we denote by Mk the set of all multiples of k. As opposed
to the set Dk defined earlier in this section, Mk is an infinite set.

For positive integers s and t the minimal element of the set Ms ∩ Mt is called
the least common multiple of s and t and is denoted by lcm(s, t) or [s, t].

Proposition 1.11.

(a) If lcm(s, t) = m, m = ss′ = t t ′, then gcd(s′, t ′) = 1.

(b) If m′ is a common multiple of s and t and m′ = ss′ = t t ′, gcd(s′, t ′) = 1,
then m′ = m.

(c) If m′ is a common multiple of s and t , then m | m′.

(d) If m | s and n | s, then lcm(m, n) | s.

(e) If n is an integer, n lcm(s, t) = lcm(ns, nt).

(f) If s = pα1
1 · · · pαk

k and t = pβ1
1 · · · pβk

k , αi , bi ≥ 0, i = 1, . . . , k, then

lcm(s, t) = pmax(α1,β1)

1 · · · pmax(αk ,βk )
k .

The properties in Proposition 1.11 are easily obtained from the definition of
L.C.M., and we leave their proofs to the reader.

The following property establishes an important connection between G.C.D.
and L.C.M.

Proposition 1.12. For any positive integers m and n the following relation holds:

mn = gcd(m, n) · lcm(m, n).

Proof: Let m = pα1
1 · · · pαk

k , n = pβ1
1 · · · pβk

k , αi , βi ≥ 0, i = 1, . . . , k. From
Properties 1.6 (e) and 1.11 (f) we have

gcd(m, n) lcm(m, n) = pmin(α1,β1)+max(α1,β1)

1 · · · pmin(αk ,βk )+max(αk ,βk )
k

= pα1+β1
1 · · · pαk+βk

k = mn. �

Let a1, a2, . . . , an be positive integers. The least common multiple of
a1, a2, . . . , an , denoted by lcm(a1, a2, . . . , an), is the smallest positive integer
that is a multiple of all of a1, a2, . . . , an . Note that Proposition 1.12 cannot be
easily generalized. For example, it is not true that

gcd(a, b, c) lcm(a, b, c) = abc.

We leave it to the reader to find interesting counterexamples.
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The Number of Divisors

We start with three examples.

Example 1.16. [AIME 1988] Compute the probability that a randomly chosen
positive divisor of 1099 is an integer multiple of 1088.

Solution: What are the divisors of 1099? Is 3 a divisor? Is 220 a divisor? We
consider the prime factorization of 1099, which is 299 · 599. The divisors of 1099

are of the form 2a · 5b, where a and b are integers with 0 ≤ a, b ≤ 99. Because
there are 100 choices for each of a and b, 1099 has 100 · 100 positive integer
divisors. Of these, the multiples of 1088 = 288 · 588 must satisfy the inequalities
88 ≤ a, b ≤ 99. Thus there are 12 choices for each of a and b; that is, 12 · 12
of the 100 · 100 divisors of 1099 are multiples of 1088. Consequently, the desired
probability is 12·12

100·100 = 9
625 . �

Example 1.17. Determine the number of ordered pairs of positive integers (a, b)

such that the least common multiple of a and b is 23571113.

Solution: Both a and b are divisors of 23571113, and so a = 2x 5y11z and
b = 2s5t 11u for some nonnegative integers x, y, z, s, t, u. Because 23571113 is
the least common multiple, max{x, s} = 3, max{y, t} = 7, and max{z, u} = 13.
Hence (x, s) can be equal to (0, 3), (1, 3), (2, 3), (3, 3), (3, 2), (3, 1), or (3, 0), so
there are 7 choices for (x, s). Similarly, there are 15 and 27 choices for (y, t) and
(z, u), respectively. By the multiplication principle, there are 7×15×27 = 2835
ordered pairs of positive integers (a, b) having 23571113 as their least common
multiple. �
Example 1.18. Determine the product of distinct positive integer divisors of
n = 4204.

Solution: Because n = (22 · 3 · 5 · 7)4, d is a divisor of n if and only if d can
be written in the form 2a · 3b · 5c · 7d , where 0 ≤ a ≤ 8, 0 ≤ b ≤ 4, 0 ≤ c ≤ 4,
and 0 ≤ d ≤ 4. Hence there are 9, 5, 5, and 5 possible values for a, b, c, and d,
respectively. It follows that n has 9 ·5 ·5 ·5 = 1125 positive divisors. If d = 4202,

then 4204

d is also a divisor, and the product of these two divisors is 4204. We can
thus partition 1124 divisors of n (excluding 4202) into 562 pairs of divisors of the
form

(
d, n

d

)
, and the product of the two divisors in each pair is 4204. Hence the

answer is

4204·562 · 4202 = 4202250. �

Putting the last three examples together gives two interesting results in number
theory. For a positive integer n denote by τ(n) the number of its divisors. It is



18 104 Number Theory Problems

clear that

τ(n) =
∑
d|n

1.

Writing τ in this summation form allows us later to discuss it as an example of a
multiplicative arithmetic function.

Proposition 1.13. If n = pa1
1 pa2

2 · · · pak
k is a prime decomposition of n, then n

has

τ(n) = (a1 + 1)(a2 + 1) · · · (ak + 1) divisors.

Corollary 1.14. If n = pa1
1 pa2

2 · · · pak
k is a prime decomposition of n, then there

are

(2a1 + 1)(2a2 + 1) · · · (2ak + 1)

distinct pairs of ordered positive integers (a, b) with lcm(a, b) = n.

Corollary 1.15. For any positive integer n,∏
d|n

d = n
τ(n)

2 .

The proofs of these three propositions are identical to those of Examples 1.16,
1.17, and 1.18. It is interesting to note that these three results can be generalized to
the case that the powers of the primes in the prime decomposition are nonnegative
(because if ai = 0 for some 1 ≤ i ≤ k, then ai + 1 = 2ai + 1 = 1, which does
not affect the products).

Corollary 1.16. For any positive integer n, τ(n) ≤ 2
√

n.

Proof: Let d1 < d2 < · · · < dk be the divisors of n not exceeding
√

n. The
remaining divisors are

n

d1
,

n

d2
, . . . ,

n

dk
.

It follows that τ(n) ≤ 2k ≤ 2
√

n. �

The Sum of Divisors

For a positive integer n denote by σ(n) the sum of its positive divisors, including
1 and n itself. It is clear that

σ(n) =
∑
d|n

d.

This representation will help us to show that σ is multiplicative.
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Proposition 1.17. If n = pα1
1 · · · pαk

k is the prime factorization of n, then

σ(n) = pα1+1
1 − 1

p1 − 1
· · · pαk+1

k − 1

pk − 1
.

Proof: The divisors of n can be written in the form

pa1
1 · · · pak

k ,

where a1, . . . , ak are integers with 0 ≤ a1 ≤ α1, . . . , 0 ≤ ak ≤ αk . Each divisor
of n appears exactly once as a summand in the expansion of the product

(1 + p1 + · · · + pα1
1 ) · · · (1 + pk + · · · + pαk

k ),

from which the desired result follows, by also noting the formula for the sum of a
finite geometric progression:

rk+1 − 1

r − 1
= 1 + r + r2 + · · · + rk . �

Example 1.19. Find the sum of even positive divisors of 10000.

Solution: The even divisors of 10000 can be written in the form of 2a5b, where
a and b are integers with 1 ≤ a ≤ 5 and 0 ≤ b ≤ 5. Each even divisor of 10000
appears exactly once as a summand in the expansion of the product

(2 + 22 + 23 + 24 + 25)(1 + 5 + 52 + 53 + 54 + 55) = 62 · 56 − 1

5 − 1
= 242172. �

Modular Arithmetic

Let a, b, and m be integers, with m = 0. We say that a and b are congruent
modulo m if m divides a − b. We denote this by a ≡ b (mod m). The relation
“≡” on the set Z of integers is called the congruence relation. If m does not
divide a − b, then we say that integers a and b are not congruent modulo m and
we write a ≡ b (mod m).

Proposition 1.18.

(a) a ≡ a (mod m) (reflexivity).

(b) If a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m) (transitivity).

(c) If a ≡ b (mod m), then b ≡ a (mod m).
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(d) If a ≡ b (mod m) and c ≡ d (mod m), then a + c ≡ b + d (mod m) and
a − c ≡ b − d (mod m).

(e) If a ≡ b (mod m), then for any integer k, ka ≡ kb (mod m).

(f) If a ≡ b (mod m) and c ≡ d (mod m), then ac ≡ bd (mod m). In
general, if ai ≡ bi (mod m), i = 1, . . . , k, then a1 · · · ak ≡ b1 · · · bk

(mod m). In particular, if a ≡ b (mod m), then for any positive integer k,
ak ≡ bk (mod m).

(g) We have a ≡ b (mod mi ), i = 1, . . . , k, if and only if

a ≡ b (mod lcm(m1, . . . , mk)).

In particular, if m1, . . . , mk are pairwise relatively prime, then a ≡ b
(mod mi ), i = 1, . . . , k, if and only if a ≡ b (mod m1 · · · mk).

Proof: The proofs are straightforward. We present the proof of (g) and leave the
rest to the reader.

From a ≡ b (mod mi ), i = 1, . . . , k, it follows that mi | (a − b),
i = 1, . . . , k. Hence a − b is a common multiple of m1, . . . , mk , and so
lcm(m1, . . . , mk) | (a − b). That is, a ≡ b (mod lcm(m1, . . . , mk)).

Conversely, from a ≡ b (mod lcm(m1, . . . , mk)) and the fact that each mi

divides lcm(m1, . . . , mk) we obtain a ≡ b (mod mi ), i = 1, . . . , k. �
Proposition 1.19. Let a, b, n be integers, n = 0, such that a = nq1 + r1,
b = nq2 + r2, 0 ≤ r1, r2 < |n|. Then a ≡ b (mod n) if and only if r1 = r2.

Proof: Because a − b = n(q1 − q2) + (r1 − r2), it follows that n | (a − b) if and
only if n | (r1 −r2). Taking into account that |r1 −r2| < |n|, we have n | (r1 −r2)

if and only if r1 = r2. �
Example 1.20. Prove that there are infinitely many primes of the form 4k − 1;
that is, congruent to 3 modulo 4.

Proof: We first note that there is at least one prime p with p ≡ 3 (mod 4)

(simply set p = 3). Suppose there were only finitely many primes congruent to
3 modulo 4. Let p1, p2, . . . , pk be those primes, and let P = p1 p2 · · · pk denote
their product. We have 4P − 1 ≡ 3 (mod 4). If all the prime divisors of 4P − 1
were congruent to 1 modulo 4, then 4P −1 would be congruent to 1 modulo 4 (by
Proposition 1.18 (g)). Thus, some prime divisor p of 4P − 1 would be congruent
to 3 modulo 4. On the other hand, gcd(4P − 1, pi ) = 1 for all i with 1 ≤ i ≤ k,
and so we find another prime that is congruent to 3 modulo 4, a contradiction to
our assumption. Hence there are infinitely many primes of the form 4k − 1. �
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In exactly the same way, we can show that there are infinitely many primes of
the form 6k − 1. We can view congruency as (part of) an arithmetic progression.
For example, we can rewrite the last two results as follows: There are infinitely
many primes in the arithmetic progression {−1 + ka}∞k=1 with a = 4 or a = 6.
These are the special cases of a famous result of Dirichlet:

There are infinitely many primes in any arithmetic progression of
integers for which the common difference is relatively prime to the
terms. In other words, if a and m be relatively prime positive integers,
then there are infinitely many primes p such that p ≡ a (mod m).

Dirichlet was also able to compute the density (in simpler terms, a certain
kind of frequency of such primes) of these prime numbers in the set of all primes.
This was another milestone in analytic number theory. The proof of this work
is beyond the scope of this book. We present a more detailed form of this result
in the glossary section of this book. Some problems in this book become easy if
we apply this theorem directly. But all of these problems can also be solved in
different ways, and we strongly encourage the reader to look for these different
approaches, which will enhance the reader’s problem-solving abilities.

In Example 1.20, it is very natural to work modulo 4. Many times, such a
choice is not obvious. Taking the proper modulus holds the key to many problems.

Example 1.21. [Russia 2001] Find all primes p and q such that p + q =
(p − q)3.

Solution: The only such primes are p = 5 and q = 3.
Because (p − q)3 = p + q = 0, p and q are distinct and hence relatively

prime.
Because p − q ≡ 2p (mod p + q), taking the given equation modulo p + q

gives 0 ≡ 8p3 (mod p + q). Because p and q are relatively prime, so are p and
p + q. Thus, 0 ≡ 8 (mod p + q); that is, p + q divides 8.

Likewise, taking the given equation modulo p−q gives 2p ≡ 0 (mod p−q).
Because p and q are relatively prime, so are p and p −q. We conclude that 2 ≡ 0
(mod p − q), or p − q divides 2.

It easily follows that (p, q) is equal to (3, 5) or (5, 3); only the latter satisfies
the given equation. �

There is another approach to the last problem: setting p − q = a leads to

p + q = a3. Hence p = a3+a
2 and q = a3−a

2 . This kind of substitution is a very
common technique in solving Diophantine equations.

Example 1.22. [Baltic 2001] Let a be an odd integer. Prove that a2n + 22n
and

a2m + 22m
are relatively prime for all positive integers n and m with n = m.
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Proof: Without loss of generality, assume that m > n. For any prime p dividing
a2n + 22n

, we have

a2n ≡ −22n
(mod p).

We square both sides of the equation m − n times to obtain

a2m ≡ 22m
(mod p).

Because a is odd, we have p = 2. Thus, 22m + 22m = 22m+1 ≡ 0 (mod p), so
that

a2m ≡ 22m ≡ −22m
(mod p).

Therefore, p � (a2m + 22m
), proving the desired result. �

Setting a = 1 in the last example leads to a property of the Fermat numbers,
which will soon be discussed.

Example 1.23. Determine whether there exist infinitely many even positive in-
tegers k such that for every prime p the number p2 + k is composite.

Solution: The answer is positive.
First note that for p = 2, p2 + k is always composite for all even positive

integers k.
Next we note that if p > 3, then p2 ≡ 1 (mod 3). Hence if k is an even

positive integer with k ≡ 2 (mod 3), then p2 + k is composite for all all primes
p > 3 (p2 + k is greater than 3 and is divisible by 3).

Finally, we note that 32 + k ≡ 0 (mod 5) if k ≡ 1 (mod 5).
Putting the above arguments together, we conclude that all positive integers k

with ⎧⎨
⎩

k ≡ 0 (mod 2),

k ≡ 2 (mod 3),

k ≡ 1 (mod 5),

(∗)

satisfy the conditions of the problem. By Proposition 1.18 (g), we consider
(mod lcm(2, 3, 5)) = (mod 30). It is not difficult to check that all positive
integers k with k = 26 (mod 30) satisfy the system, and hence the conditions of
the problem. �

The system (∗) is a linear congruence system, and each of the three equa-
tions in the system is a linear congruence equation. We will study the solutions
of the linear congruence systems when we study the Chinese Remainder Theo-
rem in the sequel to this book: 105 Diophantine Equations and Integer Function
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Problems. The major difference between solving an equation and solving a con-
gruence equation is the limitation of division in the latter situation. For example,
in algebra, 4x = 4y implies that x = y. In modular arithmetic, 4x ≡ 4y (mod 6)

does not necessarily imply that x ≡ y (mod 6). (Why?) On the other hand,
4x ≡ 4y (mod 15) does imply that x ≡ y (mod 15). (Why?) Proposition 1.18
(g) plays a key role in this difference. In algebra, xy = 0 implies that either x = 0
or y = 0 or both. But in modular arithmetic, xy ≡ 0 (mod m) does not imply
x ≡ 0 (mod m) or y ≡ 0 (mod m). (For example, 3·5 ≡ 0 (mod 15), but 3 ≡ 0
(mod 15) and 5 ≡ 0 (mod 15). We will discuss this topic in a detailed fashion
when we talk about linear congruence equations. For a little preview, we rewrite
Corollary 1.5 in the language of modular arithmetic.

Corollary 1.20. Let p be a prime. If x and y are integers such that xy ≡ 0
(mod p), then either x ≡ 0 (mod p) or y ≡ 0 (mod p) or both.

This is an example of interchanging the faces of a common idea in number
theory: p | xy (divisibility notation), xy ≡ 0 (mod p) (modular and congru-
ence notation), and p = kxy (Diophantine equation forms). Simple applications
Corollaries 1.8 and 1.9 also lead to the following properties.

Corollary 1.21. Let m be a positive integer, and let a, b, and c be integers with
c = 0. If ac ≡ bc (mod m), then

a ≡ b

(
mod

m

gcd(c, m)

)
.

Corollary 1.22. Let m be a positive integer. Let a be an integer relatively prime
to m. If a1 and a2 are integers such that a1 ≡ a2 (mod m), then a1a ≡ a2a
(mod m).

The following property is useful in reducing the power in congruency rela-
tions.

Corollary 1.23. Let m be a positive integer, and let a and b be integers relatively
prime to m. If x and y are integers such that

ax ≡ bx (mod m) and ay ≡ by (mod m),

then

agcd(x,y) ≡ bgcd(x,y) (mod m).

Proof: By Bézout’s identity, there are nonnegative integers u and v such that
gcd(x, y) = ux − vy. By the given conditions, we have

aux ≡ bux (mod m) and bvy ≡ avy (mod m),
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implying that aux bvy ≡ avybux (mod m). Since gcd(a, m) = gcd(b, m) = 1, by
Corollary 1.21, we have

agcd(x,y) ≡ aux−vy ≡ bux−vy ≡ bgcd(x,y) (mod m). �

Residue Classes

By Proposition 1.18 (a), (b), and (c), we conclude that for any given positive
integer m, we can classify integers into a unique class according to their remainder
on division by m. Clearly, there are m such classes. A set S of integers is also
called a complete set of residue classes modulo n if for each 0 ≤ i ≤ n −1, there
is an element s ∈ S such that i ≡ s (mod n). Clearly, {a, a + 1, a + 2, . . . , a +
m − 1} is a complete set of residue classes modulo m for any integer a. In
particular, for a = 0, {0, 1, . . . , m − 1} is the minimal nonnegative complete
set of residue classes. Also, it is common to consider the complete set of residue
classes {0, ±1, ±2, . . . , ±k} for m = 2k + 1 and {0, ±1, ±2, . . . , ±(k − 1), k}
for m = 2k.

Example 1.24. Let n be an integer. Then

(1) n2 ≡ 0 or 1 (mod 3);

(2) n2 ≡ 0 or ± 1 (mod 5);

(3) n2 ≡ 0 or 1 or 4 (mod 8);

(4) n3 ≡ 0 or ± 1 (mod 9);

(5) n4 ≡ 0 or 1 (mod 16);

All the proofs can be done by checking complete sets of residue classes. We
leave them to the reader. We also encourage the reader to review these relations
after finishing studying Euler’s theorem.

Example 1.25. [Romania 2003] Consider the prime numbers n1 < n2 < · · · <

n31. Prove that if 30 divides n4
1 + n4

2 + · · · + n4
31, then among these numbers one

can find three consecutive primes.

Solution: Let s = n4
1 + n4

2 + · · · + n4
31.

Firstly, we claim that n1 = 2. Otherwise, all numbers ni , 1 ≤ i ≤ 31, are
odd, and consequently s is odd, a contradiction.

Secondly, we claim that n2 = 3. Otherwise, we have n4
i ≡ 1 (mod 3) for all

1 ≤ i ≤ 31. It follows that s ≡ 31 ≡ 1 (mod 3), a contradiction.
Finally, we prove that n3 = 5. Indeed, if not, then n2

i ≡ ±1 (mod 5) and
n4

i ≡ 1 (mod 5) for all 1 ≤ i ≤ 31. Thus, s ≡ 31 ≡ 1 (mod 5), a contradiction.
We conclude that three consecutive primes, namely, 2, 3, and 5, appear in the

given prime numbers. �
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Example 1.26. Let m be an even positive integer. Assume that

{a1, a2, . . . , am} and {b1, b2, . . . , bm}
are two complete sets of residue classes modulo m. Prove that

{a1 + b1, a2 + b2, . . . , am + bm}
is not a complete set of residue classes.

Proof: We approach indirectly by assuming that it is. Then we have

1 + 2 + · · · + n ≡ (a1 + b1) + (a2 + b2) + · · · + (am + bm)

≡ (a1 + a2 + · · · + am) + (b1 + b2 + · · · + bm)

≡ 2(1 + 2 + · · · + m) (mod m),

implying that 1 + 2 +· · ·+ m ≡ 0 (mod m), or m | m(m+1)
2 , which is not true for

even integers m. Hence our assumption was wrong. �
Example 1.27. Let a be a positive integer. Determine all the positive integers
m such that

{a · 1, a · 2, a · 3, . . . , a · m}
is a set of complete residue classes modulo m.

Solution: The answer is the set of positive integers m that are relatively prime to
a.

Let Sm denote the given set. First we show that Sm is a complete set of residue
classes if gcd(a, m) = 1. Because this set has exactly m elements, it suffices to
show that elements in the set are not congruent to each other modulo m. Assume
to the contrary that ai ≡ aj (mod m) for some 1 ≤ i < j ≤ n. Because
gcd(a, m) = 1, by Corollary 1.20, we have i ≡ j (mod m), which is impossible
since |i − j | < m. Hence our assumption was wrong and Sm is a complete set of
residue classes modulo m.

On the other hand, if g = gcd(a, m) > 1, then a = a1g and m = m1g, where
m1 is a positive integer less than n. We have am1 ≡ a1m1g ≡ a1m ≡ am ≡ 0
(mod m). Hence Sm is not a complete set of residue classes. �

Similarly, we can show the following result.

Proposition 1.24. Let m be a positive integer. Let a be an integer relatively
prime to m, and let b be an integer. Assume that S is a complete set of residue
classes modulo m. The set

T = aS + b = {as + b | s ∈ S}
is also a complete set of residue classes modulo n.
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Now we are better equipped to discuss linear congruence equations a bit fur-
ther.

Proposition 1.25. Let m be a positive integer. Let a be an integer relatively
prime to m, and let b be an integer. There exist integers x such that ax ≡ b
(mod m), and all these integers form exactly one residue class modulo m.

Proof: Let {c1, c2, . . . , cm} be a complete set of residue classes modulo m. By
Proposition 1.24,

{ac1 − b, ac2 − b, . . . , acm − b}
is also a complete set of residue classes. Hence there exists ci such that ac1 −b ≡
0 (mod m), or c1 is a solution to the congruence equation ax ≡ b (mod m).
It is easy to see that all the numbers congruent to c1 modulo m also satisfy the
congruence equation. On the other hand, if both x and x ′ satisfy the equation, we
have ax ≡ ax ′ (mod m). By Corollary 1.20, we have x ≡ x ′ (mod m). �

In particular, setting b = 1 in Proposition 1.25 shows that if gcd(a, m) =
1, then there is x such that ax ≡ 1 (mod m). We call such x the inverse of
a modulo m, denoted by a−1 or 1

a (mod m). Because all such numbers form
exactly one residue class modulo m, the inverse of a is uniquely determined (or
well defined) modulo m for all integers relatively prime to m.

Now we are ready to prove Wilson’s theorem.

Theorem 1.26. [Wilson’s Theorem] For any prime p, (p−1)! ≡ −1 (mod p).

Proof: The property holds for p = 2 and p = 3, so we may assume that p ≥ 5.
Let S = {2, 3, . . . , p − 2}. Because p is prime, for any s in S, s has a unique
inverse s′ ∈ {1, 2, . . . , p − 1}. Moreover, s′ = 1 and s′ = p − 1; hence s′ ∈ S. In
addition, s′ = s; otherwise, s2 ≡ 1 (mod p), implying p | (s − 1) or p | (s + 1),
which is not possible, since s + 1 < p. It follows that we can group the elements
of S in p−3

2 distinct pairs (s, s′) such that ss′ ≡ 1 (mod p). Multiplying these
congruences gives (p − 2)! ≡ 1 (mod p) and the conclusion follows. �

Note that the converse of Wilson’s theorem is true, that is, if (n − 1)! ≡ −1
(mod n) for an integer n ≥ 2, then n is a prime. Indeed, if n were equal to
n1n2 for some integers n1, n2 ≥ 2, we would have n1 | 1 · 2 · · · n1 · · · (n − 1)+ 1,
which is not possible. This provides us a new way to determine whether a number
is prime. (However, this is not a very practical way, since for large n, (n − 1)! is
huge!)

In most situations, there are no major differences in picking a particular com-
plete set of residue classes to solve a particular problem. Here is a distinct exam-
ple.
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Example 1.28. [MOSP 2005, Melanie Wood] At each corner of a cube, an in-
teger is written. A legal transition of the cube consists in picking any corner of
the cube and adding the value written at that corner to the value written at some
adjacent corner (that is, pick a corner with some value x written at it, and an ad-
jacent corner with some value y written at it, and replace y by x + y). Prove that
there is a finite sequence of legal transitions of the given cube such that the eight
integers written are all the same modulo 2005.

We present two solutions. Notice that if we take a legal transition and perform
it 2004 times, then modulo 2005, this is the same as replacing y by y − x . Call
such a repetition of a single legal transition 2004 times a super transition.

First Solution: Look at the integers modulo 2005, and replace them with residue
classes 1, 2, . . . , 2005. If all of the residue classes are the same, then we need
no transitions. Otherwise, there is an edge with residue classes N and M with
1 ≤ N < M ≤ 2005. Performing a super transition, we can replace M by
M − N , which is a residue class, since 1 ≤ M − N ≤ 2005. Since N ≥ 1,
this reduces the sum of the residue classes by at least 1. Because the sum of the
residue classes is always at least 8, by repeating this process, we will eventually
get to a state in which all of the residue classes are the same. �

Note that the proof would not work well if we replaced the numbers with
residue classes 0, 1, . . . , 2004. As in the case N = 0, the sum of the residue
classes is not decreased.

Second Solution: Look at the integers all modulo 2005. They are congruent to
some set of positive integers modulo 2005. Performing a super transition on an
edge is the same (modulo 2005) as performing a step of the Euclidean algorithm
on the two numbers of the edge. Performing the Euclidean algorithm on a pair of
positive integers will make them equal to the greatest common divisor of the two
original integers after a finite number of steps. Thus, we can make two numbers of
an edge congruent modulo 2005 after a finite number of super transitions. First we
do this on all edges going in one direction, then on all the edges going in another
direction, and then on all the edges going in the third direction. After this, we see
that all the integers written at corners are congruent modulo 2005. �

Fermat’s Little Theorem and Euler’s Theorem

From the last few results, we note that for a given positive integer m, it is useful
to consider the congruence classes that are relatively prime to m. For any positive
integer m we denote by ϕ(m) the number of all positive integers n less than m
that are relatively prime to m. The function ϕ is called Euler’s totient function.
It is clear that ϕ(1) = 1 and for any prime p, ϕ(p) = p − 1. Moreover, if n is a
positive integer such that ϕ(n) = n − 1, then n is a prime.
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A set S of integers is also called a reduced complete set of residue classes
modulo m if for each i with 0 ≤ i ≤ n − 1 and gcd(i, m) = 1, there is an element
s ∈ S such that i ≡ s (mod m). It is clear that a reduced complete set of residue
classes modulo m consists of ϕ(m) elements.

Proposition 1.27. Let m be a positive integer. Let a be an integer relatively
prime to m. Assume that S is a reduced complete set of residue classes modulo
m. Set

T = aS = {as | s ∈ S},
which is also a reduced complete set of residue classes modulo n.

The proof is similar to that of Proposition 1.24, and we leave it to the reader.
Proposition 1.27 allows us to establish two of the most famous theorems in num-
ber theory.

Theorem 1.28. [Euler’s Theorem] Let a and m be relatively prime positive
integers. Then aϕ(m) ≡ 1 (mod m).

Proof: Consider the set S = {a1, a2, . . . , aϕ(m)} consisting of all positive inte-
gers less than m that are relatively prime to m. Because gcd(a, n) = 1, it follows
from Proposition 1.26 that

{aa1, aa2, . . . , aaϕ(m)}
is another reduced complete set of residue classes modulo n. Then

(aa1)(aa2) · · · (aaϕ(n)) ≡ a1a2 · · · aϕ(n) (mod m).

Using that gcd(ak, n) = 1, k = 1, 2, . . . , ϕ(n), the conclusion now follows. �
Setting m = p as prime, Euler’s theorem becomes Fermat’s little theorem.

Theorem 1.29. [Fermat’s Little Theorem] Let a be a positive integer and let p
be a prime. Then

a p ≡ a (mod p).

Proof: We present an alternative proof independent of Euler’s theorem. We
induct on a. For a = 1 everything is clear. Assume that p | (a p − a). Then

(a + 1)p − (a + 1) = (a p − a) +
p−1∑
k=1

(
p

k

)
ak .

Using the fact that p | (p
k

)
for 1 ≤ k ≤ p − 1 (Corollary 1.10) and the inductive

hypothesis, it follows that p divides (a +1)p − (a +1); that is, (a +1)p ≡ (a +1)

(mod p). �
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Clearly, Fermat’s little theorem is a special case of Euler’s theorem. But with
a few more properties on the Euler function ϕ that we will develop, we can derive
Euler’s theorem from Fermat’s little theorem Note also another form of Fermat’s
little theorem:

Let a be a positive integer relatively prime to prime p. Then

a p−1 ≡ 1 (mod p).

Next, we present a few examples involving these two important theorems.

Example 1.29. Let p be a prime. Prove that p divides abp −ba p for all integers
a and b.

Proof: Note that abp − ba p = ab(bp−1 − a p−1).
If p | ab, then p | abp − ba p; if p � ab, then gcd(p, a) = gcd(p, b) = 1,

and so bp−1 ≡ a p−1 ≡ 1 (mod p), by Fermat’s little theorem. Hence p |
bp−1 − a p−1, implying that p | abp − ba p. Therefore, p | abp − ba p for all
p. �
Example 1.30. Let p ≥ 7 be a prime. Prove that the number

11 . . . 1︸ ︷︷ ︸
p−1 1’s

is divisible by p.

Proof: We have

11 . . . 1︸ ︷︷ ︸
p−1 1’s

= 10p−1 − 1

9
,

and the conclusion follows from Fermat’s little theorem. (Note also that
gcd(10, p) = 1.) �
Example 1.31. Let p be a prime with p > 5. Prove that p8 ≡ 1 (mod 240).

Proof: Note that 240 = 24 · 3 · 5. By Fermat’s little theorem, we have p2 ≡ 1
(mod 3) and p4 ≡ 1 (mod 5). Because a positive integer is relatively prime to
24 if and only if it is odd, ϕ(24) = 23. By Euler’s theorem, we have p8 ≡ 1
(mod 16). Therefore, p8 ≡ 1 (mod m) for m = 3, 5, and 16, implying that
p8 ≡ 1 (mod 240). �

Note that this solution indicates that we can establish Euler’s theorem by Fer-
mat’s little theorem. Further, it is not difficult to check that n4 ≡ 1 (mod 16) for
n ≡ ±1, ±3, ±5, ±7 (mod 16) (see Example 1.24 (5)). Hence we can improve
the result to p4 ≡ 1 (mod 240) for all primes p > 5.
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Example 1.32. Prove that for any even positive integer n, n2 −1 divides 2n! −1.

Proof: Let m = n + 1. We need to prove that m(m − 2) divides 2(m−1)! − 1.
Because ϕ(m) divides (m − 1)! we have (2ϕ(m) − 1) | (2(m−1)! − 1) and from
Euler’s theorem, m | (2ϕ(m) − 1). It follows that m | (2(m−1)! − 1). Similarly,
(m −2) | (2(m−1)! −1). Because m is odd, gcd(m, m −2) = 1 and the conclusion
follows. �

For a given positive integer m, let {a1, a2, . . . , aϕ(m)} be a reduced complete
set of residue classes modulo m. By the existence and uniqueness of inverses, it
is not difficult to see that the set of their inverses, denoted by

{a−1
1 , a−1

2 , . . . , a−1
ϕ(m)} or

{
1

a1
,

1

a2
, . . . ,

1

aϕ(m)

}
,

is also a reduced complete set of residue classes modulo m. One might attempt to
generalize Wilson’s theorem by pairing residue classes that are inverses of each
other. This approach fails, since there are residue classes other than 1 and −1 (or
m − 1) that are inverses of themselves. (In the proof of Wilson’s theorem, there
are only two possible values for s, namely s = 1 or s = p − 1, such that s2 ≡ 1
(mod p).) For example, 62 ≡ 1 (mod 35) for m = 35.

Let m be a positive integer, and let a be an integer relatively prime to m.
Assume that b = na is a multiple of a; that is, n = b

a is an integer. From
a−1a ≡ 1 (mod p), we have n ≡ a−1an ≡ a−1b (mod m). This means that
n = a

b under the usual arithmetic meaning identifies with n ≡ 1
a · b (mod m).

This allows us to choose the order of operations to our advantage.

Example 1.33. [IMO 2005] Consider the sequence a1, a2, . . . defined by

an = 2n + 3n + 6n − 1

for all positive integers n. Determine all positive integers that are relatively prime
to every term of the sequence.

First Solution: The answer is 1. It suffices to show that every prime p divides
an for some positive integer n. Note that both p = 2 and p = 3 divide a2 =
22 + 32 + 62 − 1 = 48.

Assume now that p ≥ 5. By Fermat’s little theorem, we have 2p−1 ≡ 3p−1 ≡
6p−1 ≡ 1 (mod p). Then

3 · 2p−1 + 2 · 3p−1 + 6p−1 ≡ 3 + 2 + 1 ≡ 6 (mod 6),

or 6(2p−2 + 3p−2 + 6p−2 − 1) ≡ 0 (mod p); that is, 6ap−2 is divisible by p.
Because p is relatively prime to 6, ap−2 is divisible by p, as desired.
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Second Solution: If we use the notation of inverse, the proof can be written as

6ap−2 ≡ 6(2p−2 + 3p−2 + 6p−2 − 1)

≡ 6

(
1

2
+ 1

3
+ 1

6
− 1

)
≡ 0 (mod p),

for every prime p greater than 5. �
Example 1.34. Find an infinite nonconstant arithmetic progression of positive
integers such that each term is not a sum of two perfect cubes.

Solution: Assume that the desired arithmetic progression is {a, a + d, a +
2d, . . . }. We are basically considering all integers in the residue class a modulo
d. We want to limit the number of residue classes that are cubes modulo d. In
this way, we limit the number of residue classes that can be written as the sum of
cubes modulo d.

We first look for d such that a3 ≡ 1 (mod d) for all integers a. Fermat’s
little theorem states that a p−1 ≡ 1 (mod p) for prime p and integers a relatively
prime to p. If we set p − 1 = 3, we have p = 4, which is not a prime. Hence
we cannot apply Fermat’s little theorem directly. On the other hand, if we set
p = 7, then a6 ≡ 1 (mod 7) for integers relatively prime to 7. It not difficult to
check that the possible residue classes for a3 modulo 7 are 0, 1, −1 (or 6). Hence,
modulo 7, the possible residue classes for a3 + b3 are 0, 1, −1, 2, −2.

Therefore, {3, 3+7, 3+2·7, . . . } and {4, 4+7, 4+2·7, . . . } are two sequences
satisfying the conditions of the problem. �

By noting that ϕ(9) = 6, we can also find sequences of the form {a, a + 9,
a + 2 · 9, . . . }. We leave the details to the reader. (Compare to Example 1.24 (4).)

Example 1.35. [IMO 2003 shortlist] Determine the smallest positive integer k
such that there exist integers x1, x2, . . . , xk with

x3
1 + x3

2 + · · · + x3
k = 20022002.

Solution: The answer is k = 4.
We first show that 20022002 is not a sum of three cubes. To restrict the number

of cubes modulo n, we would like to have ϕ(n) to be a multiple of 3. Again,
consider n = 7. But adding three cubes modulo 7 gives too many residue classes
(since 7 is too small). We then consider n = 9 with ϕ(9) = 6. Because 2002 ≡ 4
(mod 9) and 20023 ≡ 43 ≡ 1 (mod 9), it follows that

20022002 ≡ (20023)667 · 2004 ≡ 4 (mod 9).

On the other hand, x3 ≡ 0, ±1 (mod 9) for integers x . We see that x3
1 +x3

2 +x3
3 ≡

4 (mod 9).
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It remains to show that 20022002 is a sum of four cubes. Starting with

2002 = 103 + 103 + 13 + 13

and using 2002 = 667 · 3 + 1 once again, we find that

20022002 = 2002 · (2002667)3

= (10 · 2002667)3 + (10 · 2002667)3 + (2002667)3 + (2002667)3. �
Fermat’s little theorem provides a good criterion to determine whether a num-

ber is composite. But the converse is not true. For example, 3 · 11 · 17 divides
a3·11·17 − a, since 3, 11, 17 each divide a3·11·17 − a (for instance, if 11 did
not divide a, then from Fermat’s little theorem, we have 11 | (a10 − 1); hence
11 | (a10·56 − 1), i.e., 11 | (a561 − a) and 561 = 3 · 11 · 17).

The composite integers n satisfying an ≡ a (mod n) for any integer a are
called Carmichael numbers. There are also even Carmichael numbers, for ex-
ample n = 2 · 73 · 1103.

Let a and m be relatively prime positive integers. Setting b = 1 in Corollary
1.23 leads to an interesting result. By Euler’s theorem, there exist positive integers
x such that ax ≡ 1 (mod m). We say that a has order d modulo m, denoted by
ordm(a) = d, if d is the smallest positive integer such that ad ≡ 1 (mod m). By
Euler’s theorem, ordm(a) = d ≤ ϕ(m). If x is a positive integer such that ax ≡ 1
(mod m), then by Corollary 1.23,

agcd(x,d) ≡ 1 (mod m).

Since gcd(x, d) ≤ d , by the minimality of d , we must have gcd(x, d) = d. Hence
d divides x . We have established the following property.

Proposition 1.30. A positive integer x is such that ax ≡ 1 (mod m) if and
only if x is a multiple of the order of a modulo m.

For a pair of relatively prime positive integers a and m, it is not true that there
always exists a positive integer s such that as ≡ −1 (mod n). (For example, a =
2 and m = 7.) Assume that there exists a perfect power of a that is congruent to
−1 modulo m, and assume that s is the least such integer. We have ordm(a) = 2s.
Indeed, a2s ≡ 1 (mod m), so d divides 2s. If d < 2s, then 22s−d ≡ −1 (mod m)

violates the minimality assumption on s. Furthermore, if t is an integer such that

at ≡ −1 (mod m),

then t is a multiple of s. Because a2t ≡ 1 (mod m), it follows that d = 2s divides
2t , and so s divides t . It is then clear that t must an odd multiple of s; that is,

at ≡
{−1 if t is an odd mulptiple of s;

1 if t is an even mulptiple of s.

Example 1.36. [AIME 2001] How many positive integer multiples of 1001 can be
expressed in the form 10 j − 10i , where i and j are integers and 0 ≤ i < j ≤ 99?
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Solution: Because

10 j − 10i = 10i (10 j−i − 1)

and 1001 = 7 · 11 · 13 is relatively prime to 10i , it is necessary to find i and
j such that the 10 j−i − 1 is divisible by the primes 7, 11, and 13. Notice that
1001 = 7 · 11 · 13; that is, 103 ≡ −1 (mod 1001). It is easy to check that

ord1001(10) = 6.

By Proposition 1.30, 10i (10 j−i −1) is divisible by 1001 if and only if j − i = 6n
for some positive integer n. Thus it is necessary to count the number of integer
solutions to

i + 6n = j,

where j ≤ 99, i ≥ 0, and n > 0. For each n = 1, 2, 3, . . . , 15, there are 100−6n
suitable values of i (and j), so the number of solutions is

94 + 88 + 82 + · · · + 4 = 784. �

Euler’s Totient Function

We discuss some useful properties of Euler’s totient function ϕ. First of all, it is
not difficult to see the following:

Proposition 1.31. Let p be a prime, and let a be a positive integer. Then
ϕ(pa) = pa − pa−1.

Next, we show that ϕ is multiplicative:

Proposition 1.32. Let a and b be two relatively prime positive integers. Then
ϕ(ab) = ϕ(a)ϕ(b).

Proof: : Arrange the integers 1, 2, . . . , ab into an a × b array as follows:

1 2 · · · a
a + 1 a + 2 · · · 2a

...
...

...
...

a(b − 1) + 1 a(b − 1) + 2 · · · ab.

Clearly, there are ϕ(ab) numbers in the above table that are relatively prime to
ab.

On the other hand, there are ϕ(a) columns containing those elements in the
table relatively prime to a. Each of those columns is a complete set of residues
modulo b, by Proposition 1.24. Hence there are exactly ϕ(b) elements in each
of those columns that are relatively prime to b. Therefore, there are ϕ(a)ϕ(b)

numbers in the table that are relatively prime to ab.
Hence ϕ(ab) = ϕ(a)ϕ(b) for relatively prime integers ab. �
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Theorem 1.33. If n = pα1
1 · · · pαk

k is the prime factorization of n > 1, then

ϕ(n) = n

(
1 − 1

p1

)
· · ·

(
1 − 1

pk

)
.

First Proof: This follows directly from Propositions 1.31 and 1.32. �

Second Proof: We employ the inclusion and exclusion principle. Set

Ti = {d : d ≤ n and pi |d},
for i = 1, . . . , k. It follows that

T1 ∪ · · · ∪ Tk = {m : m ≤ n and gcd(m, n) > 1}.
Hence

ϕ(n) = n − |T1 ∪ · · · ∪ Tk |

= n −
k∑

i=1

|Ti | +
∑

1≤i< j≤k

|Ti ∩ Tj | − · · · + (−1)k |T1 ∩ · · · ∩ Tk |.

We have

|Ti | = n

pi
, |Ti ∩ Tj | = n

pi p j
, . . . , |T1 ∩ · · · ∩ Tk | = n

p1 · · · pk
.

Finally,

ϕ(n) = n

(
1 −

n∑
i=1

1

pi
+

∑
1≤i< j≤k

1

pi p j
− · · · + (−1)k 1

p1 · · · pk

)

= n

(
1 − 1

p1

)
· · ·

(
1 − 1

pk

)
. �

Based on Theorem 1.33, we can establish Euler’s theorem from Fermat’s lit-
tle theorem. Indeed, let n = pα1

1 · · · pαk
k be the prime factorization of n. We

have a pi −1 ≡ 1 (mod pi ), hence a pi (pi −1) ≡ 1 (mod p2
i ), a p2

i (pi −1) ≡ 1

(mod p3
i ), . . . , a p

αi −1
i (pi −1) ≡ 1 (mod pαi

i ). That is, aϕ(p
αi
i ) ≡ 1 (mod pαi

i ),
i = 1, . . . , k. Applying this property to each prime factor, the conclusion fol-
lows.

Theorem 1.34. [Gauss] For any positive integer n,∑
d|n

ϕ(d) = n.
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Proof: We consider the rational numbers

1

n
,

2

n
, . . . ,

n

n
.

Clearly, there are n numbers in the list.
We obtain a new list by reducing each number in the above list to the lowest

terms; that is, express each fraction as a quotient of relatively prime integers. The
denominators of the numbers in the new list will all be divisors of n. If d | n,
exactly ϕ(d) of the numbers in the list will have d as their denominator. (This is
the meaning of lowest terms!) Hence, there are

∑
d|n ϕ(d) in the new list.

Because the two lists have the same number of terms, we obtain the desired
result. �
Example 1.37. Let n be a positive integer.

(1) Find the sum of all positive integers less than n and relatively prime to n.

(2) Find the sum of all positive integers less than 2n and relatively prime to n.

Solution: The answers are nϕ(n)
2 and 2nϕ(n), respectively.

Let

S1 =
∑
d<n

gcd(d,n)=1

d and S2 =
∑
d<2n

gcd(d,n)=1

d.

Let d1 < d2 < · · · < dϕ(n) be the numbers less than n and relatively prime to
n. Note that gcd(d, n) = 1 if and only if gcd(n − d, n) = 1. We deduce that

d1 + dϕ(n) = n, d2 + dϕ(n)−1 = n, . . . , dϕ(n) + d1 = n,

implying that

S1 = nϕ(n)

2
.

On the other hand,∑
n<d<2n

gcd(d,n)=1

d =
∑
d<n

gcd(d,n)=1

(n + d) = nϕ(n) +
∑
d<n

gcd(d,n)=1

d

= nϕ(n) + nϕ(n)

2
= 3nϕ(n)

2
.

Therefore

S2 = nϕ(n)

2
+ 3nϕ(n)

2
= 2nϕ(n). �
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Multiplicative Function

We include this section to further develop results related to three functions we
already introduced: τ(n) (the number of the positive divisors of n), σ(n) (the sum
of the positive divisors of n), and ϕ(n) (Euler’s totient function). This might well
be the most abstract part of this book, and the material covered in this section is
not essential to the rest of the book. However, it is very useful for further study in
number theory.

Arithmetic functions are defined on the positive integers and are complex
valued. The arithmetic function f = 0 is called multiplicative if for any rela-
tively prime positive integers m and n,

f (mn) = f (m) f (n).

Note that if f is multiplicative, then f (1) = 1. Indeed, if a is a positive integer
for which f (a) = 0, then f (a) = f (a · 1) = f (a) f (1), and simplifying by f (a)

yields f (1) = 1. Note also that if f is multiplicative and n = pα1
1 · · · pαk

k is the
prime factorization of the positive integer n, then f (n) = f (pα1

1 ) · · · f (pαk
k ).

An important arithmetic function is the Möbius function defined by

µ(n) =
⎧⎨
⎩

1 if n = 1,

0 if p2 | n for some prime p > 1,

(−1)k if n = p1 · · · pk , where p1, . . . , pk are distinct primes.

For example, µ(2) = −1, µ(6) = 1, µ(12) = µ(22 · 3) = 0.

Theorem 1.35. The Möbius function µ is multiplicative.

Proof: Let m, n be positive integers such that gcd(m, n) = 1. If p2 | m for some
p > 1, then p2 | mn and so µ(m) = µ(mn) = 0 and we are done. Consider now
m = p1 · · · pk , n = q1 · · · qh , where p1, . . . , pk, q1, . . . , qh are distinct primes.
Then µ(m) = (−1)k , µ(n) = (−1)h , and mn = p1 · · · pkq1 · · · qh . It follows
that µ(mn) = (−1)k+h = (−1)k(−1)h = µ(m)µ(n). �

For an arithmetic function f we define its summation function F by

F(n) =
∑
d|n

f (d).

The connection between f and F is given by the following result.

Theorem 1.36. If f is multiplicative, then so is its summation function F .

Proof: Let m and n be positive relatively prime integers and let d be a divisor
of mn. Then d can be uniquely represented as d = kh, where k | m and h | n.
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Because gcd(m, n) = 1, we have gcd(k, h) = 1, so f (kh) = f (k) f (h). Hence

F(mn) =
∑
d|mn

f (d) =
∑
k|m
h|n

f (k) f (h)

=
(∑

k|m
f (k)

)(∑
h|h

f (h)

)
= F(m)F(n). �

Note that if f is a multiplicative function and n = pα1
1 · · · pαk

k , then∑
d|n

µ(d) f (d) = (1 − f (p1)) · · · (1 − f (pk)).

Indeed, the function g(n) = µ(n) f (n) is multiplicative; hence from Theorem
1.36, so is its summation function G. Then G(n) = G(pα1

1 ) · · · G(pαk
k ) and

G(pαi
i ) =

∑
d|p

αi
i

µ(d) f (d) = µ(1) f (1) + µ(pi ) f (pi ) = 1 − f (pi ),

and the conclusion follows.

Theorem 1.37. [Möbius inversion formula] Let f be an arithmetic function
and let F be its summation function. Then

f (n) =
∑
d|n

µ(d)F
(n

d

)
.

Proof: We have

∑
d|n

µ(d)F
(n

d

)
=
∑
d|n

µ(d)

⎛
⎝∑

c| n
d

f (c)

⎞
⎠ =

∑
d|n

⎛
⎝∑

c| n
d

µ(d) f (c)

⎞
⎠

=
∑
c|n

⎛
⎝∑

d| n
c

µ(d) f (c)

⎞
⎠ =

∑
c|n

f (c)

⎛
⎝∑

d| n
c

µ(d)

⎞
⎠ = f (n),

since for n
c > 1 we have

∑
d| n

c
µ(d) = 0.

We have used the fact that{
(d, c)| d|n and c|n

d

}
=
{
(d, c)| c|n and d|n

c

}
. �

Theorem 1.38. Let f be an arithmetic function and let F be its summation
function. If F is multiplicative, then so is f .
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Proof: Let m, n be positive integers such that gcd(m, n) = 1 and let d be a
divisor of mn. Then d = kh, where k | m, h | n, and gcd(k, h) = 1. Applying
the Möbius inversion formula it follows

F(mn) =
∑
d|mn

µ(d)F
(mn

d

)
=
∑
k|m
h|n

µ(kh)F

(
mn

kh

)

=
∑
k|m
h|n

µ(k)µ(h)F
(m

k

)
F

(
n

h

)

=
(∑

k|m
µ(k)F

(m

k

))(∑
h|n

µ(h)F

(
n

h

))

= f (m) f (n). �

We leave it to the reader to show that functions τ , σ , and ϕ are indeed mul-
tiplicative. We also encourage the reader to redevelop some properties of these
functions by the general results we developed in this section.

Linear Diophantine Equations

An equation of the form

a1x1 + · · · + an xn = b, (∗)

where a1, a2, . . . , an, b are fixed integers, is called a linear Diophantine equa-
tion. We assume that n ≥ 1 and that coefficients a1, . . . , an are all different from
zero.

The main result concerning linear Diophantine equations is the following gen-
eralization of Theorem 1.7. (Bézout’s identity).

Theorem 1.39. The equation (∗) is solvable if and only if

gcd(a1, . . . , an) | b.

In case of solvability, all integer solutions to (∗) can be expressed in terms of n−1
integral parameters.

Proof: Let d = gcd(a1, . . . , an).
If b is not divisible by d , then (∗) is not solvable, since for any integers

x1, . . . , xn the left-hand side of (∗) is divisible by d and the right-hand side is
not.

If d | b, then we obtain the equivalent equation

a′
1x1 + · · · + a′

n xn = b′,
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where a′
i = ai/d for i = 1, . . . , n and b′ = b/d . Clearly, we have gcd(a′

1, . . . ,
a′

n) = 1.
We use induction on the number n of the variables. In the case n = 1 the

equation has the form x1 = b or −x1 = b, and thus the unique solution does not
depend on any parameter.

We now assume that n ≥ 2 and that the solvability property holds for all linear
equations in n − 1 variables. Our goal is to prove the solvability of equations in n
variables. Set dn−1 = gcd(a1, . . . , an−1). Then any solution (x1, . . . , xn) of (1)
satisfies the congruence

a1x1 + a2x2 + · · · + an xn ≡ b (mod dn−1),

which is equivalent to

an xn ≡ b (mod dn−1). (†)

Multiplying both sides of (†) by aϕ(dn−1)−1
n and taking into account that

aϕ(dn−1)
n ≡ 1 (mod dn−1), we obtain

xn ≡ c (mod dn−1),

where c = aϕ(dn−1)−1
n b. It follows that xn = c + dn−1tn−1 for some integer tn−1.

Substituting in (∗) and rearranging yields the equation in (n − 1) variables

a1x1 + · · · + an−1xn−1 = b − anc − an−1dn−1tn−1.

It remains to show that dn−1 | (b − anc − an−1dn−1tn−1), which is equivalent
to anc ≡ b (mod dn−1). The last relation is true because of the choice of c.
Therefore we can divide the last equation by dn−1, and obtain

a′
1x1 + · · · + a′

n−1xn−1 = b′, (‡)

where a′
i = ai/dn−1 for i = 1, . . . , n − 1 and b′ = (b − anc)/dn−1 − antn−1.

Because gcd(a′
1, . . . , a′

n−1) = 1, by the induction hypothesis the equation (‡) is
solvable for each integer tn−1 and its solutions can be written in terms of n − 2
integral parameters. If we add to these solutions xn = c + dn−1tn−1, we obtain
solutions to (∗) in terms of n − 1 parameters. �
Corollary 1.40. Let a1, a2 be relatively prime integers. If (x0

1 , x0
2) is a solution

to the equation

a1x1 + a2x2 = b,

then all of its solutions are given by{
x1 = x0

1 + a2t,
x2 = x0

2 − a1t,

for every integer t .



40 104 Number Theory Problems

Example 1.38. Determine all triples (x, y, z) of integers satisfying the equation
3x + 4y + 5z = 6.

Solution: We have 3x + 4y ≡ 1 (mod 5); hence

3x + 4y = 1 + 5s

for some integer s. A solution to this equation is x = −1 + 3s, y = 1 − s.
Applying Corollary 1.40, we obtain x = −1 + 3s + 4t and y = 1 − s − 3t , for
some integer t , and substituting back into the original equation yields z = 1 − s.
Hence all solutions are

(x, y, z) = (−1 + 3s + 4t, 1 − s − 3t, 1 − s),

for all pairs of integers s and t , �
Example 1.39. Let n be a positive integer. Suppose that there are 666 ordered
triples (x, y, z) of positive integers satisfying the equation

x + 8y + 8z = n.

Find the maximum value of n.

Solution: The answer is 303.
Write n = 8a + b, where a and b are integers with 0 ≤ b < 8. Since

x ≡ n ≡ b (mod 8), the possible values of x are b, 8 + b, . . . , 8(a − 1) + b.
For x = b + 8i , where 0 ≤ i ≤ a − 1, 8(y + z) = 8(a − i) or y + z = a − i ,
which admits a − i − 1 ordered pairs (y, z) of positive integer solutions, namely,
(1, a − i − 1), . . . , (a − i − 1, 1). Hence there are

a−1∑
i=0

(a − i − 1) =
a−1∑
i=0

i = a(a − 1)

2

ordered triples satisfying the conditions of the problem. Solving a(a−1)
2 = 666

gives a = 37. Therefore, the maximum value for n is equal to 37 · 8 + 7 = 303,
obtained by setting b = 7. �

Numerical Systems

The fundamental result in this subsection is given by the following theorem:

Theorem 1.41. Let b be an integer greater than 1. For any integer n ≥ 1 there
is a unique system (k, a0, a1, . . . , ak) of integers such that 0 ≤ ai ≤ b − 1,
i = 0, 1, . . . , k, ak = 0, and

n = akbk + ak−1bk−1 + · · · + a1b + a0. (∗)
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Proof: For the existence, we apply repeatedly the division algorithm:

n = q1b + r1, 0 ≤ r1 ≤ b − 1;
q1 = q2b + r2, 0 ≤ r2 ≤ b − 1;

. . .

qk−1 = qkb + rk, 0 ≤ rk ≤ b − 1;
where qk is the last nonzero quotient.

Let

q0 = n, a0 = n − q1b, a1 = q1 − q2b, . . . , ak−1 = qk−1 − qkb, ak = qk .

Then

k∑
i=0

ai b
i =

k−1∑
i=0

(qi − qi+1b)bi + qkbk = q0 +
k∑

i=1

qi b
i −

k∑
i=1

qi b
i = q0 = n.

For uniqueness, assume that n = c0 + c1b + · · · + cnbn is another such represen-
tation.

If h = k, for example h > k, then n ≥ bh ≥ bk+1. But

n = a0 + a1b + · · · + akbk ≤ (b − 1)(1 + b + · · · + bk) = bk+1 − 1 < bk+1,

a contradiction.
If h = k, then

a0 + a1b + · · · + akbk = c0 + c1b + · · · + ckbk,

and so b | (a0 − c0). On the other hand, |a0 − c0| < b; hence a0 = c0, Therefore

a1 + a2b + · · · + akbk−1 = c1 + c2b + · · · + ckbk−1.

By repeating the above procedure, it follows that a1 = c1, a2 = c2, . . . , and
ak = ck . �

Relation (∗) is called the base-b representation of n and is denoted by

n = akak−1 . . . a0(b).

The usual decimal representation corresponds to b = 10 and we write only
n = akak−1 . . . a0 instead. (For example, 4567 = 4567(10).)

Example 1.40. Let xy and yx be two 2-digit integers. Prove that their sum is
composite.

Proof: Since xy = 10x + y and yx = 10y+x , their sum is equal to 11x +11y =
11(x + y), a composite number. �



42 104 Number Theory Problems

Example 1.41. [AHSME 1973] In the following equation, each of the letters
represents uniquely a different digit in base ten:

(Y E) · (M E) = T T T .

Determine the sum E + M + T + Y .

Solution: Because T T T = T ·111 = T ·3·37, one of Y E and M E is 37, implying
that E = 7. But T is a digit and T ·3 is a two-digit number ending with 7, and so it
follows that T = 9 and T T T = 999 = 27·37, and so E+M+T +Y = 2+3+7+9
= 21. �
Example 1.42. [AIME 2001] Find the sum of all positive two-digit integers that
are divisible by each of their digits.

Solution: Let ab denote an integer with the required property. Then 10a + b
must be divisible by both a and b. It follows that b must be divisible by a, and
that 10a must be divisible by b. The former condition requires that b = ka for
some positive integer k, and the latter condition implies that k = 1 or k = 2 or
k = 5. Thus the requested two-digit numbers are 11, 22, . . . , 99, 12, 24, 36, 48,
and 15. Their sum is 11 · 45 + 12 · 10 + 15 = 630. �
Example 1.43. [AMC12A 2002] Some sets of prime numbers, such as {7, 83,
421, 659}, use each of the nine nonzero digits exactly once. What is the smallest
possible sum such a set of primes can have?

Solution: The answer is 207.
Note that digits 4, 6, and 8 cannot appear in the units digit. Hence the sum is

at least 40 + 60 + 80 + 1 + 2 + 3 + 5 + 7 + 9 = 207. On the other hand, this
value can be obtained with the set {2, 5, 7, 43, 61, 89}. �
Example 1.44. Write 101011(2) in base 10, and write 1211 in base 3.

Solution: We have

1010011(2) = 1 · 26 + 0 · 25 + 1 · 24 + 0 · 23 + 0 · 22 + 1 · 2 + 1

= 64 + 16 + 2 + 1 = 83.

Dividing by 3 successively, the remainders give the digits of the base-3 represen-
tation, beginning with the last. The first digit is the last nonzero quotient. We can
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arrange the computations as follows:

1211 3
1209 403 3

2 402 134 3
1 132 44 3

2 42 14 3
2 12 4 3

2 3 1
1

Hence 1211 = 1122212(3). �
Example 1.45. The product of seven and the six-digit number abcde f is equal
to the product of six and the six-digit number de f abc. Find these two six-digit
numbers.

Solution: Let x and y denote the three-digit numbers abc and de f , respectively.
Then abcde f = 1000x+y and de f abc = 1000y+x . By the given conditions, we
have 7(1000x+y) = 6(1000y+x), or 6994x = 5993y. Since gcd(6994, 5993) =
gcd(5993, 1001) = gcd(1001, 13) = 13, we have 538x = 461y, and so the two
numbers are 461538 and 538461. �
Example 1.46. [AMC12A 2005] A faulty car odometer proceeds from digit 3
to digit 5, always skipping the digit 4, regardless of position. For example, after
traveling one mile the odometer changed from 000039 to 000050. If the odometer
now reads 002005, how many miles has the car actually traveled?

Solution: Because the odometer uses only 9 digits, it records mileage in base-9
numerals, except that its digits 5, 6, 7, 8, and 9 represent the base-9 digits 4, 5, 6,
7, and 8. Therefore the mileage is

2004(9) = 2 · 93 + 4 = 2 · 729 + 4 = 1462. �

Example 1.47. Prove that the number 11 . . . 1(9) in base 9 is triangular; that is,
it is the sum of the first k positive integers for some positive integer k.

Proof: Indeed

11 . . . 1︸ ︷︷ ︸
n 1’s

(9) = 9n−1 + 9n−2 + · · · + 9 + 1

= 9n − 1

9 − 1
= 1

2
· 3n − 1

2
· 3n + 1

2

= 1 + 2 + · · · + 3n − 1

2
.

Thus it is a triangular number. �
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Example 1.48. Determine all positive integers n such that 11111(n) is a perfect
square.

Solution: The answer is n = 3.
We have 11111(n) = n4 + n3 + n2 + n + 1.
If n is even, then n2 + n

2 and n2 + n
2 +1 are two consecutive integers. We have

(
n2 + n

2

)2 = n4 + n3 + n2

4
< n4 + n3 + n2 + n + 1

<
(

n2 + n

2
+ 1

)2
.

Hence 11111(n) is not a perfect square for even positive integers n.
If n is odd, then n2 + n

2 − 1
2 and n2 + n

2 + 1
2 are integers. Clearly, we have

(
n2 + n

2
− 1

2

)2

< n4 + n3 + n2 + n + 1.

Note that(
n2 + n

2
+ 1

2

)2

= n4 + n3 + 5n2

4
+ n

2
+ 1

4

= n4 + n3 + n2 + n + 1 + n2 − 2n − 3

4

= n4 + n3 + n2 + n + 1 + (n − 3)(n + 1)

4
.

For odd integers n greater than 3, 11111(n) is strictly between two consecutive
perfect squares, namely,(

n2 + n

2
− 1

2

)2

and

(
n2 + n

2
+ 1

2

)2

.

Hence 11111(n) is not a perfect square for any positive integers other than 3. For
n = 3, we have 11111(3) = 121 = 112. �

In the last example, we showed that an integer is not a perfect square by plac-
ing the integer between two consecutive perfect squares. This method works be-
cause integers are discrete. Such methods will hardly work for real numbers,
since there are no holes in between real numbers. This is a very useful method in
solving Diophantine equations.

In certain numerical systems, the base does not have to be constant. Here are
two examples.
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Proposition 1.42. Every positive integer k has a unique factorial base expan-
sion

( f1, f2, f3, . . . , fm),

meaning that

k = 1! · f1 + 2! · f2 + 3! · f3 + · · · + m! · fm,

where each fi is an integer, 0 ≤ fi ≤ i, and fm > 0.

Proof: Note that there exists a unique positive integer m1 such that m1! ≤ k <

(m1 + 1)!. By the division algorithm, we can write

k = m1! fm1 + r1

for some positive integer fm1 and some integer r1 with 0 ≤ r1 < m1!. Because
k < (m + 1)! = m! · (m + 1), it follows that fm1 ≤ m. Repeating this process,
we can then write

r1 = m2! fm2 + r2,

with m2 the unique positive integer with m2! ≤ r1 < (m2 + 1)!, 1 ≤ fm2 ≤ m2,
and 0 ≤ r2 < m2!. Keeping this process on r2, and so on, we obtain a unique
factorial base expansion of k. �
Proposition 1.43. Let F0 = 1, F1 = 1, and Fn+1 = Fn + Fn−1 for every posi-
tive integer n. (This sequence is called the Fibonacci sequence, and its terms are
called Fibonacci numbers.) Each nonnegative integer n can be uniquely written
as a sum of nonconsecutive positive Fibonacci numbers; that is, each nonnegative
integer n can be written uniquely in the form

n =
∞∑

k=0

αk Fk,

where αk ∈ {0, 1} and (αk, αk+1) = (1, 1) for each k. This expression for n is
called its Zeckendorf representation.

The proof of Proposition 1.43 is similar to that of Proposition 1.42, and we
leave the details to the reader.

Example 1.49. [AIME2 2000] Given that ( f1, f2, f3, . . . , f j ) is the factorial
base expansion of

16! − 32! + 48! − 64! + · · · + 1968! − 1984! + 2000!,

find the value of f1 − f2 + f3 − f4 + · · · + (−1) j−1 f j .
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Solution: Because (n + 1)! − n! = n!(n + 1) − n! = n!n, it follows that

(n + 16)! − n!

= (n + 16)! − (n + 15)! + (n + 15)! − (n + 14)! + · · · + (n + 1)! − n!

= (n + 15)!(n + 15) + (n + 14)!(n + 14) + · · · + (n + 1)!(n + 1) + n!n.

This shows that the factorial base expansion of (n + 16)! − n! is

(0, 0, . . . , 0, n, n + 1, . . . , n + 14, n + 15),

which begins with a block of n − 1 zeros. The factorial base expansion of 16! is
(0, 0, . . . , 0, 1), so the requested expansion is

(0, 0, . . . , 0; 1; 0, . . . , 0; 32, 33, . . . , 47;
0, . . . , 0; 64, . . . , 79; . . . ; 1984, . . . , 1999).

Notice that starting in position thirty-two, the expansion contains groups of six-
teen nonzero numbers alternating with groups of sixteen zeros. With the exception
of f16 = 1, each nonzero fi is i . Each of the 62 groups of sixteen nonzero num-
bers contributes 8 to the alternating sum, and f16 contributes −1, so the requested
value is 8 · 62 − 1 = 495. �

Divisibility Criteria in the Decimal System

We will prove some divisibility criteria for integers in decimal representation.

Proposition 1.44. Let n = ahah−1 . . . a0 be a positive integer.

(a) Let s(n) = a0 + a1 + · · · + ah denote the sum of its digits. Then n ≡ s(n)

(mod 3). In particular, n is divisible by 3 if and only if the sum S(n) of its
digits is divisible by 3.

(b) We can replace 3 by 9 in (1); that is, n ≡ S(n) (mod 9). In particular, n is
divisible by 9 if and only if the sum S(n) of its digits is divisible by 9.

(c) Let s′(n) = a0 − a1 + · · · + (−1)hah (alternating sum). Then n is divisible
by 11 if and only if s′(n) is divisible by 11.

(d) n is divisible by 7, 11, or 13 if and only if ahah−1 . . . a3 − a2a1a0 has this
property.

(e) n is divisible by 27 or 37 if and only if ahah−1 . . . a3 + a2a1a0 has this
property.
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(f) n is divisible by 2k or 5k (k ≤ h) if and only if ak−1 . . . a0 has this property.

Proof: For (a) and (b), since 10k = (9 + 1)k , it follows that 10k ≡ 1 (mod 9).
Hence n ≡ ∑h

k=0 ak10k = ∑h
k=0 ak ≡ S(n) (mod 9).

For (c), we note that 10k = (11 − 1)k . Hence 10k ≡ (−1)k (mod 11), and so

n ≡
h∑

k=0

ak10k ≡
h∑

k=0

ak · (−1)k ≡ s′(n) (mod 11),

from which the conclusion follows.
For (d), the conclusion follows by the facts 1001 = 7 · 11 · 13 and

n = ahah−1 . . . a3 · 1000 + a2a1a0 = ahah−1 . . . a3 · (1001 − 1) + a2a1a0.

For (e), the conclusion follows by the facts 999 = 27 · 37 and

n = ahah−1 . . . a3 · 1000 + a2a1a0 = ahah−1 . . . a3 · (999 + 1) + a2a1a0.

For (f), we note that 10k ≡ 0 (mod m) for m = 2k or m = 5k . We have

n = ah . . . ak · 10k + ak−1 . . . a0,

from which the conclusion follows. �
Example 1.50. Perfect squares or not?

(1) Determine all positive integers k such that the k-digit number 11 . . . 1 is not
a perfect square.

(2) Can a 5-digit number consisting only of distinct even digits be a perfect
square?

(3) Determine whether 20 . . . 04︸ ︷︷ ︸
2004

is a perfect square.

Solution: The answers are mostly negative for all these questions.

(1) Clearly, k = 1 works. We claim that there are no other answers. Since
11 . . . 1︸ ︷︷ ︸

k 1’s

≡ 11 ≡ 3 (mod 4), 11 . . . 1︸ ︷︷ ︸
k 1’s

is not a perfect square. (Example 1.24

(3)).

(2) The answer is no. If n is a 5-digit number consisting only of distinct even
digits, then the sum of its digits is equal to 0 + 2 + 4 + 6 + 8 = 20, which
is congruent to 2 modulo 9; hence it is not a perfect square. (Example
1.24 (4).)
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(3) The given number is not a perfect square because the sum of its digits is 6,
a multiple of 3 but not of 9. (Example 1.24 (4).) �

Example 1.51. [AIME 1984] The integer n is the smallest positive multiple of
15 such that every digit of n is either 0 or 8. Find n.

Solution: An integer n is divisible by 15 if and only if it is divisible by both 3
and 5. By Proposition 1.44 (a) and (f), the answer is n = 8880. �
Example 1.52. Determine the number of five-digit positive integers abcde
(a, b, c, d, and e not necessarily distinct) such that the sum of the three-digit
number abc and the two-digit number de is divisible by 11.

Solution: The answer is 8181.
Note that

abcde = abc × 100 + de = abc + de + 99 × abc.

Hence abc + de is divisible by 11 if and only if abcde is divisible by 11. Note
that 99990 is the greatest 5-digit number that is divisible by 11 and that 9999 is
the greatest 4-digit number that is divisible by 11. Hence there are 99990

11 = 9090
multiples of 11 that have at most 5 digits, and there are 9999

11 = 999 multiples of
11 that have at most 4 digits. Therefore, there are exactly 9090 − 999 = 8181
multiples of 11 that have exactly 5 digits. �
Example 1.53. [USAMO 2003] Prove that for every positive integer n there
exists an n-digit number divisible by 5n all of whose digits are odd.

First Solution: We proceed by induction. The property is clearly true for n = 1.
Assume that N = a1a2 . . . an is divisible by 5n and has only odd digits. Consider
the numbers

N1 = 1a1a2 . . . an = 1 · 10n + 5n M = 5n(1 · 2n + M),

N2 = 3a1a2 . . . an = 3 · 10n + 5n M = 5n(3 · 2n + M),

N3 = 5a1a2 . . . an = 5 · 10n + 5n M = 5n(5 · 2n + M),

N4 = 7a1a2 . . . an = 7 · 10n + 5n M = 5n(7 · 2n + M),

N5 = 9a1a2 . . . an = 9 · 10n + 5n M = 5n(9 · 2n + M).

The numbers 1 · 2n + M, 3 · 2n + M, 5 · 2n + M, 7 · 2n + M, 9 · 2n + M give
distinct remainders when divided by 5. Otherwise, the difference of some two of
them would be a multiple of 5, which is impossible, because 2n is not a multiple
of 5, nor is the difference of any two of the numbers 1, 3, 5, 7, 9. It follows that
one of the numbers N1, N2, N3, N4, N5 is divisible by 5n · 5, and the induction is
complete. �
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Second Solution: For an m digit number a, where m ≥ n, let �(a) denote the
m −n leftmost digits of a. (That is, we consider �(a) as an (m −n)-digit number.)
It is clear that we can choose a large odd number k such that a0 = 5n · k has at
least n digits. Assume that a0 has m0 digits, where m0 ≥ n. Note that a0 is an
odd multiple of 5. Hence the units digit of a0 is 5.

If the n rightmost digits of a0 are all odd, then the number b0 = a0−�(a0)·10n

satisfies the conditions of the problem, because b0 has only odd digits (the same
as the n leftmost digits of a0) and that b0 is the difference of two multiples of 5n .

If there is an even digit among the n rightmost digits of a0, assume that i1 is
the smallest positive integer such that the i1th rightmost digit of a0 is even. Then
the number a1 = a0 + 5n · 10i1−1 is a multiple of 5n with at least n digits. The
(i − 1)th rightmost digit is the same as that of a0 and the i1th rightmost digit of
a1 is odd. If the n rightmost digits of a1 are all odd, then b1 = a1 − �(a1) · 10n

satisfies the conditions of the problem. If there is an even digit among the n
rightmost digits of a1, assume that i2 is the smallest positive integer such that the
i2th rightmost digit of a1 is even. Then i2 > i1. Set a2 = a1 +5n ·10i2−1. We can
repeat the above process of checking the rightmost digits of a2 and eliminate the
rightmost even digits of a2, if there is such a digit among the n rightmost digits of
a2. This process can be repeated at most n − 1 times because the units digit of a0
is 5. Thus, we can obtain a number ak , for some nonnegative integer k, such that
ak is a multiple of 5n with its n rightmost digits all odd. Then bk = ak −�(ak)·10n

is a number that satisfies the conditions of the problem. �
We can replace the condition of odd digits by any collection of 5 digits that

forms a complete set of residue classes modulo 5. In exactly the same way, we
can show that for every positive integer n there exists an n-digit number divisible
by 2n all of whose digits form a complete set of residue classes modulo 5.

We close this section with some more discussion on S(n), the sum of the digits
of a positive integer n.

Proposition 1.45. Let n be a positive integer, and let S(n) denote the sum of its
digits. Then

(a) 9|S(n) − n;

(b) S(n1 + n2) ≤ S(n1) + S(n2) (subadditivity property);

(c) S(n1n2) ≤ min(n1S(n2), n2S(n1));

(d) S(n1n2) ≤ S(n1)S(n2) (submultiplicativity property).

Proof: Part (a) is simply Proposition 1.44 (b). Let us prove (b), (c), and (d).
Consider n1 = akak−1 . . . a0, n2 = bhbh−1 . . . b0, and n1 + n2 = cscs−1 . . . c0.
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In order to prove (b), we choose the least t such that ai +bi < 10 for all i < t .
Then at + bt ≥ 10; hence ct = at + bt − 10 and ct+1 ≤ at+1 + bt+1 + 1. We
obtain

t+1∑
i=1

ci ≤
t+1∑
i=1

ai +
t+1∑
i=1

bi .

Continuing this procedure, the conclusion follows.
Because of the symmetry, in order to prove (c) it suffices to prove that

S(n1n2) ≤ n1S(n2). The last inequality follows by applying the subadditivity
property (b) repeatedly. Indeed,

S(2n2) = S(n2 + n2) ≤ S(n2) + S(n2) = 2S(n2),

and after n1 steps we obtain

S(n1n2) = S(n2 + n2 + · · · + n2︸ ︷︷ ︸
n1 times

)

≤ S(n2) + S(n2) + · · · + S(n2)︸ ︷︷ ︸
n1 times

= n1S(n2).

To establish (d), we observe that by (b) and (c),

S(n1n2) = S

(
n1

h∑
i=0

bi 10i

)
= S

(
h∑

i=0

n1bi 10i

)

≤
h∑

i=0

S(n1bi 10i ) =
h∑

i=0

S(n1bi ) ≤
h∑

i=0

bi S(n1)

= S(n1)

h∑
i=0

bi = S(n1)S(n2).

as desired. �
From the proof of Proposition 1.45, we note that it is very important to deal

with carryings in working with problems related to the sum of the digits.

Example 1.54. [Russia 1999] In the decimal expansion of n, each digit (except
the first digit) is greater than the digit to its left. What is S(9n)?

Solution: Write n = akak−1 . . . a0. By performing the subtraction

ak ak−1 . . . a1 a0 0
− ak . . . a2 a1 a0

we find that the digits of 9n = 10n − n are

ak, ak−1 − ak, . . . , a1 − a2, a0 − a1 − 1, 10 − a0.

These digits sum to 10 − 1 = 9. �
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Example 1.55. [Ireland 1996] Find a positive integer n such that S(n) =
1996S(3n).

Solution: Consider

n = 1 33 . . . 3︸ ︷︷ ︸
5986 3’s

5.

Then

3n = 4 00 . . . 0︸ ︷︷ ︸
5986 0’s

5.

We have S(n) = 3·5986+1+5 = 17964 = 1996·9 = 1996S(n), as desired. �
Example 1.56. Determine whether there is any perfect square that ends in 10
distinct digits.

Solution: The answer is yes. We note that

1 1 1 1
× 1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 2 3 4 3 2 1

Likewise, it is not difficult to see that

111111111112 = 12345678900987654321

is a number that satisfies the conditions of the problem. �
Example 1.57. [IMO 1976] When 44444444 is written in decimal notation, the
sum of its digits is A. Let B be the sum of the digits of A. Find the sum of the
digits of B.

Solution: The answer is 7.
Let a = 44444444. By our notation, we have A = S(a) and B = S(A), and

we want to compute S(B).
First we will show that the sum of the digits of B is fairly small. Note that

4444 < 10000 = 104. Hence

a = 44444444 < 104·4444 = 1017776,

and so a cannot have more than 17776 digits. Because each digit is at most a 9,
A = S(a) ≤ 17776 · 9 = 159984. Of the natural numbers less than or equal to
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159984, the number with the largest digit sum is 99999, and so B = S(A) ≤ 45.
Of the natural numbers less than or equal to 45, the number with the largest digit
sum is 39. Hence S(B) ≤ 12.

By Proposition 1.45 (a), we have

S(B) ≡ B ≡ S(A) ≡ A ≡ S(a) ≡ a ≡ 44444444 (mod 9).

It suffices to show that 44444444 ≡ 7 (mod 9). Indeed, we have

44444444 ≡ (4 + 4 + 4 + 4)4444 ≡ 164444 ≡ (−2)4444

≡ (−2)3·1481+1 ≡ ((−2)3)1481 · (−2) ≡ (−8)1481 · (−2)

≡ 1 · (−2) ≡ 7 (mod 9). �

Floor Function

For a real number x there is a unique integer n such that n ≤ x < n + 1. We say
that n is the greatest integer less than or equal to x , or the floor of x . We write
n = �x	. The difference x − �x	 is called the fractional part of x and is denoted
by {x}. The least integer greater than or equal to x is called the ceiling of x and
is denoted by 
x�. If x is an integer, then �x	 = 
x� and {x} = 0; if x is not an
integer, then 
x� = �x	 + 1.

We start with four (algebraic) examples to get familiar with these functions.

Example 1.58. [Australia 1999] Solve the following system of equations:

x + �y	 + {z} = 200.0,

{x} + y + �z	 = 190.1,

�x	 + {y} + z = 178.8.

Solution: Because x = �x	 + {x} for all real numbers x , adding the three
equations gives

2x + 2y + 2z = 568.9, or x + y + z = 284.45.

Subtracting each of the three given equations from the last equation gives

{y} + �z	 = 84.45,

�x	 + {z} = 94.35,

{x} + �y	 = 105.65.

Therefore 84 = �84.45	 = ��z	 + {y}	 = �z	, and thus �z	 = 84 and {y} =
0.45. In the same way we obtain �y	 = 105, and so y = 105.45. Similarly,
x = 94.65 and z = 84.35. �
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Example 1.59. Determine the distinct numbers in the sequence⌊
12

2005

⌋
,

⌊
22

2005

⌋
, . . . ,

⌊
20052

2005

⌋
.

Solution: For 1 ≤ i ≤ 2005, let

ai =
⌊

i2

2005

⌋
.

Because 442 = 1936 < 2005 < 2025 = 452, a1 = a2 = · · · = a44 = 0.
For integers m with m ≥ 1002, since

(m + 1)2

2005
− m2

2005
= 2m + 1

2005
≥ 1,

it follows that am < am+1. Hence, a1002, a1003, . . . , a2005 take distinct values.
For positive integers m with m < 1002, since

(m + 1)2

2005
− m2

2005
= 2m + 1

2005
< 1,

it follows that am+1 ≤ am + 1. Note that this sequence is clearly nondecreasing.
We conclude that all the integer values less than a1001 have been taken.

Finally, we compute a1001 = 499 and a1002 = 500. Therefore, the answer of
the problem is 500 + 1004 = 1504 (namely, values 0, 1, . . . , 499, a1002, a1003,
. . . , a2005). �
Example 1.60. [ARML 2003] Find the positive integer n such that 1

n is closest

to {√123456789}.
Solution: As shown in the Example 1.56, we have

11111.112 = 123456765.4321 < 123456789

< 123456789.87654321 = 11111.11112.

Hence⌊√
123456789

⌋
= 11111 and

1

10
< 0.11 < {√123456789} < 0.1111 <

1

9
. �

Example 1.61 [AIME 1997] Suppose that a is positive, {a−1} = {a2}, and
2 < a2 < 3. Find the value of a12 − 144a−1.
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Solution: Notice first that the given hypothesis implies that {a−1} = a−1 (since
1 < a and 0 < a−1 < 1) and {a2} = a2 − 2. Hence a must satisfy the equation
a−1 = a2 − 2, or a3 − 2a − 1 = 0. This factors as

(a + 1)(a2 − a − 1) = 0,

whose only positive root is a = 1+√
5

2 . Now use the relations a2 = a + 1 and
a3 = 2a + 1 to calculate

a6 = 8a + 5, a12 = 144a + 89, and a13 = 233a + 144,

from which it follows that

a12 − 144a−1 = a13 − 144

a
= 233. �

Note: By the relation a2 = a + 1, we can show easily that an = Fn−1a + Fn−2,
where {Fn}∞n=0 is the Fibonacci sequence with F0 = F1 = 1 and Fn+1 = Fn +
Fn−1 for every positive integer n. This is not surprising if we note that a2 = a +1
is the characteristic equation of the Fibonacci sequence. For more details on this,
the reader also can look at chapter five of [4].

Example 1.62. Find all real solutions to the equation

4x2 − 40�x	 + 51 = 0.

Solution: Note that

(2x − 3)(2x − 17) = 4x2 − 40x + 51 ≤ 4x2 − 40�x	 + 51 = 0,

which gives 3
2 ≤ x ≤ 17

2 and 1 ≤ �x	 ≤ 8. Then

x =
√

40�x	 − 51

2
,

so it is necessary to have

�x	 =
⌊√

40�x	 − 51

2

⌋
.

Testing �x	 ∈ {1, 2, 3, . . . , 8} in this equation, we find that �x	 can equal only 2,

6, 7, or 8. Thus the only solutions for x are
√

29
2 ,

√
189
2 ,

√
229
2 , and

√
269
2 . A quick

check confirms that these values work. �
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Proposition 1.46. We have the following properties for the floor and the ceiling
functions.

(a) If a and b are integers with b > 0, and q is the quotient and r is the
remainder when a is divided by b, then q = ⌊ a

b

⌋
and r = { a

b

} · b.

(b) For any real number x and any integer n, �x + n	 = �x	+n and 
x + n� =

x� + n.

(c) If x is an integer, then �x	 + �−x	 = 0; if x is not an integer, �x	 +
�−x	 = 1.

(d) The floor function is nondecreasing; that is, for x ≤ y, �x	 ≤ �y	.

(e)
⌊

x + 1
2

⌋
rounds x to its nearest integer.

(f) �x	 + �y	 ≤ �x + y	 ≤ �x	 + �y	 + 1.

(g) �x	 · �y	 ≤ �xy	 for nonnegative real numbers x and y.

(h) For any positive real number x and any positive integer n the number of
positive multiples of n not exceeding x is

⌊ x
n

⌋
.

(i) For any real number x and any positive integer n,⌊�x	
n

⌋
=
⌊ x

n

⌋
.

Proof: The proofs of (a) to (d) are straightforward. We present only the proof of
(e) to (i).

For (e) note that if {x} < 1
2 , then

⌊
x + 1

2

⌋
= �x	, which is the integer closest

to x ; if {x} > 1
2 , then

⌊
x + 1

2

⌋
= 
x�, which is the integer closest to x . This is a

very simple but useful trick in computer programming.
For (f), we write x = �x	 + {x} and y = �y	 + {y}. The desired result

reduces to

0 ≤ �{x} + {y}	 ≤ 1,

which is clear since 0 ≤ {x}, {y} < 1.
For (g), we write again x = �x	+{x} and y = �y	+{y}. Then �x	, �y	, {x},

{y} are all nonnegative. It is clear that

�xy	 = �(�x	 + {x}) (�y	 + {y})	
= ��x	�y	 + �x	{y} + �y	{x} + {x}{y}	 ≥ �x	�y	.
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For (h), we consider all multiples 1 ·n, 2 ·n, . . . , k ·n, where k ·n ≤ x < (k +1)n.
That is, k ≤ x

n < k + 1, and the conclusion follows.
Note that (i) follows immediately from (f), since the multiples of an integer n

are integers. �
Furthermore, we extend Proposition 1.46 (f) to the following.

Example 1.63. For real numbers x and y, prove that

�2x	 + �2y	 ≥ �x	 + �y	 + �x + y	.
Proof: Write x = �x	 + {x} and y = �y	 + {y}. Then

�2x	 + �2y	 = 2�x	 + �2{x}	 + 2�y	 + �2{y}	
and

�x + y	 = �x	 + �y	 + �{x} + {y}	.
It suffices to show that

�2{x}	 + �2{y}	 ≥ �{x} + {y}	.
By symmetry, we may assume that {x} ≥ {y}. Note that {x} is nonnegative. We
have

�2{x}	 + �2{y}	 ≥ �2{x}	 ≥ �{x} + {y}	,
by Proposition 1.46 (e) (since 2{x} ≥ {x} + {y}). �

Proposition 1.46 (e) also has different forms for special values of the variable.

Example 1.64. For a given positive integer n, show that⌊√
n + 1

2

⌋
=
⌊√

n − 3

4
+ 1

2

⌋
.

Proof: Suppose that⌊√
n + 1

2

⌋
= k and

⌊√
n − 3

4
+ 1

2

⌋
= m.

Then we have k ≤ √
n + 1

2 < k + 1, or k − 1
2 ≤ √

n < k + 1
2 . Squaring both

sides of the last inequality gives

k2 − k + 1

4
≤ n < k2 + k + 1

4
.
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Since n is an integer, we have k2 − k + 1 ≤ n ≤ k2 + k.

Likewise, we have m ≤
√

n − 3
4 + 1

2 < m + 1, implying that

m2 − m + 1

4
≤ n − 3

4
< m2 + m + 1

4
.

Because n is an integer, we again have m2 − m + 1 ≤ n ≤ m2 + m.
Combining the above, we conclude that m = k, as desired. �
The graphs of the functions y = �x	 and y = 
x� are typical step functions.

Their unique properties allow us to describe some very special sequences.

Example 1.65. [AIME 1985] How many of the first 1000 positive integers can
be expressed in the form

�2x	 + �4x	 + �6x	 + �8x	,
where x is a real number?

Solution: Define the function

f (x) = �2x	 + �4x	 + �6x	 + �8x	,
and observe that if n is a positive integer, then f (x + n) = f (x) + 20n. In
particular, this means that if an integer k can be expressed in the form f (x0) for
some real number x0, then for n = 1, 2, 3, . . . one can express k + 20n similarly;
that is, k + 20n = f (x0) + 20n = f (x0 + n). In view of this, one may restrict
attention to determining which of the first 20 positive integers are generated by
f (x) as x ranges through the half-open interval (0, 1].

Next observe that as x increases, the value of f (x) changes only when either
2x, 4x, 6x , or 8x attains an integral value, and that the change in f (x) is always
to a new, higher value. In the interval (0, 1] such changes occur precisely when x
is of the form m/n, where l ≤ m ≤ n and n = 2, 4, 6, or 8. There are 12 such
fractions; in increasing order they are

1

8
,

1

6
,

1

4
,

1

3
,

3

8
,

1

2
,

5

8
,

2

3
,

3

4
,

5

6
,

7

8
, and 1.

Therefore, only 12 of the first 20 positive integers can be represented in the desired
form. Since 1000 = 50 ·20, there are 50 ·12 = 600 positive integers of the desired
form. �
Example 1.66. [Gauss] Let p and q be relatively prime integers. Prove that⌊

p

q

⌋
+
⌊

2p

q

⌋
+ · · · +

⌊
(q − 1)p

q

⌋
= (p − 1)(q − 1)

2
.
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Solution: Since gcd(p, q) = 1, i p
q is not an integer. By Proposition 1.46 (c), it

follows that ⌊
i p

q

⌋
+
⌊

(q − i)p

q

⌋
= p +

⌊
i p

q

⌋
+
⌊−i p

q

⌋
= p − 1

for 1 ≤ i ≤ q − 1. Therefore,

2

(⌊
p

q

⌋
+
⌊

2p

q

⌋
+ · · · +

⌊
(q − 1)p

q

⌋)

=
(⌊

p

q

⌋
+
⌊

(q − 1)p

q

⌋)
+ · · · +

(⌊
(q − 1)p

q

⌋
+
⌊

p

q

⌋)
= (p − 1)(q − 1),

from which the desired result follows. �
We can also interpret the above result as the number of lattice points lying

inside the triangle bounded by the lines y = 0, x = p, and y = qx
p . (A point in

the coordinate plane is a lattice point if it has integer coordinates.)

Example 1.67. The sequence

{an}∞n=1 = {2, 3, 5, 6, 7, 8, 10, . . . }
consists of all the positive integers that are not perfect squares. Prove that

an = n +
⌊√

n + 1

2

⌋
.

First Proof: We claim that⌊√
n + 1

2

⌋2

< n +
⌊√

n + 1

2

⌋
<

(⌊√
n + 1

2

⌋
+ 1

)2

. (†)

With our claim, it is clear that among the integers

1, 2, . . . , n +
⌊√

n + 1

2

⌋
,

there are exactly
⌊√

n + 1
2

⌋
perfect squares, namely, 12, 22, . . . ,

⌊√
n + 1

2

⌋2
.

Hence

n +
⌊√

n + 1

2

⌋
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is the nth number in the sequence after all perfect squares have been deleted; that
is,

an = n +
⌊√

n + 1

2

⌋
.

Now we prove our claim. Note that
√

n is either an integer or an irrational number.
Hence {√n} = 1

2 . We consider two cases.
In the first case, we assume that {√n} < 1

2 . Set k = ⌊√
n
⌋

. Then k2 ≤ n <(
k + 1

2

)2
, or k2 < n < k2 + k + 1

4 . Then

⌊√
n + 1

2

⌋
= ⌊√

n
⌋ = k,

and the inequality (†) becomes

k2 < n + k < (k + 1)2 = k2 + 2k + 1,

which is evident.
In the second case, we assume that {√n} > 1

2 . Again, set k = ⌊√
n
⌋

. Then(
k + 1

2

)2
< n < (k + 1)2, or k2 + k + 1

4 < n < k2 + 2k + 1. Then

⌊√
n + 1

2

⌋
= ⌊√

n
⌋+ 1 = k + 1,

and the inequality (†) becomes

(k + 1)2 < n + k + 1 < (k + 2)2 = k2 + 4k + 4,

which is also evident.
Combining the last two cases, we have shown that our claim is always true,

and our proof is complete. �
The second proof reveals the origin of this closed form of an .

Second Proof: Consider the sequence

{bn}∞n=1 = {1, 1; 2, 2, 2, 2; 3, 3, 3, 3, 3, 3; . . . }.
We note that

an − bn = n



60 104 Number Theory Problems

for all positive integers n. It is clear that there are are exactly (n + 1)2 − n2 − 1 =
2n non-perfect squares strictly between two consecutive perfect squares n2 and
(n + 1)2. It suffices to show that

bn =
⌊√

n + 1

2

⌋
.

If bn = k, it is in the kth group and is preceded by at least k −1 groups containing
2 + 4 + · · · + 2(k − 1) terms. Considering also the fact that there are n − 1 terms
before bn , we conclude that

2 + 4 + · · · + 2(bn − 1) ≤ n − 1.

Moreover, bn is the largest integer satisfying this inequality. Thus bn is the largest
integer satisfying the inequality bn(bn − 1) ≤ n − 1; that is,

bn =
⌊

1 + √
4n − 3

2

⌋
=
⌊√

n − 3

4
+ 1

2

⌋
=
⌊√

n + 1

2

⌋
,

by Example 1.64. �
Theorem 1.47. [Beatty’s Theorem] Let α and β be two positive irrational real
numbers such that

1

α
+ 1

β
= 1.

The sets

{an}∞n=1 = {�α	, �2α	, �3α	, . . . } and {bn}∞n=1 = {�β	, �2β	, �3β	, . . . }
form a partition of the set of positive integers; that is, {an}∞n=1 and {bn}∞n=1 are
nonintersecting sets with their union equal to the set of all positive integers.

Proof: We first show that they are nonintersecting. We proceed indirectly by
assuming the contrary, that is, we assume that there are indices i and j such that
k = ai = b j = �iα	 = � jβ	. Since both iα and jβ are irrational, it follows that

k < iα < k + 1, k < jβ < k + 1,

or

i

k + 1
<

1

α
<

i

k
and

j

k + 1
<

1

β
<

j

k
.

Adding these two inequalities gives

i + j

k + 1
<

1

α
+ 1

β
= 1 <

i + j

k
,
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or k < i + j < k + 1, which is impossible. Hence our assumption was wrong and
these two sequences do not intersect.

We next prove that every positive integer appears in one of the two sequences.
We again approach indirectly by assuming that there is a positive integer k that
does not appear in these two sequences. It follows that there are indices i and j
such that

iα < k, (i + 1)α > k + 1, jβ < k, ( j + 1)β > k + 1,

or

i

k
<

1

α
<

i + 1

k + 1
and

j

k
<

1

β
<

j + 1

k + 1
.

Adding the last two inequalities gives

i + j

k
<

1

α
+ 1

β
= 1 <

i + j + 2

k + 1
,

implying that i + j < k and k + 1 < i + j + 2, and so i + j < k < i + j + 1,
which is again impossible. Hence our assumption was wrong and every positive
integer appears in exactly one of the two sequences. �
Example 1.68a. [USAMO 1981] For a positive number x, prove that

�x	 + �2x	
2

+ �3x	
3

+ · · · + �nx	
n

≤ �nx	.

Indeed, we have a more general result. By Proposition 1.46 (f), Example 1.68a
is a special case of Example 1.68b by setting ai = −�i x	.

Example 1.68b. [APMO 1999] Let a1, a2, . . . be a sequence of real numbers
satisfying

ai+ j ≤ ai + a j

for all i , j = 1, 2, . . . . Prove that

a1 + a2

2
+ a3

3
+ · · · + an

n
≥ an

for all positive integers n.

First Proof: We use strong induction. The base cases for n = 1 and 2 are trivial.
Now assume that the statement is true for n ≤ k for some positive integer k ≥ 2.
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That is,

a1 ≥ a1,

a1 + a2

2
≥ a2,

...

a1 + a2

2
+ · · · + ak

k
≥ ak .

Adding all the inequalities gives

ka1 + (k − 1)
a2

2
+ · · · + ak

k
≥ a1 + a2 + · · · + ak .

Adding (a1 + a2 + · · · + ak) to both sides of the last inequality yields

(k + 1)
(

a1 + a2

2
+ · · · + ak

k

)
≥ (a1 + ak) + (a2 + ak−1) + · · · + (ak + a1)

≥ kak+1.

Dividing both sides of the last inequality by (k + 1) gives

a1 + a2

2
+ · · · + ak

k
≥ kak+1

k + 1
,

or

a1 + a2

2
+ · · · + ak

k
+ ak+1

k + 1
≥ ak+1.

This completes the induction and we are done. �

Second Proof: [By Andreas Kaseorg] We can extend the condition by induction
to ai1+i2+···+ik ≤ ai1 + ai2 + · · · + aik . We apply a combinatorial argument.

A permutation is a change in position within a collection. More precisely, if
S is a set, then a permutation of S is a one-to-one function π that maps S onto
itself. If S = {x1, x2, . . . , xn} is a finite set, then we may denote a permutation π

of S by (y1, y2, . . . , yn), where yk = π(xk). An ordered k-tuple (xi1 , xi2 , . . . , xik )

is a k-cycle of π if π(xi1) = xi2 , π(xi2) = xi3 , . . . , and π(xik ) = x1. Let Sn

denote the set of permutations of n elements. For an element π in Sn , define
f (π, k) to be the number of k-cycles in π . Clearly,

1 · f (π, 1) + 2 · f (π, 2) + · · · + n · f (π, n) = n,

since both sides count the number of elements in the permutation π . Note also that∑
π∈Sn

f (π, k) is the total number of k-cycles in all permutations on n elements,
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which is
(n

k

)
(k − 1)!(n − k)! = n!

k ; that is,

∑
π∈Sn

f (π, k) =
(

n

k

)
(k − 1)!(n − k)! = n!

k
. (∗)

This is because

(a) we have
(n

k

)
ways to choose k elements as the elements of a k-cycle;

(b) we have (k − 1)! ways to form a k-cycle using the k chosen elements;

(c) we have (n − k)! ways to permute the n − k unchosen elements to complete
the permutation of all n elements.

Therefore, by (∗), we have

a1 + a2

2
+ a3

3
+ · · · + an

n

= 1

n!

∑
π∈Sn

[ f (π, 1)a1 + f (π, 2)a2 + · · · + f (π, n)an]

≥ 1

n!

∑
π∈Sn

a1· f (π,1)+2· f (π,2)+···+n· f (π,n)

= 1

n!

∑
π∈Sn

an = an,

because there are exactly n! elements in Sn (since there are n! permutations of n
elements). �

As shown in Examples 1.68a and 1.68b, many interesting and challenging
problems related to the floor and ceiling functions have close ties to their special
functional properties. We leave most of them to the sequel of this book: 105
Diophantine Equations and Integer Function Problems. We close this section by
introducing the well-known Hermite identity.

Proposition 1.48. [Hermite Identity] Let x be a real number, and let n be a
positive integer. Then

�x	 +
⌊

x + 1

n

⌋
+
⌊

x + 2

n

⌋
+ · · · +

⌊
x + n − 1

n

⌋
= �nx	.

Proof: If x is an integer, then the result is clearly true. We assume that x is not
an integer; that is, 0 < {x} < 1. Then there exists 1 ≤ i ≤ n − 1 such that

{x} + i − 1

n
< 1 and {x} + i

n
≥ 1, (∗)
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that is,

n − i

n
≤ {x} <

n − i + 1

n
. (∗∗)

By (∗), we have

�x	 =
⌊

x + 1

n

⌋
= · · · =

⌊
x + i − 1

n

⌋
and ⌊

x + i

n

⌋
= · · · =

⌊
x + n − 1

n

⌋
= �x	 + 1,

and so

�x	 +
⌊

x + 1

n

⌋
+
⌊

x + 2

n

⌋
+ · · · +

⌊
x + n − 1

n

⌋
= i�x	 + (n − i) (�x	 + 1) = n�x	 + n − i.

On the other hand, by (∗∗), we obtain

n�x	 + n − i ≤ n�x	 + n{x} = nx < n�x	 + n − i + 1,

implying that �nx	 = n�x	 + n − i .
Combining the above observations, we have

�x	 +
⌊

x + 1

n

⌋
+
⌊

x + 2

n

⌋
+ · · · +

⌊
x + n − 1

n

⌋
= n�x	 + n − i

= �nx	. �

Example 1.69. [AIME 1991] Suppose that r is a real number for which⌊
r + 19

100

⌋
+
⌊

r + 20

100

⌋
+ · · · +

⌊
r + 91

100

⌋
= 546.

Find �100r	.

Solution: The given sum has 91 − 19 + 1 = 73 terms, each of which equals
either �r	 or �r	 + 1. But 73 · 7 < 546 < 73 · 8, and so it follows that �x	 = 7.
Because 546 = 73 ·7+35, the first 38 terms take the value 7 and the last 35 terms
take the value 8; that is,⌊

r + 56

100

⌋
= 7 and

⌊
r + 57

100

⌋
= 8.

It follows that 7.43 ≤ r < 7.44 and hence that �100r	 = 743. �
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Example 1.70. [IMO 1968] Let x be a real number. Prove that

∞∑
k=0

⌊
x + 2k

2k+1

⌋
= �x	.

Solution: Setting n = 2 in Hermite’s identity gives

�x	 +
⌊

x + 1

2

⌋
= �2x	,

or ⌊
x + 1

2

⌋
= �2x	 − �x	.

Repeatedly applying the last identity gives

∞∑
k=0

⌊
x + 2k

2k+1

⌋
=

∞∑
k=0

⌊
x

2k+1
+ 1

2

⌋
=

∞∑
k=0

(⌊ x

2k

⌋
−
⌊ x

2k+1

⌋)
= �x	,

as desired. �

Legendre’s Function

We use Proposition 1.46 (h) to develop some interesting results.
Let p be a prime. For any positive integer n, let ep(n) be the exponent of p in

the prime factorization of n!. The arithmetic function ep is called the Legendre
function associated with the prime p.

The following result gives a formula for the computation of ep(n).

Proposition 1.49. [Legendre’s Formula] For any prime p and any positive inte-
ger n,

ep(n) =
∑
i≥1

⌊
n

pi

⌋
=
⌊

n

p

⌋
+
⌊

n

p2

⌋
+
⌊

n

p3

⌋
+ · · · .

We note that this sum is a finite one, because for large m, n < pm+1 and⌊
n

pm+1

⌋
= 0. Let m be the least positive integer such that n < pm+1; that is,

m =
⌊

ln n
ln p

⌋
. It suffices to show that

ep(n) =
⌊

n

p

⌋
+
⌊

n

p2

⌋
+ · · · +

⌊
n

pm

⌋
.
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We present two closely related proofs. The first is written in the language of
number theory, the second in the language of combinatorics.

First Proof: For n < p it is clear that ep(n) = 0. If n ≥ p, then in order
to determine ep(n) we need to consider only the multiples of p in the product

n! = 1 · 2 · · · n; that is, (1 · p)(2 · p) · · · (kp) = pkk!, where k =
⌊

n
p

⌋
by

Proposition 1.46 (h). Hence

ep(n) =
⌊

n

p

⌋
+ ep

(⌊
n

p

⌋)
.

Replacing n by
⌊

n
p

⌋
and taking into account Proposition 1.46 (i), we obtain

ep

(⌊
n

p

⌋)
=
⎢⎢⎢⎣
⌊

n
p

⌋
p

⎥⎥⎥⎦+ ep

⎛
⎝
⎢⎢⎢⎣
⌊

n
p

⌋
p

⎥⎥⎥⎦
⎞
⎠ =

⌊
n

p2

⌋
+ ep

(⌊
n

p2

⌋)
.

Continuing this procedure we get

ep

(⌊
n

p2

⌋)
=
⌊

n

p3

⌋
+ ep

(⌊
n

p3

⌋)
,

...

ep

(⌊
n

pm−1

⌋)
=
⌊

n

pm

⌋
+ ep

(⌊
n

pm

⌋)
=
⌊

n

pm

⌋
.

Summing up the relations above yields the desired result. �

Second Proof: For each positive integer i , define ti such that pti ‖i . Because p is
prime, we have pt1+t2+···+tn ‖n!, or t = tn! = t1 + t2 +· · ·+ tn . On the other hand,⌊

n
pk

⌋
counts all multiples of pk that are less than or equal to n exactly once. Thus

the number i = pti · a (with a and p relatively prime) is counted ti times in the
sum ⌊

n

p

⌋
+
⌊

n

p2

⌋
+ · · · +

⌊
n

pm

⌋
,

namely, in the terms
⌊

n
p

⌋
,
⌊

n
p2

⌋
, . . . ,

⌊
n
pi

⌋
. Therefore, for each 1 ≤ i ≤ n, the

number i contributes ti in both⌊
n

p

⌋
+
⌊

n

p2

⌋
+ · · · +

⌊
n

pm

⌋
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and

t1 + t2 + · · · + tn .

Hence

t = t1 + t2 + · · · + tn =
⌊

n

p

⌋
+
⌊

n

p2

⌋
+ · · · +

⌊
n

pm

⌋
.

In a more formal language, consider the matrix M = (xi, j ) with m rows and n
columns, where m is the smallest integer such that pm > n. We define

xi, j =
{

1 if pi divides j,
0 otherwise.

Then the number of 1’s in the j th column of the matrix M is t j , implying that the
column sums of M are t1, t2, . . . , tn . Hence the sum of all of the entries in M is t .
On the other hand, the 1’s in the i th row denote the numbers that are multiples of

pi . Consequently, the sum of the entries in the i th row is
⌊

n
pi

⌋
. Thus the sum of

the entries in M is also
∑m

i=1

⌊
n
pi

⌋
. It follows that

t =
⌊

n

p

⌋
+
⌊

n

p2

⌋
+ · · · +

⌊
n

pm

⌋
,

as desired. �
Example 1.71. Let s and t be positive integers such that

7s‖400! and 3t‖((3!)!)!.

Compute s + t .

Solution: The answer is 422.
Note that ((3!)!)! = (6!)! = 720!. Applying Legendre’s formula, we have

s = e7(400) =
⌊

400

7

⌋
+
⌊

400

72

⌋
+
⌊

400

73

⌋
= 57 + 8 + 1 = 66

and

t = e3(720) =
⌊

720

3

⌋
+
⌊

720

32

⌋
+
⌊

720

33

⌋
+
⌊

720

34

⌋
+
⌊

720

35

⌋
= 240 + 80 + 26 + 8 + 2 = 356,

and so s + t = 356 + 66 = 422. �
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Example 1.72. The decimal representation of 2005! ends in m zeros. Find m.

Solution: It is equivalent to compute m such that 10m‖2005!. Since 10m =
2m5m , we have m = min{e2(2005!), e5(2005!)}. Because 2 < 5, we have

m = e5(2005!) =
⌊

2005

5

⌋
+
⌊

2005

25

⌋
+
⌊

2005

125

⌋
+
⌊

2005

625

⌋
= 500.

The answer is 500. �
Example 1.73. [HMMT 2003] Find the smallest n such that n! ends in 290
zeros.

Solution: As shown in the solution of Example 1.72, we need to find the smallest
n such that

290 = e5(n) =
⌊n

5

⌋
+
⌊ n

52

⌋
+
⌊ n

53

⌋
+ · · · ,

which is roughly a geometric series (by taking away the floor function) whose
sum is represented approximately by n/5

1−1/5 . Solving

290 ≈
n
5

1 − 1
5

,

we estimate n = 1160, and this gives us e5(1160) = 288. Adding 10 to the value
of n = 1160 gives the necessary two additional factors of 5 (from 1165 and 1170),
and so the answer is 1170. �
Example 1.74. Let m and n be positive integers. Prove that

(1) m! · (n!)m divides (mn)!.

(2) m!n!(m + n)! divides (2m)!(2n)!.

Proof: We present a common technique in this proof.

(1) Let p be a prime. Let x and y be nonnegative integers such that px‖m! ·
(n!)m and py‖(mn)!. It suffices to show that x ≤ y. Note that x = ep(m)+
mep(n) and y = ep(mn). It suffices to show that

∞∑
i=1

⌊
mn

pi

⌋
≥

∞∑
i=1

⌊
m

pi

⌋
+ m

∞∑
i=1

⌊
n

pi

⌋
.

If p > n, then the second summand on the right-hand side is 0 and the
inequality is clearly true. We assume that p ≤ n. Let s be the positive
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integer such that ps ≤ n < ps+1. By Proposition 1.46 (g), we have

∞∑
i=1

⌊
mn

pi

⌋
=

s∑
i=1

⌊
m · n

pi

⌋
+

∞∑
i=1

⌊
m

pi
· n

ps

⌋

≥ m
s∑

i=1

⌊
n

pi

⌋
+

∞∑
i=1

⌊
m

pi

⌋⌊
n

ps

⌋

≥ m
∞∑

i=1

⌊
n

pi

⌋
+

∞∑
i=1

⌊
m

pi

⌋
,

as desired.

(2) The proof is very similar to that of (1). We leave it to the reader. �

Note: It is also to find combinatorial proofs for these facts. For example, there
are

(mn)!

m!(n!)m

ways to split mn people into m groups of n, implying (1).

Example 1.75. Let k and n be positive integers. Prove that

(k!)kn+kn−1+···+k+1 | (kn+1)!.

Proof: For every i with 0 ≤ i ≤ n, setting (n, m) = (k, ki ) in Example 1.74 (1)
gives

k! | k!, k!(k!)k | (k2)!, (k2)!(k!)k2 | (k3)!, . . . , (kn)!(k!)kn | (kn+1)!.

Multiplying this together gives

k!k!(k2!)(k3!) · · · (kn)!k!k+k2+···+kn | k!(k2!)(k3!) · · · (kn+1)!,

from which the desired result follows. �
Example 1.76. Let n > 2 be a composite number. Prove that not all of the terms
in the sequence (

n

1

)
,

(
n

2

)
, . . . ,

(
n

n − 1

)

are divisible by n.
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Proof: Let p be a prime divisor of n, and let s be the integer such that ps ≤ n <

ps+1. We show that

n �

(
n

ps

)
= n!

(ps)!(n − ps)!
.

Since p | n, it suffices to show that p �
( n

ps

)
. Suppose that pk‖( n

ps

)
. Then

k = ep(n) − ep(ps) − ep(n − ps).

It suffices to show that k = 0. By Legendre’s formula, we have

k =
∑
i≥1

⌊
n

pi

⌋
−
∑
i≥1

⌊
ps

pi

⌋
−
∑
i≥1

⌊
n − ps

pi

⌋

=
s∑

i=1

⌊
n

pi

⌋
−

s∑
i=1

⌊
ps

pi

⌋
−

s∑
i=1

⌊
n − ps

pi

⌋

=
s∑

i=1

⌊
n

pi

⌋
−

s∑
i=1

⌊
ps

pi

⌋
−

s∑
i=1

⌊
n

pi

⌋
+

s∑
i=1

⌊
ps

pi

⌋
= 0,

since
⌊

ps

pi

⌋
are integers for each 1 ≤ i ≤ s. �

Legendre’s formula is a great tool in combinatorial number theory. It helps to
establish two important theorems of Lucas and Kummer. We will discuss them in
detail in the sequel to this book – 107 Combinatorial Number Theory Problems.
The reader can also look at chapter three of [4].

Fermat Numbers

Trying to find all primes of the form 2m + 1, Fermat noticed that m must be a
power of 2. Indeed, if m were equal to k · h with k an odd integer greater than 1,
then

2m + 1 = (2h)k + 1 = (2h + 1)(2h(k−1) − 2h(k−2) + · · · − 2h + 1),

and so 2m + 1 would not be a prime.
The integers fn = 22n + 1, n ≥ 0, are called Fermat numbers. We have

f0 = 3, f1 = 5, f2 = 17, f3 = 257, f4 = 65537, and f5 = 4294967297.

After checking that these five numbers are primes, Fermat conjectured that fn is a
prime for all n. But Euler proved that 641 | f5. His argument was the following:

f5 = 232 + 1 = 228(54 + 24) − (5 · 27)4 + 1 = 228 · 641 − (6404 − 1)

= 641(228 − 639(6402 + 1)).
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It is still unknown whether there are infinitely many prime Fermat numbers (Fer-
mat primes). The answer to this question is important because Gauss proved
that a regular polygon Q1 Q2 . . . Qn can be constructed using a straightedge and
compass if and only if n = 2h p0 · · · pk , where k ≥ 0, p0 = 1, and p1, . . . , pk

are distinct Fermat primes. Gauss was the first to construct such a polygon for
n = 17. It is also unknown whether there are infinitely many composite Fermat
numbers. (Well, the good thing is that the answer to one of these two questions
must be positive �̈.)

Example 1.77. For positive integers m and n with m > n, fn divides fm − 2.

Proof: By repeatedly applying the difference of squares formula a2 − b2 =
(a − b)(a + b), it is not difficult to show that

fm − 2 = fm−1 fm−2 · · · f1 f0,

from which the desired result follows. �
Example 1.78. For distinct positive integers m and n, fm and fn are relatively
prime.

Proof: By the first example, we have gcd( fm, fn) = gcd( fn, 2) = 1. �
This result also is a special case of Example 1.22.

Example 1.79. Prove that for all positive integers n, fn divides 2 fn − 2.

Proof: We have

2 fn − 2 = 2
(

222n − 1
)

= 2

[(
22n

)22n−n

− 1

]
.

Clearly, 22n−n is even. Note that for an even positive integer 2m, x2m − 1 is

divisible by x + 1. Hence x + 1 divides x22n−n − 1. Setting x = 22n
leads to the

desired conclusion. �
The result in Example 1.79 shows that 2 fn ≡ 2 (mod fn), which gives an-

other counterexample to the converse of Fermat’s little theorem. That is, 2 f5 ≡ 2
(mod f5) but f5 is not a prime.

Mersenne Numbers

The integers Mn = 2n − 1, n ≥ 1, are called Mersenne numbers. It is clear
that if n is composite, then so is Mn . Hence Mk is a prime only if k is a prime.
Moreover, if n = ab, where a and b are integers greater than 1, then Ma and Mb

both divide Mn . But there are primes n for which Mn is composite. For example,
47 | M23, 167 | M83, 263 | M13, and so on.
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Theorem 1.50. Let p be an odd prime and let q be a prime divisor of Mp. Then
q = 2kp + 1 for some positive integer k.

Proof: From the congruence 2p ≡ 1 (mod q) and from the fact that p is a prime,
by Proposition 1.30, it follows that p is the least positive integer satisfying this
property. By using Fermat’s little theorem, we have 2q−1 ≡ 1 (mod q), hence
p | (q−1), by Proposition 1.30 again. But q−1 is an even integer, so q−1 = 2kp
and the conclusion follows. �

Perfect Numbers

An integer n ≥ 2 is called perfect if the sum of its divisors is equal to 2n; that
is, σ(n) = 2n. For example, the numbers 6, 28, 496 are perfect. The perfect
numbers are closely related to Mersenne numbers. We first introduce a famous
result on even perfect numbers. The “if” part belongs to Euclid and the “only if”
part is due to Euler.

Theorem 1.51. An even positive integer n is perfect if and only if n = 2k−1 Mk

for some positive integer k for which Mk is a prime.

Proof: First we show the “if” part. Assume that n = 2k−1(2k − 1), where
Mk = 2k − 1 is prime. Because gcd(2k−1, 2k − 1) = 1 and the fact that σ is a
multiplicative function, it follows that

σ(n) = σ(2k−1)σ (2k − 1) = (2k − 1) · 2k = 2n;
that is, n is perfect.

Second we show the “only if” part. Assume that n is an even perfect number.
Let n = 2t u, where t ≥ 0 and u is odd. Because n is perfect, we have σ(n) = 2n;
hence σ(2t u) = 2t+1u. Using again that σ is multiplicative, we get

2t+1u = σ(2t u) = σ(2t )σ (u) = (2t+1 − 1)σ (u).

Because gcd(2t+1−1, 2t+1) = 1, it follows that 2t+1 | σ(u); hence σ(u) = 2t+1v

for some positive integer v. We obtain u = (2t+1 − 1)v.
The next step is to show that v = 1. Assume to the contrary that v > 1. Then

σ(u) ≥ 1 + v + 2t+1 − 1 + v(2t+1 − 1) = (v + 1)2t+1 > v · 2t+1 = σ(u),

a contradiction. We get v = 1, hence u = 2t+1 − 1 = Mt+1 and σ(u) = 2t+1.
If Mt+1 is not a prime, then σ(u) > 2t+1, which is impossible. Finally, n =
2k−1 Mk , where k = t + 1. �

Since Mk is a prime only if k is a prime, we can reword Theorem 1.51 as
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An even positive integer n is perfect if and only if n = 2k−1 Mk for
some prime p for which Mp is a prime.

Theorem 1.51 sets up a one-to-one correspondence between the prime Mer-
senne numbers and the even perfect numbers. The following are two simple re-
sults related to odd perfect numbers.

Theorem 1.52. If n is an odd perfect number, then the prime factorization of n
is of the form

n = paq2b1
1 q2b2

2 · · · q2bt
t ,

where both a and p are congruent to 1 modulo 4 and t ≥ 2.

Proof: Let

n = pa1
1 pa2

2 · · · pak
k

be the canonical prime factorization of n. Since n is perfect, we have

k∏
i=1

(1 + pi + p2
i + · · · + pai

i ) = 2pa1
1 pa2

2 · · · pak
k .

Since n is odd, there is exactly one i , 1 ≤ i ≤ k, such that

1 + pi + p2
i + · · · + pai

i ≡ 2 (mod 4).

Then ai must be odd. Write ai = 2x + 1 for some integer x . Since p2
i ≡ 1

(mod 4), we can rewrite the above congruence equation as (x + 1)(pi + 1) ≡ 2
(mod 4), implying that pi ≡ 1 (mod 4) and x is even, and so ai ≡ 1 (mod 4).

For j = i with 1 ≤ j ≤ k, we have

1 + p j + p2
j + · · · + p

a j
j ≡ 1 (mod 2),

and so j must be even. It follows that

n = paq2b1
1 q2b2

2 · · · q2bt
t ,

where both a and p are congruent to 1 modulo 4.
It remains to show that t ≥ 2. Assume to the contrary that t = 1. We have

(1 + p + p2 + · · · + pa
1 )(1 + q + q2 + · · · + p2b

2 ) = 2paq2b,

or

pa+1 − 1

p − 1
· q2b+1 − 1

q − 1
= 2paq2b.

It follows that

2 = p − 1
pa

p − 1
·

q − 1
q2b

q − 1
<

p

p − 1
· q

q − 1
≤ 5

4
· 3

2
= 15

8
,

which is not true. Hence our assumption was wrong and t ≥ 2. �
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In 1980, Hagis proved that t ≥ 7 and n > 1050. The existence of odd perfect
numbers still remains one of the most challenging problems in number theory.



2

Introductory Problems

1. Let 1, 4, . . . and 9, 16, . . . be two arithmetic progressions. The set S is the
union of the first 2004 terms of each sequence. How many distinct numbers
are in S?

2. Given a sequence of six strictly increasing positive integers such that each
number (besides the first) is a multiple of the one before it and the sum of
all six numbers is 79, what is the largest number in the sequence?

3. What is the largest positive integer n for which n3 + 100 is divisible by
n + 10?

4. Those irreducible fractions!

(1) Let n be an integer greater than 2. Prove that among the fractions

1

n
,

2

n
, . . . ,

n − 1

n
,

an even number are irreducible.

(2) Show that the fraction

12n + 1

30n + 2

is irreducible for all positive integers n.

5. A positive integer is written on each face of a cube. Each vertex is then
assigned the product of the numbers written on the three faces intersecting
the vertex. The sum of the numbers assigned to all the vertices is equal to
1001. Find the sum of the numbers written on the faces of the cube.
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6. Call a number prime looking if it is composite but not divisible by 2, 3, or
5. The three smallest prime-looking numbers are 49, 77, and 91. There are
168 prime numbers less than 1000. How many prime-looking numbers are
there less than 1000?

7. A positive integer k greater than 1 is given. Prove that there exist a prime
p and a strictly increasing sequence of positive integers a1, a2, . . . , an, . . .

such that the terms of the sequence

p + ka1, p + ka2, . . . , p + kan, . . .

are all primes.

8. Given a positive integer n, let p(n) be the product of the nonzero digits of
n. (If n has only one digit, then p(n) is equal to that digit.) Let

S = p(1) + p(2) + · · · + p(999).

What is the largest prime factor of S?

9. Let m and n be positive integers such that

lcm(m, n) + gcd(m, n) = m + n.

Prove that one of the two numbers is divisible by the other.

10. Let n = 231319. How many positive integer divisors of n2 are less than n
but do not divide n?

11. Show that for any positive integers a and b, the number

(36a + b)(a + 36b)

cannot be a power of 2.

12. Compute the sum of the greatest odd divisor of each of the numbers 2006,
2007, . . . , 4012.

13. Compute the sum of all numbers of the form a/b, where a and b are rela-
tively prime positive divisors of 27000.
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14. L.C.M of three numbers.

(1) Find the number of ordered triples (a, b, c) of positive integers for
which lcm(a, b) = 1000, lcm(b, c) = 2000, and lcm(c, a) = 2000.

(2) Let a, b, and c be integers. Prove that

lcm(a, b, c)2

lcm(a, b) lcm(b, c) lcm(c, a)
= gcd(a, b, c)2

gcd(a, b) gcd(b, c) gcd(c, a)
.

15. Let x , y, z be positive integers such that

1

x
− 1

y
= 1

z
.

Let h be the greatest common divisor of x , y, z. Prove that hxyz and
h(y − x) are perfect squares.

16. Let p be a prime of the form 3k + 2 that divides a2 + ab + b2 for some
integers a and b. Prove that a and b are both divisible by p.

17. The number 27000001 has exactly four prime factors. Find their sum.

18. Find all positive integers n for which n! + 5 is a perfect cube.

19. Find all primes p such that the number p2 + 11 has exactly six different
divisors (including 1 and the number itself).

20. Call a positive integer N a 7-10 double if the digits of the base-7 represen-
tation of N form a base-10 number that is twice N . For example, 51 is a
7-10 double because its base-7 representation is 102. What is the largest
7-10 double?

21. If a ≡ b (mod n), show that an ≡ bn (mod n2). Is the converse true?

22. Let p be a prime, and let 1 ≤ k ≤ p − 1 be an integer. Prove that(
p − 1

k

)
≡ (−1)k (mod p).
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23. Let p be a prime. Show that there are infinitely many positive integers n
such that p divides 2n − n.

24. Let n be an integer greater than three. Prove that 1! + 2! + · · · + n! cannot
be a perfect power.

25. Let k be an odd positive integer. Prove that

(1 + 2 + · · · + n) | (1k + 2k + · · · + nk)

for all positive integers n.

26. Let p be a prime greater than 5. Prove that p−4 cannot be the fourth power
of an integer.

27. For a positive integer n, prove that

σ(1) + σ(2) + · · · + σ(n) ≤ n2.

28. Determine all finite nonempty sets S of positive integers satisfying

i + j

gcd(i, j)

is an element of S for all i and j (not necessarily distinct) in S.

29. Knowing that 229 is a nine-digit number all of whose digits are distinct,
without computing the actual number determine which of the ten digits is
missing. Justify your answer.

30. Prove that for any integer n greater than 1, the number n5 + n4 + 1 is
composite.

31. The product of a few primes is ten times as much as the sum of the primes.
What are these (not necessarily distinct) primes?

32. A 10-digit number is said to be interesting if its digits are all distinct and it
is a multiple of 11111. How many interesting integers are there?
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33. Do there exist 19 distinct positive integers that add up to 1999 and have the
same sum of digits?

34. Find all prime numbers p and q such that pq divides the product
(5p − 2p)(5q − 2q).

35. Prove that there are infinitely many numbers not containing the digit 0 that
are divisible by the sum of their digits.

36. Prove that any number consisting of 2n identical digits has at least n distinct
prime factors.

37. Let a and b be two relatively prime positive integers, and consider the arith-
metic progression a, a + b, a + 2b, a + 3b, . . . .

(1) Prove that there are infinitely many terms in the arithmetic progression
that have the same prime divisors.

(2) Prove that there are infinitely many pairwise relatively prime terms in
the arithmetic progression.

38. Let n be a positive integer.

(1) Evaluate gcd(n! + 1, (n + 1)! + 1).

(2) Let a and b be positive integers. Prove that

gcd(na − 1, nb − 1) = ngcd(a,b) − 1.

(3) Let a and b be positive integers. Prove that gcd(na +1, nb +1) divides
ngcd(a,b) + 1.

(4) Let m be a positive integer with gcd(m, n) = 1. Express

gcd(5m + 7m, 5n + 7n)

in terms of m and n.
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39. Bases? What bases?

(1) Determine whether it is possible to find a cube and a plane such
that the distances from the vertices of the cube to the plane are 0, 1,
2, . . . , 7.

(2) The increasing sequence 1, 3, 4, 9, 10, 12, 13, . . . consists of all those
positive integers that are powers of 3 or sums of distinct powers of 3.
Find the 100th term of this sequence (where 1 is the 1st term, 3 is the
2nd term, and so on).

40. Fractions in modular arithmetic.

(1) Let a be the integer such that

1 + 1

2
+ 1

3
+ · · · + 1

23
= a

23!
.

Compute the remainder when a is divided by 13.

(2) Let p > 3 be a prime, and let m and n be relatively prime integers
such that

m

n
= 1

12
+ 1

22
+ · · · + 1

(p − 1)2
.

Prove that m is divisible by p.

(3) Let p > 3 be a prime. Prove that Let p > 3 be a prime. Prove that

p2 | (p − 1)!

(
1 + 1

2
+ · · · + 1

p − 1

)
.

41. Find all pairs (x, y) of nonnegative integers such that x2 + 3y and y2 + 3x
are simultaneously perfect squares.

42. First digit? Not the last digit? Are your sure?

(1) Given that 22004 is a 604-digit number with leading digit 1, determine
the number of elements in the set

{20, 21, 22, . . . , 22003}
with leading digit 4.

(2) Let k be a positive integer and let n = n(k) be a positive integer such
that in decimal representation 2n and 5n begin with the same k digits.
What are these digits?
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43. What are those missing digits?

(1) Determine the respective last digit (unit digit) of the numbers

3100171002131003 and 7777..
.7

︸ ︷︷ ︸
1001 7’s

.

(2) Determine the last three digits of the number

200320022001
.

(3) The binomial coefficient
(99

19

)
is a 21-digit number:

107,196,674,080,761,936,xyz.

Find the three-digit number xyz.

(4) Find the smallest positive integer whose cube ends in 888.

44. Let p ≥ 3 be a prime, and let

{a1, a2, . . . , ap−1} and {b1, b2, . . . , bp−1}
be two sets of complete residue classes modulo p. Prove that

{a1b1, a2b2, . . . , ap−1bp−1}
is not a complete set of residue classes modulo p.

45. Let p ≥ 3 be a prime. Determine whether there exists a permutation

(a1, a2, . . . , ap−1)

of (1, 2, . . . , p − 1) such that the sequence {iai }p−1
i=1 contains p − 2 distinct

congruence classes modulo p.

46. Prove that any positive integer less than n! can be represented as a sum of
no more than n positive integer divisors of n!.

47. Let n > 1 be an odd integer. Prove that n does not divide 3n + 1.
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48. Let a and b be positive integers. Prove that the number of solutions (x, y, z)
in nonnegative integers to the equation ax + by + z = ab is

1

2
[(a + 1)(b + 1) + gcd(a, b) + 1].

49. Order! Order, please!

(1) Let p be an odd prime, and let q and r be primes such that p divides
qr + 1. Prove that either 2r | p − 1 or p | q2 − 1.

(2) Let a > 1 and n be given positive integers. If p is a prime divisor of
a2n + 1, prove that p − 1 is divisible by 2n+1.

50. Prove that ⌊
(n − 1)!

n(n + 1)

⌋

is even for every positive integer n.

51. Determine all the positive integers m each of which satisfies the following
property: there exists a unique positive integer n such that there exist rect-
angles that can be divided into n congruent squares and also into n + m
congruent squares.

52. Determine all positive integers n such that n has a multiple whose digits are
nonzero.



3

Advanced Problems

1. (a) Prove that the sum of the squares of 3, 4, 5, or 6 consecutive integers
is not a perfect square.

(b) Give an example of 11 consecutive positive integers the sum of whose
squares is a perfect square.

2. Let S(x) be the sum of the digits of the positive integer x in its decimal
representation.

(a) Prove that for every positive integer x , S(x)
S(2x)

≤ 5. Can this bound be
improved?

(b) Prove that S(x)
S(3x)

is not bounded.

3. Most positive integers can be expressed as a sum of two or more consecu-
tive positive integers. For example, 24 = 7 + 8 + 9 and 51 = 25 + 26. A
positive integer that cannot be expressed as a sum of two or more consec-
utive positive integers is therefore interesting. What are all the interesting
integers?

4. Set S = {105, 106, . . . , 210}. Determine the minimum value of n such
that any n-element subset T of S contains at least two non-relatively prime
elements.

5. The number

99 . . . 99︸ ︷︷ ︸
1997 9’s
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is written on a blackboard. Each minute, one number written on the black-
board is factored into two factors and erased, each factor is (independently)
increased or diminished by 2, and the resulting two numbers are written. Is
it possible that at some point (after the first minute) all of the numbers on
the blackboard equal 9?

6. Let d be any positive integer not equal to 2, 5, or 13. Show that one can find
distinct a, b in the set {2, 5, 13, d} such that ab − 1 is not a perfect square.

7. A heap of balls consists of one thousand 10-gram balls and one thousand
9.9-gram balls. We wish to pick out two heaps of balls with equal numbers
of balls in them but different total weights. What is the minimal number of
weighings needed to do this? (The balance scale reports the weight of the
objects in the left pan minus the weight of the objects in the right pan.)

8. We are given three integers a, b, and c such that a, b, c, a +b−c, a +c−b,
b + c − a, and a + b + c are seven distinct primes. Let d be the difference
between the largest and smallest of these seven primes. Suppose that 800 is
an element in the set {a+b, b+c, c+a}. Determine the maximum possible
value of d.

9. Prove that the sum

S(m, n) = 1

m
+ 1

m + 1
+ · · · + 1

m + n

is not an integer for any given positive integers m and n.

10. For all positive integers m > n, prove that

lcm(m, n) + lcm(m + 1, n + 1) >
2mn√
m − n

.

11. Prove that each nonnegative integer can be represented in the form
a2 + b2 − c2, where a, b, and c are positive integers with a < b < c.

12. Determine whether there exists a sequence of strictly increasing positive
integers {ak}∞k=1 such that the sequence {ak + a}∞k=1 contains only finitely
many primes for all integers a.
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13. Prove that for different choices of signs + and − the expression

±1 ± 2 ± 3 ± · · · ± (4n + 1)

yields all odd positive integers less than or equal to (2n + 1)(4n + 1).

14. Let a and b be relatively prime positive integers. Show that

ax + by = n

has nonnegative integer solutions (x, y) for all integers n > ab − a − b.
What if n = ab − a − b?

15. The sides of a triangle have integer lengths k, m, and n. Assume that k >

m > n and {
3k

104

}
=
{

3m

104

}
=
{

3n

104

}
.

Determine the minimum value of the perimeter of the triangle.

16. Consider the following two-person game. A number of pebbles are lying
on a table. Two players make their moves alternately. A move consists
in taking off the table x pebbles, where x is the square of any positive
integer. The player who is unable to make a move loses. Prove that there
are infinitely many initial situations in which the player who goes second
has a winning strategy?

17. Prove that the sequence 1, 11, 111, . . . contains an infinite subsequence
whose terms are pairwise relatively prime.

18. Let m and n be integers greater than 1 such that gcd(m, n − 1) =
gcd(m, n) = 1. Prove that the first m − 1 terms of the sequence n1, n2, . . . ,
where n1 = mn + 1 and nk+1 = n · nk + 1, k ≥ 1, cannot all be primes.

19. Find all positive integers m such that the fourth power of the number of
positive divisors of m equals m.
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20. (1) Show that it is possible to choose one number out of any 39 consecu-
tive positive integers having the sum of its digits divisible by 11.

(2) Find the first 38 consecutive positive integers none of which has the
sum of its digits divisible by 11.

21. Find the largest integer n such that n is divisible by all positive integers less
than 3

√
n.

22. Show that for any fixed positive integer n, the sequence

2, 22, 222
, 2222

, . . . (mod n)

is eventually constant. (The tower of exponents is defined by a1 = 2 and
ai+1 = 2ai for every positive integer i .)

23. Prove that for n ≥ 5, fn + fn−1 − 1 has at least n + 1 prime factors, where
fn = 22n + 1.

24. Prove that any integer can be written as the sum of the cubes of five integers,
not necessarily distinct.

25. Integer or fractional parts?

(1) Find all real numbers x such that

x�x�x�x			 = 88.

(2) Show that the equation

{x3} + {y3} = {z3}
has infinitely many rational noninteger solutions.

26. Let n be a given positive integer. If p is a prime divisor of the Fermat
number fn , prove that p − 1 is divisible by 2n+2.

27. The sequence

{an}∞n=1 = {1, 2, 4, 5, 7, 9, 10, 12, 14, 16, 17, . . . }
of positive integers is formed by taking one odd integer, then two even
integers, then three odd integers, etc. Express an in closed form.
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28. Prove that for each n ≥ 2, there is a set S of n integers such that (a − b)2

divides ab for every distinct a, b ∈ S.

29. Show that there exist infinitely many positive integers n such that the largest
prime divisor of n4 + 1 is greater than 2n.

30. For a positive integer k, let p(k) denote the greatest odd divisor of k. Prove
that for every positive integer n,

2n

3
<

p(1)

1
+ p(2)

2
+ · · · + p(n)

n
<

2(n + 1)

3
.

31. If pt is an odd prime power and m is an integer relatively prime to both p
and p − 1, then for any a and b relatively prime to p,

am ≡ bm (mod pt ) if and only if a ≡ b (mod pt ).

32. Prove that for each prime p ≥ 7, there exists a positive integer n and inte-
gers x1, . . . , xn, y1, . . . , yn not divisible by p such that⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x2
1 + y2

1 ≡ x2
2 (mod p),

x2
2 + y2

2 ≡ x2
3 (mod p),

...

x2
n + y2

n ≡ x2
1 (mod p).

33. For every positive integer n, prove that

σ(1)

1
+ σ(2)

2
+ · · · + σ(n)

n
≤ 2n.

34. Prove that the system

x6 + x3 + x3 y + y = 147157,

x3 + x3 y + y2 + y + z9 = 157147,

has no solutions in integers x , y, and z.
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35. What is the smallest number of weighings on a balance scale needed to
identify the individual weights of a set of objects known to weigh 1, 3, 32,
. . . , 326 in some order? (The balance scale reports the weight of the objects
in the left pan minus the weight of the objects in the right pan.)

36. Let λ be the positive root of the equation t2 − 1998t − 1 = 0. Define the
sequence x0, x1, . . . by setting

x0 = 1, xn+1 = �λxn	 (n ≥ 0).

Find the remainder when x1998 is divided by 1998.

37. Determine (with proof) whether there is a subset X of the integers with
the following property: for any integer n there is exactly one solution of
a + 2b = n with a, b ∈ X .

38. The number xn is defined as the last digit in the decimal representation

of the integer
⌊√

2
n
⌋

(n = 1, 2, . . . ). Determine whether the sequence

x1, x2, . . . , xn, . . . is periodic.

39. Prove that every integer n can be represented in infinitely many ways as

n = ±12 ± 22 ± · · · ± k2

for a convenient k and a suitable choice of the signs + and −.

40. Let n be a given integer with n ≥ 4. For a positive integer m, let Sm denote
the set {m, m + 1, . . . , m + n − 1}. Determine the minimum value of f (n)

such that every f (n)-element subset of Sm (for every m) contains at least
three pairwise relatively prime elements.

41. Find the least positive integer r such that for any positive integers a, b, c, d,
((abcd)!)r is divisible by the product of

(a!)bcd+1, (b!)acd+1, (c!)abd+1, (d!)abc+1,

((ab)!)cd+1, ((bc)!)ad+1, ((cd)!)ab+1, ((ac)!)bd+1,

((bd)!)ac+1, ((ad)!)bc+1, ((abc)!)d+1, ((abd)!)c+1,

((acd)!)b+1, ((bcd)!)a+1.
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42. Two classics on L.C.M.

(1) Let a0 < a1 < a2 < · · · < an be positive integers. Prove that

1

lcm(a0, a1)
+ 1

lcm(a1, a2)
+ · · · + 1

lcm(an−1, an)
≤ 1 − 1

2n
.

(2) Several positive integers are given not exceeding a fixed integer con-
stant m. Prove that if every positive integer less than or equal to m
is not divisible by any pair of the given numbers, then the sum of the
reciprocals of these numbers is less than 3

2 .

43. For a positive integer n, let r(n) denote the sum of the remainders of n
divided by 1, 2, . . . , n. Prove that there are infinitely many n such that
r(n) = r(n − 1).

44. Two related IMO problems.

(1) A wobbly number is a positive integer whose digits are alternately
nonzero and zero with the units digit being nonzero. Determine all
positive integers that do not divide any wobbly numbers.

(2) A positive integer is called alternating if among any two consecutive
digits in its decimal representation, one is even and the other is odd.
Find all positive integers n such that n has a multiple that is alternat-
ing.

45. Let p be an odd prime. The sequence (an)n≥0 is defined as follows: a0 = 0,

a1 = 1, . . . , ap−2 = p − 2, and for all n ≥ p − 1, an is the least positive
integer that does not form an arithmetic sequence of length p with any of
the preceding terms. Prove that for all n, an is the number obtained by
writing n in base p − 1 and reading the result in base p.

46. Determine whether there exists a positive integer n such that n is divisible
by exactly 2000 different prime numbers, and 2n + 1 is divisible by n.

47. Two cyclic symmetric divisibility relations.

(1) [Russia 2000] Determine whether there exist pairwise relatively prime
integers a, b, and c with a, b, c > 1 such that

b | 2a + 1, c | 2b + 1, a | 2c + 1.
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(2) [TST 2003, by Reid Barton] Find all ordered triples of primes
(p, q, r) such that

p | qr + 1, q | r p + 1, r | pq + 1.

48. Let n be a positive integer, and let p1, p2, . . . , pn be distinct primes greater
than 3. Prove that 2p1 p2···pn + 1 has at least 4n divisors.

49. Let p be a prime, and let {ak}∞k=0 be a sequence of integers such that a0 = 0,
a1 = 1, and

ak+2 = 2ak+1 − pak

for k = 0, 1, 2, . . . . Suppose that −1 appears in the sequence. Find all
possible values of p.

50. Let F be a set of subsets of the set {1, 2, . . . , n} such that

(1) if A is an element of F , then A contains exactly three elements;

(2) if A and B are two distinct elements in F , A and B share at most one
common element.

Let f (n) denote the maximum number of elements in F . Prove that

(n − 1)(n − 2)

6
≤ f (n) ≤ (n − 1)n

6
.

51. Determine all positive integers k such that

τ(n2)

τ (n)
= k,

for some n.

52. Let n be a positive integer greater than two. Prove that the Fermat number
fn has a prime divisor greater than 2n+2(n + 1).
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Solutions to Introductory Problems

1. [AMC10B 2004] Let 1, 4, . . . and 9, 16, . . . be two arithmetic progres-
sions. The set S is the union of the first 2004 terms of each sequence. How
many distinct numbers are in S?

Solution: The smallest number that appears in both sequences is 16. Since
the least common multiple of 3 and 7 (the two common differences of the
progressions) is 21, numbers appear in both sequences only if they are in
the form 16+21k, where k is a nonnegative integer. The largest k such that
7k + 9 ≤ 2004 is k = 285. Hence there are 286 numbers each of which
appears in both progressions. Thus the answer is 4008 − 286 = 3722.

2. [HMMT 2004] Given a sequence of six strictly increasing positive integers
such that each number (besides the first) is a multiple of the one before
it and the sum of all six numbers is 79, what is the largest number in the
sequence?

Solution: Let a1 < a2 < · · · < a6 be the six numbers. If a4 ≥ 12, then
a5 ≥ 2a4 ≥ 24 and a6 ≥ 2a5 ≥ 48, implying that a4 +a5 +a6 ≥ 84, which
violates the conditions of the problem. Hence a4 < 12. Then the only way
we can have the required divisibilities among the first four numbers is if
they are a1 = 1, a2 = 2, a3 = 4, and a4 = 8. We write a5 = ma4 =
8m and a6 = na5 = 8mn for integers m and n with m, n ≥ 2. We get
8m + 8mn = 79 − (1 + 2 + 4 + 8) = 64, or m(1 + n) = 8. This leads to
the unique solution m = 2 and n = 3. Hence the answer is a6 = 48.

3. [AIME 1986] What is the largest positive integer n for which n3 + 100 is
divisible by n + 10?
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Solution: By division we find that n3 + 100 = (n + 10)(n2 − 10n +
100) − 900. Thus, if n + 10 divides n3 + 100, then it must also divide 900.
Moreover, since n is maximized whenever n + 10 is, and since the largest
divisor of 900 is 900, we must have n + 10 = 900. Therefore, n = 890.

4. Those irreducible fractions!

(1) Let n be an integer greater than 2. Prove that among the fractions

1

n
,

2

n
, . . . ,

n − 1

n
,

an even number of them are irreducible.

(2) Show that the fraction

12n + 1

30n + 2

is irreducible for all positive integers n.

Proof: We prove part (1) via a parity argument, and we establish part (2)
applying the Euclidean algorithm.

(1) The fraction k
n is irreducible if and only if the fraction n−k

n is irre-
ducible, because gcd(k, n) = gcd(n − k, n).

If the fractions k
n and n−k

n are distinct for all k, then pairing up yields
an even number of irreducible fractions.

If k
n = n−k

n for some k, then n = 2k and so k
n = k

2k = 1
2 is reducible

and the problem reduces to the previous case.

(2) Note that

gcd(30n + 2, 12n + 1) = gcd(6n, 12n + 1) = gcd(6n, 1) = 1,

from which the desired result follows.

5. A positive integer is written on each face of a cube. Each vertex is then
assigned the product of the numbers written on the three faces intersecting
the vertex. The sum of the numbers assigned to all the vertices is equal to
1001. Find the sum of the numbers written on the faces of the cube.
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Solution: Let a, b, c, d, e, and f be the numbers written on the faces, with
a and f , b and d , c and e written on opposite faces. We are given that

1001 = abc + abe + acd + ade + bc f + be f + cd f + de f

= (a + f )(b + d)(c + e).

(We can realize this factorization by noticing that the product xyz appears
exactly once if and only if x and y, y and z, z and x are not written on the
opposite faces.) Since 1001 = 7 · 11 · 13 and each of a + f, b + d, and
c + e are greater than 1, it follows that {a + f, b + d, c + e} = {7, 11, 13},
implying that the answer is a + b + c + d + e + f = 7 + 11 + 13 = 31.

6. [AMC12A 2005] Call a number prime looking if it is composite but not
divisible by 2, 3, or 5. The three smallest prime-looking numbers are 49,
77, and 91. There are 168 prime numbers less than 1000. How many prime-
looking numbers are there less than 1000?

Solution: Of the numbers less than 1000,
⌊

999
2

⌋
= 499 of them are divisi-

ble by two,
⌊

999
3

⌋
= 333 are divisible by 3, and

⌊
999
5

⌋
= 199 are divisible

by 5. There are
⌊

999
6

⌋
= 166 multiples of 6,

⌊
999
10

⌋
= 99 multiples of 10,

and
⌊

999
15

⌋
= 66 multiples of 15. Finally, there are

⌊
999
30

⌋
= 33 multiples

of 30. By the inclusion and exclusion principle there are

499 + 333 + 199 − 166 − 99 − 66 + 33 = 733

numbers that are divisible by at least one of 2, 3, and 5. Of the remaining
999 − 733 = 266 numbers, 165 are primes other than 2, 3, or 5. Note that
1 is neither prime nor composite. This leaves exactly 100 prime-looking
numbers.

7. A positive integer k greater than 1 is given. Prove that there exist a prime
p and a strictly increasing sequence of positive integers a1, a2, . . . , an, . . .

such that the terms of the sequence

p + ka1, p + ka2, . . . , p + kan, . . .

are all primes.

Proof: The pigeonhole principle provides an elegant solution. There is
nothing to be afraid of, just infinitely many pigeons in finitely many pi-
geonholes.
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For each i = 1, 2, . . . , k − 1 denote by Pi the set of all primes congruent
to i modulo k. Each prime (except possibly k itself) is contained in exactly
one of the sets P1, P2, . . . , Pk−1. Because there are infinitely many primes,
at least one of these sets is infinite, say Pi . Let p = x1 < x2 < · · · < xn <

· · · be its elements arranged in increasing order, and

an = xn+1 − p

k

for every positive integer n. Then the p + kan simply run through the
members of Pi , beginning at x2. The numbers an are positive integers. The
prime p and the strictly increasing sequence a1, a2, . . . , an, . . . have the
desired properties.

8. [AIME 1994] Given a positive integer n, let p(n) be the product of the
nonzero digits of n. (If n has only one digit, then p(n) is equal to that
digit.) Let

S = p(1) + p(2) + · · · + p(999).

What is the largest prime factor of S?

Solution: Consider each positive integer less than 1000 to be a three-digit
number by prefixing 0’s to numbers with fewer than three digits. The sum
of the products of the digits of all such positive numbers is

(0 · 0 · 0 + 0 · 0 · 1 + · · · + 9 · 9 · 9) − 0 · 0 · 0 = (0 + 1 + · · · + 9)3 − 0.

However, p(n) is the product of nonzero digits of n. The sum of these
products can be found by replacing 0 by 1 in the above expression, since
ignoring 0’s is equivalent to thinking of them as 1’s in the products. (Note
that the final 0 in the above expression becomes a 1 and compensates for
the contribution of 000 after it is changed to 111.) Hence

S = 463 − 1 = (46 − 1)(462 + 46 + 1) = 33 · 5 · 7 · 103,

and the largest prime factor is 103.

9. [Russia 1995] Let m and n be positive integers such that

lcm(m, n) + gcd(m, n) = m + n.

Prove that one of the two numbers is divisible by the other.
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First Proof: Let d = gcd(m, n). We write m = ad and n = bd . Then
gcd(a, b) = 1 and

lcm(m, n) = mn

gcd(m, n)
= abd.

The given equation becomes abd + d = ad + bd , or ab −a − b + 1 = 0. It
follows that (a − 1)(b − 1) = 0, implying that either a = 1 or b = 1; that
is, either m = d , n = bd = bm or n = d , m = an.

Second Proof: Because lcm(m, n) · gcd(m, n) = mn, it follows that
lcm(m, n) and gcd(m, n) as well as m, n are roots of x2 −(m +n)x +mn =
0. Hence {lcm(m, n), gcd(m, n)} = {m, n} and the conclusion follows.

10. [AIME 1995] Let n = 231319. How many positive integer divisors of n2

are less than n but do not divide n?

First Solution: Let n = pr qs , where p and q are distinct primes. Then
n2 = p2r q2s , so n2 has

(2r + 1)(2s + 1)

factors. For each factor less than n, there is a corresponding factor greater
than n. By excluding the factor n, we see that there must be

(2r + 1)(2s + 1) − 1

2
= 2rs + r + s

factors of n2 that are less than n. Because n has (r + 1)(s + 1) factors
(including n itself), and because every factor of n is also a factor of n2,
there are

2rs + r + s − [(r + 1)(s + 1) − 1] = rs

factors of n2 that are less than n but not factors of n. When r = 31 and
s = 19, there are rs = 589 such factors.

Second Solution: (By Chengde Feng) A positive integer divisor d of n2 is
less than n but does not divide n if and only if

d =
{

231+a319−b if 2a < 3b,
231−a319+b if 2a > 3b,

where a and b are integers such that 1 ≤ a ≤ 31 and 1 ≤ b ≤ 19. Since
2a = 3b for positive integers a and b, there are 19×31 = 589 such divisors.
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11. [APMO 1998] Show that for any positive integers a and b, the number

(36a + b)(a + 36b)

cannot be a power of 2.

Proof: Write a = 2c · p, b = 2d · q , with p and q odd. Assume without
loss of generality that c ≥ d . Then

36a + b = 36 · 2c p + 2dq = 2d(36 · 2c−d p + q).

Consequently,

(36a + b)(36b + a) = 2d(36 · 2c−d p + q)(36b + a)

has the nontrivial odd factor 36 · 2c−d p + q, and thus is not a power of 2.

12. Compute sum of the greatest odd divisor of each of the numbers 2006,
2007, . . . , 4012.

Solution: For a positive integer n, let p(n) denote its greatest odd divisor.
We can write n = 2k · p(n) for some nonnegative integer k. If two positive
integers n1 and n2 are such that p(n1) = p(n2), then one is at least twice
the other.

Because no number from 2007, 2008, . . . , 4012 is twice another such num-
ber,
p(2007), p(2008), . . . , p(4012) are 2006 distinct odd positive integers.
Also note that these odd numbers belong to the set {1, 3, 5, . . . , 4011},
which also consists of exactly 2006 elements. It follows that

{p(2007), p(2008), . . . , p(4012)} = {1, 3, . . . , 4011}.
Hence the desired sum is equal to

p(2006) + 1 + 3 + · · · + 4011 = 1003 + 20062

= 1003 · 4013 = 4025039.

13. Compute the sum of all numbers of the form a/b, where a and b are rela-
tively prime positive divisors of 27000.
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Solution: Because 27000 = 233353, each a/b can be written in the form
of 2a3b5c, where a, b, c are integers in the interval [−3, 3]. It follows that
each a/b appears exactly once in the expansion of

(2−3 + 2−2 + · · · + 23)(3−3 + 3−2 + · · · + 33)(5−3 + 5−2 + · · · + 53).

It follows that the desired sum is equal to

1

233353
· 27 − 1

2 − 1
· 37 − 1

3 − 1
· 57 − 1

5 − 1
= (27 − 1)(37 − 1)(57 − 1)

263353
.

14. L.C.M of three numbers.

(1) [AIME 1987] Find the number of ordered triples (a, b, c) of posi-
tive integers for which lcm(a, b) = 1000, lcm(b, c) = 2000, and
lcm(c, a) = 2000.

(2) Let a, b, and c be integers. Prove that

lcm(a, b, c)2

lcm(a, b) lcm(b, c) lcm(c, a)
= gcd(a, b, c)2

gcd(a, b) gcd(b, c) gcd(c, a)
.

Solution: We have two different approaches to these two parts. For part
(1), we deal with the L.C.M. and G.C.D. of three integers via pairwise
L.C.M. and G.C.D. of two integers. For part (2), we use prime factoriza-
tions.

(1) Because both 1000 and 2000 are of the form 2m5n , the numbers a, b,
and c must also be of this form. We set

a = 2m1 5n1 , b = 2m25n2 , c = 2m3 5n3 ,

where the mi and ni are nonnegative integers for i = 1, 2, 3. Then the
following equalities must hold:

max{m1, m2} = 3, max{m2, m3} = 4, max{m3, m1} = 4 (∗)

and

max{n1, n2} = 3, max{n2, n3} = 3, max{n3, n1} = 3. (∗∗)

From (∗), we must have m3 = 4, and either m1 or m2 must be 3,
while the other one can take the values of 0, 1, 2, or 3. There are
7 such ordered triples, namely (0, 3, 4), (1, 3, 4), (2, 3, 4), (3, 0, 4),
(3, 1, 4), (3, 2, 4), and (3, 3, 4).
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To satisfy (∗∗), two of n1, n2, and n3 must be 3, while the third one
ranges through the values of 0, 1, 2, and 3. The number of such
ordered triples is 10; they are (3, 3, 0), (3, 3, 1), (3, 3, 2), (3, 0, 3),
(3, 1, 3), (3, 2, 3), (0, 3, 3), (1, 3, 3), (2, 3, 3), and (3, 3, 3).
Because the choice of (m1, m2, m3) is independent of the choice of
(n1, n2, n3), they can be chosen in 7 · 10 = 70 different ways. This is
the number of ordered triples (a, b, c) satisfying the given conditions.

(2) Let a = pα1
1 · · · pαn

n , b = pβ1
1 · · · pβn

n , and c = pγ1
1 · · · pγn

n , where
p1, . . . , pn are distinct primes, and a1, . . . , an, b1, . . . , bn, c1, . . . , cn

are nonzero integers. Then

lcm(a, b, c)2

lcm(a, b) lcm(b, c) lcm(c, a)

=
∏n

i=1 p2 max{αi ,βi ,γi }
i∏n

i=1 pmax{αi ,βi }
i

∏n
i=1 pmax{βi ,γi }

i

∏n
i=1 pmax{γi ,αi }

i

=
n∏

i=1

p2 max{αi ,βi ,γi }−max{αi ,βi }−max{βi ,γi }−max{γi ,αi }
i

and

gcd(a, b, c)2

gcd(a, b) gcd(b, c) gcd(c, a)

=
∏n

i=1 p2 min{αi ,βi ,γi }
i∏n

i=1 pmin{αi ,βi }
i

∏n
i=1 pmin{βi ,γi }

i

∏n
i=1 pmin{γi ,αi }

i

=
n∏

i=1

p2 min{αi ,βi ,γi }−min{αi ,βi }−min{βi ,γi }−min{γi ,αi }
i

It suffices to show that for each nonnegative numbers α, β, and γ ,

2 max{α, β, γ } − max{α, β} − max{β, γ } − max{γ, α}
= 2 min{α, β, γ } − min{α, β} − min{β, γ } − min{γ, α}.

By symmetry, we may assume that α ≤ β ≤ γ . It is not difficult to
deduce that both sides are equal −β, completing our proof.

As a side result from the proof of (2), we note that

lcm(a, b) lcm(b, c) lcm(c, a)

lcm(a, b, c)2
and

gcd(a, b) gcd(b, c) gcd(c, a)

gcd(a, b, c)2

are equal integers.
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15. [UK 1998] Let x , y, z be positive integers such that

1

x
− 1

y
= 1

z
.

Let h be the greatest common divisor of x , y, z. Prove that hxyz and
h(y − x) are perfect squares.

Proof: Let x = ha, y = hb, z = hc. Then a, b, c are positive integers
such that gcd(a, b, c) = 1. Let gcd(a, b) = g. So a = ga′, b = gb′ and a′
and b′ are positive integers such that

gcd(a′, b′) = gcd(a′ − b′, b′) = gcd(a′, a′ − b′) = 1.

We have

1

a
− 1

b
= 1

c
⇐⇒ c(b − a) = ab ⇐⇒ c(b′ − a′) = a′b′g.

So g|c and gcd(a, b, c) = g = 1. Therefore gcd(a, b) = 1 and gcd(b −
a, ab) = 1. Thus b − a = 1 and c = ab. Now

hxyz = h4abc = (h2ab)2 and h(y − x) = h2

are both perfect squares, as desired.

16. Let p be a prime of the form 3k + 2 that divides a2 + ab + b2 for some
integers a and b. Prove that a and b are both divisible by p.

Proof: We approach indirectly by assuming that p does not divide a.
Because p divides a2 + ab + b2, it also divides a3 − b3 = (a − b)(a2 +
ab + b2), so a3 ≡ b3 (mod p). Hence

a3k ≡ b3k (mod p).

Hence p does not divide b either. Applying Fermat’s little theorem yields
a p−1 ≡ bp−1 ≡ 1 (mod p), or

a3k+1 ≡ b3k+1 (mod p).

Because p is relatively prime to a, we conclude that a ≡ b (mod p). This,
combined with a2 + ab + b2 ≡ 0 (mod p), implies 3a2 ≡ 0 (mod p).
Because p = 3, it turns out that p divides a, which is a contradiction.
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17. [HMMT 2005] The number 27000001 has exactly four prime factors. Find
their sum.

Solution: Since x3+1 = (x +1)(x2−x +1) and x2−y2 = (x +y)(x −y),
it follows that

27000001 = 3003 + 1 = (300 + 1)(3002 − 300 + 1)

= 301(3002 + 2 · 300 + 1 − 900)

= 301[(300 + 1)2 − 900] = 301(3012 − 302)

= 301 · 331 · 271 = 7 · 43 · 271 · 331.

Hence the answer is 7 + 43 + 271 + 331 = 652.

18. Find all positive integers n for which n! + 5 is a perfect cube.

First Solution: The only answer is n = 5.

One checks directly that n! + 5 is not a perfect cube for n = 1, 2, 3, 4, 6, 7,
8, 9 and that 5! + 5 is a perfect cube.

If n! + 5 were a perfect cube for n > 9, then, since it is a multiple of 5,
n! + 5 would be a multiple of 125. However, this is not true, since n! is a
multiple of 125 for n > 9, but 5 is not. Thus the only positive integer with
the desired property is n = 5.

Second Solution: Again, we check the cases n = 1, 2, . . . , 6 directly. For
n ≥ 7, n! + 5 ≡ 5 (mod 7), which is not a cubic residue class modulo 7.
(The only cubic residue classes modulo 7 are 0 and ±1.)

19. [Russia 1995] Find all primes p such that the number p2 + 11 has exactly
six different divisors (including 1 and the number itself).

Solution: For p = 3, p2 ≡ 1 (mod 3), and so 3 | (p2 + 11). Similarly,
for p = 2, p2 ≡ 1 (mod 4) and so 4 | (p2 + 11). Except in these two
cases, then, 12 | (p2 + 11); since 12 itself has 6 divisors (1, 2, 3, 4, 6, 12)

and p2 + 11 > 12 for p > 1, p2 + 11 must have more than 6 divisors. The
only cases to check are p = 2 and p = 3. If p = 2, then p2 + 11 = 15,
which has only 4 divisors (1, 3, 5, 15), while if p = 3, then p2 + 11 = 20,
which indeed has 6 divisors {1, 2, 4, 5, 10, 20}. Hence p = 3 is the only
solution.
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20. [AIME 2001] Call a positive integer N a 7-10 double if the digits of the
base-7 representation of N form a base-10 number that is twice N . For
example, 51 is a 7-10 double because its base-7 representation is 102. What
is the largest 7-10 double?

Solution: Suppose that ak7k +ak−17k−1 +· · ·+a272 +a17 +a0 is a 7-10
double, with ak = 0. In other words, ak10k + ak−110k−1 + · · · + a2102 +
a110 + a0 is twice as large, so that

ak(10k − 2 · 7k) + ak−1(10k−1 − 2 · 7k−1)

+ · · · + a1(10 − 2 · 7) + ao(1 − 2) = 0.

Because the coefficient of ai in this equation is negative only when i = 0
and i = 1, and no ai is negative, it follows that k is at least 2. Because the
coefficient of ai is at least 314 when i > 2, and because no ai exceeds 6, it
follows that k = 2 and 2a2 = 4a1 + a0. To obtain the largest possible 7-10
double, first try a2 = 6. Then the equation 12 = 4a1 + a0 has a1 = 3 and
a0 = 0 as the solution with the greatest possible value of a1. The largest
7-10 double is therefore 6 · 49 + 3 · 7 = 315.

21. If a ≡ b (mod n), show that an ≡ bn (mod n2). Is the converse true?

Proof: From a ≡ b (mod n) it follows that a = b + qn for some integer
q. By the binomial theorem we obtain

an − bn = (b + qn)n − bn

=
(

n

1

)
bn−1qn +

(
n

2

)
bn−2q2n2 + · · · +

(
n

n

)
qnnn

= n2
(

bn−1q +
(

n

2

)
bn−2q2 + · · · +

(
n

n

)
qnnn−2

)
,

implying that an ≡ bn (mod n2).

The converse is not true because, for instance, 34 ≡ 14 (mod 42) but 3 ≡ 1
(mod 4).

22. Let p be a prime, and let 1 ≤ k ≤ p − 1 be an integer. Prove that(
p − 1

k

)
≡ (−1)k (mod p).
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First Proof: We induct on k. The conclusion is clearly true for k = 1,
since (

p − 1

1

)
= p − 1 ≡ −1 (mod p).

Assume that the conclusion is true for k = i , where 1 ≤ i ≤ p − 2. It is
well known (and easy to check by direct computation) that(

p − 1

i

)
+
(

p − 1

i − 1

)
=
(

p

i

)
.

By Corollary 1.10, we have(
p − 1

i

)
+
(

p − 1

i − 1

)
≡ 0 (mod p).

By the induction hypothesis, we have(
p − 1

i

)
≡ −

(
p − 1

i − 1

)
≡ −(−1)i−1 ≡ (−1)i (mod p),

completing our induction.

Second Proof: Because(
p − 1

k

)
= (p − 1)(p − 2) · · · (p − k)

k!

is an integer and gcd(k!, p) = 1, it suffices to show that

(p − 1)(p − 2) · · · (p − k) ≡ (−1)k · k! (mod p),

which is evident.

23. Let p be a prime. Show that there are infinitely many positive integers n
such that p divides 2n − n.

Proof: If p = 2, p divides 2n − n for every even positive integer n. We
assume that p is odd. By Fermat’s little theorem, 2p−1 ≡ 1 (mod p). It
follows that

2(p−1)2k ≡ 1 ≡ (p − 1)2k (mod p);
that is, p divides 2n − n for n = (p − 1)2k .
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24. Let n be an integer greater than three. Prove that 1! + 2! + · · · + n! cannot
be a perfect power.

Proof: For n = 4, we have 1! + 2! + 3! + 4! = 33, which is not a perfect
power. For k ≥ 5, k! ≡ 0 (mod 10). It follows that for n ≥ 5,

1! + 2! + 3! + 4! + · · · + n! ≡ 3 (mod 10),

so it cannot be a perfect square, or an even power, for this reason.

For odd powers, the following argument settles all cases: one checks the
claim for n < 9 directly; for k ≥ 9, k! is a multiple of 27, while 1! + 2! +
· · · + 8! is a multiple of 9, but not 27. Hence 1! + 2! + · · · + n! cannot be
a cube or higher power.

25. Let k be an odd positive integer. Prove that

(1 + 2 + · · · + n) | (1k + 2k + · · · + nk)

for all positive integers n.

Proof: We consider two cases.

In the first case, we assume that n is odd and write n = 2m + 1. Then
1 + 2 + · · · + n = (m + 1)(2m + 1). We have

1k + 2k + · · · + nk

= 1k + 2k + · · · + (2m + 1)k

= [1k + (2m + 1)k] + [2k + (2m)k] + · · · + [mk + (m + 2)k]

+ (m + 1)k .

Since k is odd, x + y is a factor of xk + yk . Hence 2m + 2 divides i k +
(2m + 2 − i)k for i = 1, 2, . . . , m. Consequently, m + 1 divides 1k + 2k +
· · · + nk . Likewise, we have

1k + 2k + · · · + nk

= 1k + 2k + · · · + (2m + 1)k

= [1k + (2m)k] + [2k + (2m − 1)k] + · · · + [mk + (m + 1)k]

+ (2m + 1)k .

Hence 2m+1 divides i k +(2m+1−i)k for i = 1, 2, . . . , m. Consequently,
2m + 1 divides 1k + 2k + · · · + nk . We have shown that each of m + 1 and
2m + 1 divides 1k + 2k + · · · + nk . Since gcd(m + 1, 2m + 1) = 1, we
conclude that (m + 1)(2m + 1) divides 1k + 2k + · · · + nk .

In the second case, we assume that n is even. The proof is similar to that of
the first case. We leave it to the reader.



104 104 Number Theory Problems

26. Let p be a prime greater than 5. Prove that p−4 cannot be the fourth power
of an integer.

Proof: Assume that p − 4 = q4 for some positive integer q. Then p =
q4 + 4 and q > 1. We obtain

p = q4 + 4q2 + 4 − 4q2 = (q2 + 2)2 − (2q)2

= (q2 − 2q + 2)(q2 + 2q + 2),

a product of two integers greater than 1, contradicting the fact that p is a
prime. (Note that for p > 5, q > 1, and so (q − 1)2 = q2 − 2q + 1 > 0,
or q2 − 2q + 2 > 1.)

27. For a positive integer n, prove that

σ(1) + σ(2) + · · · + σ(n) ≤ n2.

Proof: The i th summand on the left-hand side is the sum of all the divisors
of i . If we write out all these summands on the left-hand side explicitly,
each number d , with 1 ≤ d ≤ n, appears

⌊ n
d

⌋
times, once for each multiple

of d that is less than or equal to n. Hence the left-hand side of the desired
inequality is equal to

1 ·
⌊n

1

⌋
+ 2 ·

⌊n

2

⌋
+ 3 ·

⌊n

3

⌋
+ · · · + n ·

⌊n

n

⌋
≤ 1 · n

1
+ 2 · n

2
+ 3 · n

3
+ · · · + n · n

n
= n2.

28. [APMO 2004] Determine all finite nonempty sets S of positive integers
satisfying

i + j

gcd(i, j)

is an element of S for all i and j (not necessarily distinct) in S.

Solution: The answer is S = {2}.
First of all, taking i = j in the given condition shows that i+ j

gcd(i, j) = 2i
i = 2

is in S. We claim that there is no other element in S. Assume to the contrary
that S contains elements other than 2. Let s be the smallest element in S
that is not equal to 2.
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If s is odd, then s+2
gcd(s,2)

= s +2 is another odd element in S. In this way, we
will have infinitely many odd numbers in S, contradicting to the fact that S
is a finite set.

Hence s must be even, and so s > 2. Then s+2
gcd(s,2)

= s
2 + 1 is in S. For

s > 2, 2 < s
2 + 1 < s, contradicting the minimality assumption of s.

Note: What if i and j are distinct in the given condition? Kevin Mod-
zelewski showed that the answer is all the sets in the form of {a + 1,
a(a + 1)}, where a is a positive integer. We leave the proof to the reader.

29. Knowing that 229 is a nine-digit number all of whose digits are distinct,
without computing the actual number determine which of the ten digits is
missing. Justify your answer.

Solution: Note that 23 ≡ −1 (mod 9), and hence 229 ≡ (23)9 · 22 ≡
−4 ≡ 5 (mod 9). The ten-digit number containing all digits 0 through 9 is
a multiple of 9, because the sum of its digits has this property. So, in our
nine-digit number, 4 is missing. (Indeed, 229 = 536870912.)

30. Prove that for any integer n great than 1, the number n5 + n4 + 1 is not
prime.

Proof: The given expression factors as

n5 + n4 + 1 = n5 + n4 + n3 − n3 − n2 − n + n2 + n + 1

= (n2 + n + 1)(n3 − n + 1).

Hence for n > 1, it is the product of two integers greater than 1.

One senses the lack of motivation for this factoring. Indeed, with a little
bit knowledge of complex numbers, we can present solid algebraic and
number-theoretic reasoning for this factoring. We know that x = 1, ω, ω2,

where ω = − 1
2 +

√
3i
2 = cis 120◦, are the three roots of the equation

x3 − 1 = (x − 1)(x2 + x + 1) = 0. More precisely, ω and ω2 are the two
roots of x2 − x + 1 = 0. Since ω3 = 1, ω5 + ω4 + 1 = ω2 + ω + 1 = 0,
it follows that ω and ω2 are roots of x5 + x4 + 1 = 0. We conclude that
n2 + n + 1 must be a factor of n5 + n4 + 1. In the light of this argument,
we can replace 4 and 5 in the problem statement by any pair of positive
integers congruent to 1 and 2 modulo 3.
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31. [Hungary 1995] The product of a few primes is ten times as much as the
sum of the primes. What are these (not necessarily distinct) primes?

Solution: Obviously 2 and 5 must be among the primes, and there must
be at least one more. Let p1 < p2 < · · · < pn be the remaining primes.
By the given conditions, we deduce that

p1 + p2 + · · · + pn + 7 = p1 p2 · · · pn . (∗)

The product of any collection of numbers, each at least 2, must be at least
as large as their sum. For two numbers x and y this follows because

0 ≤ (x − 1)(y − 1) − 1 = xy − x − y.

The general result follows by applying this fact repeatedly as

x1x2 · · · xk ≥ x1x2 · · · xk−1 + xk ≥ · · · ≥ x1 + x2 + · · · + xk .

In this problem, we have

p1 + p2 + · · · + pn + 7 = p1 p2 · · · pn ≥ (p1 + p2 · · · + pn−1)pn .

Setting s = p1+· · ·+ pn−1, the last equation can be written as s+ pn +7 ≥
spn , or

(s − 1)(pn − 1) ≤ 8.

We can have s = 0 only if there are no primes left, in which case equation
(∗) becomes pn + 7 = pn , a contradiction. Hence s ≥ 2 and so we must
have pn − 1 ≤ 8. This leaves pn = 2, 3, 5 as the only options.

If pn = 2, equation (∗) becomes 2n + 7 = 2n , which is impossible modulo
2.

If pn = 3, then pn − 1 = 2, and so s − 1 ≤ 4. Then {p1, p2, . . . , pn−1}
can equal only {2}, {3}, or {2, 2}, {2, 3}. We check easily that none of these
sets satisfies the equation (∗).

If pn = 5, then pn − 1 = 4, and so s − 1 ≤ 2, and so the remaining primes
must be either a single 2 or a single 3. We check easily that only the latter
case gives a solution.

Hence the primes in the collection are {2, 3, 5, 5}.

32. [Russia 1998] A 10-digit number is said to be interesting if its digits are all
distinct and it is a multiple of 11111. How many interesting integers are
there?
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Solution: There are 3456 such integers.

Let n = abcde f ghi j be a 10-digit interesting number. The digits of n must
be 0,1, . . . ,9, so modulo 9,

n ≡ a + b + c + d + e + f + g + h + i + j ≡ 0 + 1 + 2 + · · · + 9 ≡ 0;
that is, 9 divides n. Because gcd(9, 11111) = 1, it follows that 99999 =
9 ·11111 divides n. Let x = abcde and y = f ghi j be two 5-digit numbers.
We have n = 105x + y. Thus

0 ≡ n ≡ 105x + y ≡ x + y (mod 99999).

But 0 < x + y < 2 ·99999, so n is interesting if and only if x + y = 99999,
that is, if a + f = · · · = e + j = 9.

There are 5! = 120 ways to distribute the pairs (0, 9), (1, 8), . . . , (4, 5)

among (a, f ), (b, g), . . . , (e, j), and for each pair we can swap the order of
the digits: for example, (b, g) could be (0, 9) or (9, 0). This gives 25 = 32
more choices for a total of 32 · 120 numbers. However, one-tenth of these
numbers have a = 0, which is not allowed. So, there are 9

10 ·32·120 = 3456
interesting numbers, as claimed.

33. [Russia 1999] Do there exist 19 distinct positive integers that add up to
1999 and have the same sum of digits?

Solution: The answer is negative. Suppose, by way of contradiction, that
such integers did exist.

The average of the numbers is 1999
19 < 106, so one number is at most 105

and has digit sum at most 18 (for number 99).

Every number is congruent to its digit sum modulo 9, so all the numbers
and their digit sums are congruent modulo 9, say congruent to k. Then
k ≡ 19k ≡ 1999 ≡ 1 (mod 9), so the common digit sum is either 1 or 10.

If it is 1, then all the numbers are equal to 1, 10, 100, or 1000, so that some
two are equal. This is not allowed. Thus the common digit sum is 10. Note
that the twenty smallest numbers with digit sum 10 are

19, 28, 37, . . . , 91, 109, 118, 127, . . . , 190, 208.

The sum of the first nine numbers is

(10 + 20 + · · · + 90) + (9 + 8 + · · · + 1) = 450 + 45 = 495,
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while the sum of the next nine numbers is

(900) + (10 + 20 + · · · + 80) + (9 + 8 + 7 + · · · + 1) = 900 + 360 + 45

= 1305.

Hence the first eighteen numbers add up to 1800.

Because 1800 + 190 = 1999, the largest number among the nineteen must
be at least 208. Hence the smallest eighteen numbers add up to at least
1800, giving a total sum of at least 2028 > 1999, a contradiction.

34. [Bulgaria 1995] Find all prime numbers p and q for which pq divides the
product (5p − 2p)(5q − 2q).

Solution: The solutions are (p, q) = (3, 3), (3, 13), or (13, 3). It is easy
to check that these are solutions.

Now we show that they are the only solutions. By symmetry, we may
assume that p ≤ q . Since (5p − 2p)(5q − 2q) is odd, we have q ≤ p ≤ 3.

We observe that if a prime k divides 5k −2k , then by Fermat’s little theorem,
we have 3 ≡ 5 − 2 ≡ 5k − 2k (mod k), or k = 3.

Assume that p > 3. By our observation, we have that p divides 5q − 2q ,
or 5q ≡ 2q (mod p). By Fermat’s little theorem, we have 5p−1 ≡ 2p−1

(mod p). By Corollary 1.23,

5gcd(p−1,q) ≡ 2gcd(p−1,q) (mod p).

Because q ≥ p, gcd(p −1, q) = 1. The last congruence relation now reads
5 ≡ 2 (mod p), implying that p = 3, a contradiction.

Hence p = 3. If q > 3, by our observation, q must divide 5p − 2p =
53 − 23 = 9 · 13, and so q = 13, leading to the solution (p, q) = (3, 13).

35. Prove that there are infinitely many numbers not containing the digit 0 that
are divisible by the sum of their digits.

Proof: For a positive integer n, let

an = 11 . . . 1︸ ︷︷ ︸
3n

.

It suffices to show that for all positive integers n, an is divisible by the sum
of its digits; that is, an is divisible by 3n .
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We induct on n. For n = 1, it is clear that an = 111, which is divisible by
3. Assume that an is divisible by 3n , for some positive integer n = k. We
consider ak+1. Note that

ak+1 = 11 . . . 1︸ ︷︷ ︸
3k+1

= 11 . . . 1︸ ︷︷ ︸
3k ·3

= 11 . . . 1︸ ︷︷ ︸
3k

11 . . . 1︸ ︷︷ ︸
3k

11 . . . 1︸ ︷︷ ︸
3k

= 11 . . . 1︸ ︷︷ ︸
3k

(
102·3k + 103k + 1

)
= ak · 1 0 . . . 0︸ ︷︷ ︸

3k−1

1 0 . . . 0︸ ︷︷ ︸
3k−1

1.

Because 3 divides 1 0 . . . 0︸ ︷︷ ︸
3k−1

1 0 . . . 0︸ ︷︷ ︸
3k−1

1 and 3k divides ak , it follows that 3k+1

divides ak+1. This completes our induction.

36. Prove that any number consisting of 2n identical digits has at least n distinct
prime factors.

Proof: Such a number N can be written as

N = k · 102n − 1

10 − 1
= k(10 + 1)(102 + 1) · · · (102n−1 + 1).

The desired conclusion follows from the fact that the n factors 102h + 1,
h = 0, 1, . . . , n − 1, are pairwise relatively prime. Indeed, for h1 > h2,

102h2 + 1 | 102h1 − 1

= 9 · (10 + 1)(102 + 1) · · · (102h2 + 1) · · · (102h1−1 + 1),

so

gcd(102h2 + 1, 102h1 + 1) = gcd(102h1 − 1, 102h1 + 1)

= gcd(2, 102h1 + 1) = 1.

Note: There is another way to see that gcd(102h1 + 1, 102h2 + 1) = 1. If
p divides 102h2 + 1, then p must be odd. Since 102h2 ≡ −1 (mod p), it
follows that

102h1 ≡
(

102h2
)2h1−h2

≡ (−1)2h1−h2 ≡ 1 (mod p),

implying that p divides 102h1 − 1. Since p is odd, p does not divide
102h1 + 1.
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37. Let a and b be two relatively prime positive integers, and consider the arith-
metic progression a, a + b, a + 2b, a + 3b, . . . .

(1) [G. Polya] Prove that there are infinitely many terms in the arithmetic
progression that have the same prime divisors.

(2) Prove that there are infinitely many pairwise relatively prime terms in
the arithmetic progression.

First Proof: In this approach, we apply properties of linear congruences.

(1) Since gcd(a, b) = 1, a has an inverse modulo b. Let x be a positive
integer such that ax ≡ 1 (mod b). For every positive integer n, let
sn = (a + b)(ax)n . Then sn ≡ a (mod b); that is, sn is a term in
the arithmetic progression. It is clear that these terms have the same
prime divisors, namely, the divisors of a, x , and a + b.

(2) We construct these terms inductively with the additional condition
that these terms are relatively prime to a. Let t1 = a + b. Then
gcd(t1, t2) = 1 and gcd(t1, a) = 1. Assume that terms t1, . . . , tk
have been chosen such that gcd(ti , t j ) = 1 and gcd(a, ti ) = 1 for
1 ≤ i < j ≤ k. Set

tk+1 = t1 · · · tkb + a.

Clearly, tk+1 is a term in the arithmetic progression. Because t1, . . . ,
tk are distinct integers greater than 1, it is not difficult to see that
tk+1 > ti , 1 ≤ i ≤ k. It is also not difficult to see that gcd(tk+1, a) =
1 by the induction hypothesis and the given condition gcd(a, b) = 1.
It remains to show that gcd(tk+1, ti ) = 1 for 1 ≤ i ≤ k, which follows
from

gcd(tk+1, ti ) = gcd(t1t2 · · · tkb + a, ti ) = gcd(a, ti ) = 1,

again by the induction hypothesis. Our induction is thus complete.

Second Proof: (By Sherry Gong) In this approach, we apply Euler’s the-
orem.

(1) The terms xn = (a + b)nϕ(b)+1 satisfy the conditions of the problem.
We note that these terms share the same prime divisors, namely, the
divisors of a + b. It remains to show that xn appears in the arithmetic
progression for each large integer n. By Euler’s theorem, we have

xn ≡ anϕ(b)+1 ≡ anϕ(b) · a ≡ a (mod b).
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Hence xn = a + kb. For large n, xn must appears in the given arith-
metic progression.

(2) Let y1 = a and y2 = a + b. Clearly, gcd(y1, y2) = 1. Assume that
we have pairwise relatively prime terms y1 < y2 < · · · < yk in the
sequence. We set

yk+1 = y1 y2 · · · ykazk+1ϕ(b)−k+1 + b,

where zk+1 is some large integer such that yk+1 > yk . We claim that
yk+1 is a term in the arithmetic progression that is relatively prime to
each of y1, y2, . . . , yk . In this way, we can construct one new term
at a time inductively to produce a subsequence of the arithmetic pro-
gression satisfying the conditions of the problem.
Now we prove our claim. We note that

yk+1 ≡ akazk+1ϕ(b)−k+1 ≡ a (mod b),

implying that yk+1 is a term in the arithmetic progression. For each
1 ≤ i ≤ k, we also have

gcd(yk+1, yi ) = gcd(b, yi ) = gcd(b, a) = 1,

by noting that yi is a term in the arithmetic progression. Our proof is
thus complete.

Note: We can slightly modify our proof so that the conclusions hold for
all relatively prime integers a and b. In part (1), gcd(a, b) does not even
need to be 1. Because by factoring out gcd(a, b) from each term in the
progression we reduce to the current part (1).

38. Let n be a positive integer.

(1) Evaluate gcd(n! + 1, (n + 1)! + 1).

(2) Let a and b be positive integers. Prove that

gcd(na − 1, nb − 1) = ngcd(a,b) − 1.

(3) Let a and b be positive integers. Prove that gcd(na +1, nb +1) divides
ngcd(a,b) + 1.

(4) Let m be a positive integer with gcd(m, n) = 1. Express

gcd(5m + 7m, 5n + 7n)

in terms of m and n.
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Proof: We apply the Euclidean algorithm and Corollary 1.23 to this prob-
lem.

(1) By the Euclidean algorithm, we have

gcd(n! + 1, (n + 1)! + 1)

= gcd(n! + 1, (n + 1)! + 1 − (n + 1)(n! + 1))

= gcd(n! + 1, n) = 1.

(2) Without loss of generality, we assume that a ≥ b. Then

gcd(na − 1, nb − 1) = gcd(na − 1 − na−b(nb − 1), nb − 1)

= gcd(na−b − 1, nb − 1).

Recall the process of finding gcd(a, b) = gcd(a − b, b). We see that
the process of computing gcd(na−1, nb−1) is the same as the process
of computing gcd(a, b) as the exponents, from which the conclusion
follows.

Alternatively, we can also approach the problem the following way.
Since gcd(a, b) divides both a and b, the polynomial xgcd(a,b) − 1
divides both xa − 1 and xb − 1. Hence ngcd(a,b) − 1 divides both
na − 1 and nb − 1, implying that

ngcd(a,b) − 1 | gcd(na − 1, nb − 1).

On the other hand, assume that m divides both na − 1 and nb − 1; that
is, na ≡ 1 ≡ 1a (mod m) and nb ≡ 1 ≡ 1b (mod m) (clearly, m
and n are relatively prime to each other). By Corollary 1.23, we have
ngcd(a,b) ≡ 1 (mod m); that is, m divides ngcd(a,b) −1. It follows that

gcd(na − 1, nb − 1) | ngcd(a,b) − 1.

we conclude that ngcd(a,b) − 1 = gcd(na − 1, nb − 1).

(3) Assume that m divides both 2a + 1 and 2b + 1. Note that m is odd. It
suffices to show that m divides 2gcd(a,b) + 1.

Since 2a ≡ 2b ≡ −1 (mod m), we have

22a ≡ 1 (mod m) and 22b ≡ 1 (mod m).

By Corollary 1.23, it follows that 2gcd(2a,2b) ≡ 1 (mod m); that is, m
divides 2gcd(2a,ab) − 1 = 22 gcd(a,b) − 1, or

m | (2gcd(a,b) − 1)(2gcd(a,b) + 1).
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If m divides 2gcd(a,b) +1, we are done. Assume that m does not divide
2gcd(a,b) + 1. Since

gcd(2gcd(a,b) − 1, 2gcd(a,b) + 1) = gcd(2, 2gcd(a,b) − 1) = 1,

m must divide 2gcd(a,b)−1, which divides 2a − 1 (as we showed in the
proof of (3)). But m divides 2a+1 by our original assumption. Thus m
divides gcd(2a +1, 2a −1) = 2. Since m is odd, m = 1, contradicting
the assumption that m does not divide 2gcd(a,b) + 1. Thus, m must
divide 2gcd(a,b) + 1, completing our proof.

(4) Let sn = 5n + 7n . If n ≥ 2m, note that

sn = smsn−m − 5m7msn−2m,

so gcd(sm, sn) = gcd(sm, sn−2m).
Similarly, if m < n < 2m, we have

sn = smsn−m − 5n−m7n−ms2m−n,

so gcd(sm, sn) = gcd(sm, s2m−n).
Thus by the Euclidean algorithm, we conclude that if m + n is even,
then gcd(sm, sn) = gcd(s1, s1) = 12, and if m + n is odd, then
gcd(sm, sn) = gcd(s0, s1) = 2.

Note: The interested reader might want to generalize part (3), considering
the relation between gcd(na + 1, nb + 1) and ngcd(a,b) + 1.

39. Bases? What bases?

(1) Determine whether it is possible to find a cube and a plane such that
the distances from the vertices of the cube to the plane are 0, 1, 2,
. . . , 7.

(2) [AIME 1986] The increasing sequence 1, 3, 4, 9, 10, 12, 13, . . . con-
sists of all those positive integers that are powers of 3 or sums of
distinct powers of 3. Find the 100th term of this sequence (where 1 is
the 1st term, 3 is the 2nd term, and so on).

Solution: In this problem, we apply base 2 (binary representation) and
base 4.

(1) The answer is positive.
We consider a unit cube S with vertices (0, 0, 0), (0, 0, 1), (0, 1, 0),
(0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), and (1, 1, 1). We note that these
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coordinates match the binary representation of 0, 1, 2, 3, 4, 5, 6, 7.
This motivates us to consider the plane x +2y+4z = 0. The distances
from the vertices of S to the plane are

0,
1√
21

,
2√
21

,
3√
21

,
4√
21

,
5√
21

,
6√
21

,
7√
21

.

By a simple scaling, we can find a cube satisfying the conditions of
the problem. Indeed, we dilate S via the origin with a ratio of

√
21

to obtain cube T . Point (a, b, c) maps to point (
√

21a,
√

21b,
√

21c).
Then cube T and plane x + 2y + 4z = 0 satisfy the conditions of the
problem.

(2) Note that a positive integer is a term of this sequence if and only if its
base-3 representation consists only of 0’s and 1’s. Therefore, we can
set up a one-to-one correspondence between the positive integers and
the terms of this sequence by representing both with binary digits (0’s
and 1’s), first in base 2 and then in base 3:

1 = 1(2) ⇐⇒ 1(3) = 1,

2 = 10(2) ⇐⇒ 10(3) = 3,

3 = 11(2) ⇐⇒ 11(3) = 4,

4 = 100(2) ⇐⇒ 100(3) = 9,

5 = 101(2) ⇐⇒ 101(3) = 10,
...

This is a correspondence between the two sequences in the order
given, that is, the kth positive integer is made to correspond to the
kth sum (in increasing order) of distinct powers of 3. This is because
when the binary numbers are written in increasing order, they are still
in increasing order when interpreted in any other base.
Therefore, to find the 100th term of the sequence, we need only look
at the 100th line of the above correspondence:

100 = 1100100(2) ⇐⇒ 1100100(3) = 981.

Note: The key facts in the solution of part (3) are the following: (a) for
integers a and b in X , no carries appear (among the digits) in the addition
a + 2b; (b) each digit in base 4 (namely, 0, 1, 2, 3) can be uniquely written
in the form of a + 2b, where a and b are equal to either 0 or 1. In other
words, we can uniquely write a base-4 digit in base 2:

base 2 00(2) 01(2) 10(2) 11(2)

base 4 0(4) 1(4) 2(4) 3(4)
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Based on this, for each nonnegative integer n = nknk−1 . . . a0(4), we can
find the solution a + 2b = n in this way: write each digit ni in base 2
according the above table to obtain the binary representation of n. The
digits in odd positions from the left form the base-4 representation of a, and
the digits in the even positions from the left form the base-4 representation
of b. For example,

123210(4) = 01, 10, 11, 10, 01, 00(2)

= 101010(4) + 2 · 011100(4) = 101010(4) + 2 · 11100(4).

40. Fractions in modular arithmetic.

(1) [ARML 2002] Let a be the integer such that

1 + 1

2
+ 1

3
+ · · · + 1

23
= a

23!
.

Compute the remainder when a is divided by 13.

(2) Let p > 3 be a prime, and let m and n be relatively prime integers
such that

m

n
= 1

12
+ 1

22
+ · · · + 1

(p − 1)2
.

Prove that m is divisible by p.

(3) [Wolstenholme’s Theorem] Let p > 3 be a prime. Prove that

p2 | (p − 1)!

(
1 + 1

2
+ · · · + 1

p − 1

)
.

Solution:

(1) Note that

a = 23! + 23!

2
+ · · · + 23!

23
.

Besides 23!
13 , each summand on the right-hand side is an integer divis-

ible by 13. Hence, by Wilson’s theorem, we have

a ≡ 23!

13
≡ 12! · 14 · 15 · · · 23

≡ 12!10! ≡ (12!)2

11 · 12
≡ 1

2
≡ 7 (mod 13).
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(2) Note that

((p − 1)!)2 m

n
= ((p − 1)!)2

(
1

12
+ 1

22
+ · · · + 1

(p − 1)2

)
is an integer. Note also that{

1

1
,

1

2
, . . . ,

1

p − 1

}
is a reduced complete set of residue classes modulo p. By Proposition
1.18 (h) and Wilson’s theorem, we have

((p − 1)!)2
(

1

12
+ 1

22
+ · · · + 1

(p − 1)2

)
≡ (−1)2[12 + 22 + · · · + (p − 1)2]

≡ (p − 1)p(2p − 3)

6
≡ 0 (mod p),

since p ≥ 5 and so gcd(6, p) = 1. Hence p divides the integer
((p−1)!)2m

n . Since gcd((p − 1)!, p) = 1, we must have p | m, as
desired.

(3) Set

S = (p − 1)!

(
1 + 1

2
+ · · · + 1

p − 1

)
.

Then

2S = (p − 1)!
p−1∑
i=1

[
1

i
+ 1

p − i

]
= (p − 1)!

p−1∑
i=1

p

i(p − i)
= p · T,

where

T = (p − 1)!
p−1∑
i=1

1

i(p − i)
.

Since 2S is an integer and p is relatively prime to the numerators
of the summands in T , T must itself be an integer. Since p > 3,
gcd(p, 2) = 1 and p must divide S. It suffices to show that p also
divides T . By (2), we have

T ≡ (p − 1)!
p−1∑
i=1

− 1

i2
≡ (p − 1)!

m

n
≡ 0 (mod p),

since p | m and gcd(m, n) = 1.
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41. Find all pairs (x, y) of positive integers such that x2 + 3y and y2 + 3x are
simultaneously perfect squares.

Solution: The answers are (x, y) = (1, 1), (11, 16), or (16, 11). It is easy
to check that they are solutions. We show that they are the only answers.

The inequalities

x2 + 3y ≥ (x + 2)2 and y2 + 3x ≥ (y + 2)2

cannot hold simultaneously because summing them up yields 0 ≥ x +y+8,
which is false. Hence at least one of x2 + 3y < (x + 2)2 and y2 + 3x <

(y +2)2 is true. Without loss of generality assume that x2 +3y < (x +2)2.

From x2 < x2 + 3y < (x + 2)2 we derive x2 + 3y = (x + 1)2; hence
3y = 2x + 1. Then x = 3k + 1 and y = 2k + 1 for some nonnegative
integer k. Consequently, we have y2 + 3x = 4k2 + 13k + 4. If k > 5, then

(2k + 3)2 < 4k2 + 13k + 4 < (2k + 4)2,

and so y2 + 3x cannot be a square. It is not difficult to check that for
k ∈ {1, 2, 3, 4}, y2 + 3x is not a perfect square and that for k = 0, y2 +
3x = 4 = 22 and for k = 5, y2 + 3x = 132. For these two values of
k, x2 + 3y is equal to 22 or 172, leading to solutions (x, y) = (1, 1) and
(x, y) = (16, 11).

42. First digit? Not the last digit? Are your sure?

(1) [AMC12B 2004] Given that 22004 is a 604-digit number with leading
digit 1, determine the number of elements in the set

{20, 21, 22, . . . , 22003}
with leading digit 4.

(2) Let k be a positive integer and let n = n(k) be a positive integer such
that in decimal representation 2n and 5n begin with the same k digits.
What are these digits?

Solution: We present two solutions for part (1).

(1) • First approach. The smallest power of 2 with a given number
of digits has a first digit (most left digit) of 1, and there are ele-
ments of S with n digits for each integer n ≤ 603, so there are
603 elements of S whose first digit is 1. Furthermore, if the first
digit of 2k is 1, then the first digit of 2k+1 is either 2 or 3, and the
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first digit of 2k+2 is either 4, 5, 6, or 7. Therefore there are 603
elements of S whose first digit is 2 or 3, 603 elements whose first
digits is 4, 5, 6, or 7, and 2004 − 3(603) = 195 elements whose
first digit is 8 or 9. Finally, note that the first digit of 2k is 8 or 9
if and only if the first digit of 2k−1 is 4, so there are 195 elements
of S whose first digit is 4.

• Second approach. We partition the set S into the following
blocks:

{20, 21, 22, 23; 24, 25, 26; , 27, . . . , 22003},
where the leading term in each block has first digit 1. Because
22004 has first digit 1, S has been partitioned into complete
blocks. As we showed in the first approach, there are exactly
603 elements in S whose first digit is 1. Hence there are 603
blocks in S. Note that a block can have either 3 or 4 elements.
If a block has 3 elements 2k , 2k+1, and 2k+2, the their first digits
are 1, 2 or 3, 5 or 6 or 7; if a block has 4 elements 2k , 2k+1, 2k+2,
and 2k+3, then their first digits are 1, 2, 4, 8, or 9. Thus the num-
ber of elements in S having first digit 4 is equal to the number of
4-element blocks. Suppose that there are x 3-element blocks and
y 4-element blocks. We have 3x + 4y = 2004 (since there is a
total of 2004 elements in S) and x + y = 603 (since there are
603 complete blocks). Solving the equations gives x = 408 and
y = 195.

(2) Let s and t be unique positive integers such that 10s < 2n < 10s+1

and 10t < 5n < 10t+1. Set a = 2n

10s and b = 5n

10t . Clearly, 1 < a <

10, 1 < b < 10, and ab = 10n−s−t . Hence ab is a power of 10 and
since 1 < ab < 102, the only possibility is ab = 10. We obtain

min(a, b) <
√

ab = √
10 < max(a, b),

implying that the first common k digits are the first k digits of
√

10.
(For k = 1, 25 = 32 and 55 = 3125 have the same leading digit, the
first digit of

√
10 = 3.1 . . . .)

43. What are those missing digits?

(1) Determine the respective last digit (unit digit) of the numbers

3100171002131003 and 7777..
.7

︸ ︷︷ ︸
1001 7’s

.
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(2) [Canada 2003] Determine the last three digits of the number

200320022001
.

(3) The binomial coefficient
(99

19

)
is a 21-digit number:

107,196,674,080,761,936,xyz.

Find the three-digit number xyz.

(4) Find the smallest positive integer whose cube ends in 888.

First Solution: The key values in this problem are ϕ(10) = 4 and
ϕ(1000) = 400. We repeatedly apply Euler’s theorem.

(1) The answers are 9 and 3, respectively.
Note that

3100171002131003 ≡ 31000911002 · 3 · 13

≡ 81250911002 · 39 ≡ 9 (mod 10).

Since 74 ≡ 1 (mod 10), we obtain

7777..
.7

︸ ︷︷ ︸
1000 7’s

≡ 3 (mod 4)

by noting that 72k ≡ 1 (mod 4) and 72k+1 ≡ 3 (mod 4). Hence

7777..
.7

︸ ︷︷ ︸
1001 7’s

≡ 73 ≡ 3 (mod 10).

(2) The answer is 241.
Since ϕ(1000) = 400 and

200320022001 ≡ 320022001
(mod 1000),

we need to compute 20022001 modulo 400, or 22001 modulo 400.
Since 400 = 16 · 25 and 16 clearly divides 22001, 22001 ≡ 16k
(mod 400) for some positive integer k. By Corollary 1.21, we deduce
21997 ≡ k (mod 25). Since ϕ(25) = 20,

k ≡ 21997 ≡ 22000

23
≡ 1

8
≡ 22 (mod 25),
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or k = 22. It follows that 20022001 ≡ 22001 ≡ 16k ≡ 352
(mod 400), and so

200320022001 ≡ 320022001 ≡ 3352 ≡ 9176 ≡ (10 − 1)176 (mod 1000).

By the binomial theorem, we have

(10 − 1)176 ≡
(

176

2

)
· 102 −

(
176

1

)
· 10 + 1176

≡ 0 − 760 + 1 ≡ 241 (mod 1000).

(3) The answer is 594.

We have (
99

19

)
= 99!

19!80!
= 99 · 98 · · · 81

19!
.

Since 1000 = 8 · 125, we need to compute
(99

19

)
modulo 8 and 125,

respectively. Instead, we first compute
(99

19

)
modulo 4 and 25, since 99

is very close to 100. (That is, we compute the y and z first.)

We note that

99 · 98 · · · 81

19!

= 99 · 98 · · · 96 · 95 · 94 · · · 91 · 90 · 89 · · · 86 · 85 · 84 · · · 81

4! · 5 · 6 · · · 9 · 10 · 11 · · · 14 · 15 · 16 · · · 19

= 19 · 18 · 17 · 99 · · · 96 · 94 · · · 91 · 89 · · · 86 · 84 · · · 81

3!4! · 6 · · · 9 · 11 · · · 14 · 16 · · · 19
.

Consequently,

99 · 98 · · · 81

19!
≡ 19 · 18 · 17

3!
≡ 19 (mod 25).

In a similar fashion, we can compute
(99

19

)
modulo 4. Note that

∞∑
n=1

⌊
99

2n

⌋
−

∞∑
n=1

⌊
19

2n

⌋
−

∞∑
n=1

⌊
80

2n

⌋
= 95 − 16 − 78 = 1,

from which it follows that
(99

19

) ≡ 2 (mod 4).

Combining the above, we conclude that
(99

19

) ≡ 94 (mod 100); hence
that y = 9 and z = 4.
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We also compute

e3

((
99

19

))
=

∞∑
n=1

⌊
99

3n

⌋
−

∞∑
n=1

⌊
19

3n

⌋
−

∞∑
n=1

⌊
80

3n

⌋
= 48 − 8 − 36 = 4,

from which it follows that
(99

19

) ≡ 0 (mod 9). Hence, modulo 9, we
have

1 + 0 + 7 + 1 + 9 + 6 + 6 + 7 + 4 + 0 + 8

+ 0 + 7 + 6 + 1 + 9 + 3 + 6 + x + 9 + 4 ≡ 0,

or x ≡ 5 (mod 9). Because x is a digit in decimal representation,
x = 5.

(4) The answer is 192.
If the cube of an integer ends in 8, then the integer itself must end in
2; that is, it must be of the form 10k + 2. Therefore,

n3 = (10k + 2)3 = 1000k3 + 600k2 + 120k + 8,

where the penultimate term, 120k, determines the penultimate digit
(tenth digit) of n3, which must also be 8. In other words,

88 ≡ n3 ≡ 120k + 8 (mod 100),

or 80 ≡ 120k (mod 100). In view of this, by Corollary 1.21, 8 ≡ 12k
(mod 10), or 4 ≡ 6k (mod 5). Consequently, 4 ≡ k (mod 5), or
k = 5m + 4. Thus, modulo 1000, we have

888 ≡ n3 ≡ 600(5m + 4)2 + 120(5m + 4) + 8

≡ 9600 + 600m + 488,

or 800 ≡ 600m (mod 1000). Consequently, by Corollary 1.21 again,
we have 8 ≡ 6m (mod 10), or 4 ≡ 3m (mod 5). This leads to m ≡ 3
(mod 5).
The smallest m that will ensure this is m = 3, implying that k =
5 ·3+4 = 19, and n = 10 ·19+2 = 192. (Indeed, 1923 = 7077888.)

Second Solution: We present another approach for part (3). Similar to
what we have shown in the first solution, it is not difficult to prove that
11 | (99

19

)
and 7 | (99

19

)
. Applying Proposition 1.44 (b), (c), and (d) leads to

x + y + z ≡ 0 (mod 9),

x − y + z ≡ 0 (mod 11),

xyz + 1 ≡ 0 (mod 7),
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or

x + y + z ≡ 0 (mod 9),

x − y + z ≡ 0 (mod 11),

2x + 3y + z + 1 ≡ 0 (mod 7).

Because x, y, and z are digits, the first equation leads to x + y + z = 9,
or 18, or 27 (with x = y = z = 9); and the second equation leads to
x − y + z = 0 or 11. It is not difficult to see that (x + y + z, x − y + z) =
(18, 0), or (x +z, y) = (9, 9). Substituting this into the third equation gives
0 ≡ x + 3y + (x + z) + 1 ≡ x + 2 (mod 7), implying that x = 5, and so
z = 4 and xyz = 594.

Note: A common mistake in solving part (3) goes as follows:(
99

19

)
= 99 · 98 · · · 81

19!
≡ 19 · 18 · · · 1

19!
≡ 1 (mod 8).

Because 19! is not relatively prime to 8, we cannot operate division in this
congruence. (Please see the discussion leading to Corollary 1.21.)

44. Let p ≥ 3 be a prime, and let

{a1, a2, . . . , ap−1} and {b1, b2, . . . , bp−1}
be two sets of complete residue classes modulo p. Prove that

{a1b1, a2b2, . . . , ap−1bp−1}
is not a complete set of residue classes modulo p.

Proof: By Wilson’s theorem,

a1a2 · · · ap−1 ≡ b1b2 · · · bp−1 ≡ (p − 1)! ≡ −1 (mod p).

It follows that

(a1b1)(a2b2) · · · (ap−1bp−1)

≡ a1a2 · · · ap−1b1b2 · · · bp−1 ≡ (−1)2 ≡ 1 (mod p − 1),

and so

{a1b1, a2b2, . . . , ap−1bp−1}
is not a complete set of residue classes modulo p, by Wilson’s theorem
again.
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45. Let p ≥ 3 be a prime. Determine whether there exists a permutation

(a1, a2, . . . , ap−1)

of (1, 2, . . . , p − 1) such that the sequence {iai }p−1
i=1 contains p − 2 distinct

congruence classes modulo p.

Solution: The answer is positive.

For each 1 ≤ i ≤ p − 2, since gcd(i, p) = 1, i is invertible modulo p,
and so i x ≡ i + 1 (mod p) has a unique solution (modulo p). Let ai be
the unique integer with 1 ≤ ai ≤ p − 1 such that iai ≡ i + 1 (mod p).
It remains to show that for 1 ≤ i < j ≤ p − 2, ai = a j . Assume to the
contrary that ai = a j = a for 1 ≤ i < j ≤ p − 2. Because

iai ≡ i + 1 (mod p) and ja j ≡ j + 1 (mod p),

it follows that

0 ≡ a( j − i) ≡ ja j − iai ≡ j − i (mod p),

which is impossible since 0 < j − i < p − 2.

Note: By Problem 43, {a1, 2a2, 3a3, . . . , (p − 1)ap−1} is not a complete
set of residue classes. By Problem 44, we conclude that the maximum num-
ber of distinct congruence classes in the sequence {a1, 2a2, 3a3, . . . , (p −
1)ap−1} is p − 2.

46. [Paul Erdös] Prove that any positive integer less than n! can be represented
as a sum of no more than n positive integer divisors of n!.

First Proof: for each k = 1, 2, . . . , n, let ak = n!
k! . Suppose we have

some number m with ak ≤ m < ak−1, where 2 ≤ k ≤ n. Then consider
the number d = ak� m

ak
	. We have 0 ≤ m − d < ak ; furthermore, because

s = � m
ak

	 <
ak−1

ak
= k, we know that

n!

d
= akk!

aks
= k!

s

is an integer. Thus from m we can subtract d, a factor of n!, to obtain a
number less than ak .

Then if we start with any positive integer m < n! = a1, then by subtracting
at most one factor of n! from m we can obtain an integer less than a2; by
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subtracting at most one more factor of n! we can obtain an integer less than
a3; and so on, so that we can represent m as the sum of at most n−1 positive
integer divisors of n!.

Second Proof: We proceed by induction. For n = 3 the claim is true.
Assume that the hypothesis holds for n − 1. Let 1 < k < n! and let k′
and q be the quotient and the remainder when k is divided by n; that is,
k = k′n + q , 0 ≤ q < n, and

0 ≤ k′ <
k

n
<

n!

n
= (n − 1)!.

From the inductive hypothesis, there are integers d ′
1 < d ′

2 < · · · < d ′
s ,

s ≤ n−1, such that d ′
i | (n−1)!, i = 1, 2, . . . , s and kk′ = d ′

1+d ′
2+· · ·+d ′

s .
Hence k = nd ′

1 +nd ′
2 +· · ·+nd ′

s +q . If q = 0, then k = d1 +d2 +· · ·+ds ,
where di = nd ′

i , i = 1, 2, . . . , s, are distinct divisors of n!.

If q = 0, then k = d1 + d2 + · · · + ds+1, where di = nd ′
i , i = 1, 2, . . . , s,

and ds+1 = q . It is clear that di | n!, i = 1, 2, . . . , s, and ds+1 | n!,
since q < n. On the other hand, ds+1 < d1 < d2 < · · · < ds , because
ds+1 = q < n ≤ nd ′

1 = d1. Therefore k can be written as a sum of at most
n distinct divisors of n!, as claimed.

47. Let n > 1 be an odd integer. Prove that n does not divide 3n + 1.

Proof: Assume to the contrary that there is a positive odd integer n that
divides 3n + 1.

Let p be the smallest prime divisor of n. Then p divides 3n + 1; that is,
3n ≡ −1 (mod p), implying that 32n ≡ 1 (mod p). By Fermat’s little
theorem, we also have 3p−1 ≡ 1 (mod p). By Corollary 1.23,

3gcd(2n,p−1) ≡ 1 (mod p).

Because p is the smallest prime divisor of n, gcd(n, p − 1) = 1. Because
n is odd, p − 1 is even. Hence gcd(2n, p − 1) = 2. It follows that 32 ≡ 1
(mod p), or p divides 8, which is impossible (since p is odd).

48. Let a and b be positive integers. Prove that the number of solutions (x, y, z)
in nonnegative integers to the equation ax + by + z = ab is

1

2
[(a + 1)(b + 1) + gcd(a, b) + 1].
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Proof: It is clear that for each solution (x, y, z) in nonnegative integers
to ax + by + z = ab we have the solution (x, y) in nonnegative integers
to ax + by ≤ ab. Conversely, for each solution (x, y) to ax + by ≤ ab
we have the solution (x, y, ab − ax − by) to the given equation. Hence it
suffices to count the number of solutions (x, y) in nonnegative integers to
ax + by ≤ ab.

Clearly, these solutions correspond to points of integer coordinates in the
rectangle [0, b] × [0, a].

The number of lattice points (that is, points with integer coordinates) in this
rectangle is (a+1)(b+1). The condition ax+by ≤ ab means that the point
(x, y) is situated under or on the diagonal AB. Because of the symmetry,
the desired number of points (x, y) is

1

2
(a + 1)(b + 1) + d

2
,

where d is the number of such points on the diagonal AB. In order to find
d, note that ax + by = ab is equivalent to y = a − a

b x . The number of
integers in the array

1 · a

b
,

2 · a

b
, . . . ,

b · a

b

is gcd(a, b). We also need to count the point A(0, a); hence d =
gcd(a, b) + 1 and the conclusion follows.

49. Order! Order, please!

(1) Let p be an odd prime, and let q and r be primes such that p divides
qr + 1. Prove that either 2r | p − 1 or p | q2 − 1.
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(2) Let a > 1 and n be given positive integers. If p is a prime divisor of
a2n + 1, prove that p − 1 is divisible by 2n+1.

Proof: In this problem, we apply Propositions 1.30 repeatedly.

(1) Let d = ordp(q) (the order of q modulo p). Since p | qr + 1 and
p > 2, we have

qr ≡ −1 ≡ 1 (mod p),

and so

q2r ≡ (−1)2 ≡ 1 (mod p).

From the above congruences, d divides 2r but not r . Since r is prime,
the only possibilities are d = 2 and d = 2r . If d = 2r , then 2r | p−1
because d | p − 1, by Fermat’s little theorem and Proposition 1.30. If
d = 2, then q2 ≡ 1 (mod p), and so p | q2 − 1.

(2) The proof is similar to that of Theorem 1.50.
From the congruence a2n ≡ −1 (mod p), we have

a2n+1 =
(

a2n
)2 ≡ 1 (mod p).

By Proposition 1.30, ordp(a) divides 2n+1. Since 22n ≡ −1
(mod p), ordp(a) = 2n+1. Clearly, gcd(a, p) = 1. By Fermat’s
little theorem, we have a p−1 ≡ 1 (mod p). By Proposition 1.30, we
conclude that 2n+1 divides p − 1.

Note: Setting a = 2 in (2) shows that if p is a prime divisor of the Fermat
number fn , then p − 1 is divisible by 2n+1.

50. [APMO 2004] Prove that ⌊
(n − 1)!

n(n + 1)

⌋
is even for every positive integer n.

Proof: One checks directly that the conclusion holds for n = 1, 2, . . . , 6.
Now we assume that n ≥ 6. We consider three cases.

In the first case, we assume that n = p is prime. Then n + 1 = p + 1 is
even. Hence n + 1 = 2 · p+1

2 divides (n − 1)! = (p − 1)! and

k = (n − 1)!

n + 1
= (p − 1)!

p + 1
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is an even integer, and so k + 1 is an odd integer. By Wilson’s theorem,

k + 1 ≡ (p − 1)!

p + 1
+ 1 ≡ −1

1
+ 1 ≡ 0 (mod p),

implying that k+1
p is an odd integer; that is,

(p−1)!
p+1 + 1

p
= (p − 1)!

p(p + 1)
+ 1

p

is an odd integer. Hence⌊
(n − 1)!

n(n + 1)

⌋
=
⌊

(p − 1)!

p(p + 1)

⌋
is even.

In the second case, we assume that n + 1 = p is prime. Then n = p − 1 is
even. Hence n = 2 · p−1

2 divides (n − 1)! = (p − 2)! and

k′ = (n − 1)!

n
= (p − 2)!

p − 1

is an even integer, and so k′ + 1 is an odd integer. By Wilson’s theorem,

k′ + 1 ≡ (p − 2)!

p − 1
+ 1 ≡ (p − 1)!

(p − 1)2
+ 1 ≡ −1 + 1 ≡ 0 (mod p),

implying that k′+1
p is an odd integer; that is,

(p−2)!
p−1 + 1

p
= (p − 2)!

p(p − 1)
+ 1

p

is an odd integer. Hence⌊
(n − 1)!

n(n + 1)

⌋
=
⌊

(p − 2)!

p(p − 1)

⌋
is even.

In the third case, we assume that both n and n + 1 are composite. It is not
difficult to show that both n and n+1 divide (n−1)!. Since gcd(n, n+1) =
1, we conclude that n(n + 1) divides (n − 1)!; that is,

(n − 1)!

n(n + 1)

is an integer. Also, using Legendre’s function, it is easy to see that this
integer is also even.
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51. [ARML 2002] Determine all the positive integers m each of which satisfies
the following property: there exists a unique positive integer n such that
there exist rectangles that can be divided into n congruent squares and also
into n + m congruent squares.

Solution: The integer m satisfies the conditions of the problem if and only
if m is in the set

S = {8, p, 2p, and 4p, where p is an odd prime}.
Without loss of generality, consider a rectangle ABC D that can be divided
into n + m squares of side 1 and m larger squares of side x . Because the
sides of ABC D have integer lengths, x must be a rational number. Write
x = a

b , where a and b are relatively prime integers. Because x > 1, a > b.
The area of ABC D is

(n + m) · 1 = n ·
(a

b

)2
.

Solving the above equation for n gives

n = mb2

a2 − b2
= mb2

(a + b)(a − b)
.

Because gcd(a, b) = 1, gcd(b, a + b) = gcd(a, a − b) = 1, and so (a +
b)(a − b) divides m. Note also that a + b and a − b have the same parity.

If m has two odd factors each of which is greater than 1, write m = i jk,
where j > 1 and k > 1 are odd integers. Then (a + b, a − b) = ( j, k)

and (a + b, a − b) = ( jk, 1) lead to two distinct values for n, namely,

n = i( j−k)2

4 and n = i( jk−1)2

4 , contradicting the uniqueness of n. Hence m
has at most one odd factor greater than 1; that is, m = 2c or 2c · p for some
prime p. We consider these two cases separately.

In the first case, we assume that m = 2c. It is not difficult to check that there
is no solution for n when c = 1 and 2. If c > 3, then (a −b, a +b) = (2, 4)

and (a + b, a − b) = (2, 8) lead to two distinct values for n, namely,
n = 2c−3 and n = 2c−4, contradicting the uniqueness of n. For c = 3 (and
m = 8), we must have (a, b) = (2, 4) and n = 1.

In the second case, we assume that m = 2c · p. Similar to the first case, we
can show that c ≤ 2 (by also considering (a + b, a − b) = (1, p)). Hence
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m = p, 2p, or 4p. The following table shows that all these values work.

m (a + b, a − b) (a, b) n

p (p, 1)
(

p+1
2 ,

p−1
2

)
(p−1)2

4

2p (p, 1)
(

p+1
2 ,

p−1
2

)
(p−1)2

2

4p (p, 1) or (2p, 2)
(

p+1
2 ,

p−1
2

)
or (p + 1, p − 1) (p − 1)2

52. Determine all positive integers n such that n has a multiple whose digits are
nonzero.

Solution: We claim that an integer n satisfies the conditions of the problem
if and only if n is not a positive multiple of 10. We call a number good if
it satisfies the conditions of the problem. Clearly, multiples of 10 are not
good since their multiples always end in the digit 0. We will show that all
the other positive integers are good. Let n be a positive integer not divisible
by 10. We consider a few cases.

In the first case, we assume that n = 5k or n = 2k for some positive integer
k. As we have shown in Example 1.49, there exist k-digit multiples of n
whose digits are nonzero, implying that n is good.

In the second case, we assume that n is relatively prime to 10. We claim
that n has a multiple whose digits are all equal to 1. We take

11 . . . 1︸ ︷︷ ︸
ϕ(9n)

= 10ϕ(9n) − 1

9
,

which is divisible by n, from Euler’s theorem.

In the third case, we assume that n = as · m, where a = 2 or 5 and m is
relatively prime to 10. As we have discussed in the first case, there is an
s-digit multiple of as whose digits are nonzero. Let t = as−1as−2 . . . a0 be
that number. We consider the sequence

as−1as−2 . . . a0, as−1as−2 . . . a0as−1as−2 . . . a0, . . . ;
that is, the kth number in the sequence is the concatenation (the number
obtained by writing them one after another) of k t’s. As we have shown
in the second case, two terms, say the i th and j th terms (i < j) in the
sequence, are congruent to each other modulo m. It follows that

as−1as−2 . . . a0 . . . as−1as−2 . . . a0︸ ︷︷ ︸
j−i as−1as−2 . . . a0’s

00 . . . 0︸ ︷︷ ︸
( j−i)s 0’s

≡ 0 (mod m).
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Since gcd(m, 10) = gcd(m, as) = 1 and as divides t = as−1as−2 . . . a0, it
follows that

as−1as−2 . . . a0 . . . as−1as−2 . . . a0︸ ︷︷ ︸
j−i as−1as−2 . . . a0’s

is a multiple of n = as · m whose digits are nonzero.
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Solutions to Advanced Problems

1. [MOSP 1998]

(a) Prove that the sum of the squares of 3, 4, 5, or 6 consecutive integers
is not a perfect square.

(b) Give an example of 11 consecutive positive integers the sum of whose
squares is a perfect square.

Proof: Define s(n, k) = n2 + (n − 1)2 + · · · + (n + k − 1)2 as the sum of
squares of k consecutive integers, the least of which is n.

(1) Note that s(n − 1, 3) = (n − 1)2 + n2 + (n + 1)2 = 3n2 + 2. Since
s(n−1, 3) ≡ 2 (mod 3), s(n−1, 3) is not a perfect square; that is, the
sum of the squares of 3 consecutive integers is not a perfect square.

Note that s(n, 4) = 4(n2 + 3n + 3) + 2. Since s(n, 4) ≡ 2 (mod 4),
s(n, 4) is not a perfect square; that is, the sum of the squares of 4
consecutive integers is not a perfect square.

Note that s(n − 2, 5) = 5(n2 + 2). Since s(n − 2, 5) ≡ n2 + 2 ≡ 2 or
3 modulo 4, s(n − 2, 5) is not a perfect square; that is, the sum of the
squares of 5 consecutive integers is not a perfect square.

Note that s(n − 2, 6) = 6n2 + 6n + 19. Since n2 + n = n(n + 1) is
even, s(n − 2, 6) ≡ 6n(n + 1) + 19 ≡ 3 (mod 4), and so s(n − 2, 6)

is not a perfect square; that is, the sum of the squares of 6 consecutive
integers is not a perfect square.

(2) We have s(n − 5, 11) = 11(n2 + 10). It remains to find n such that
11(n2 + 10) is a perfect square. Hence 11 must divide n2 + 10, or
n2 − 1 ≡ n2 + 10 (mod 11). Consequently, n − 1 ≡ 0 (mod 11) or
n + 1 ≡ 0 (mod 11), or n = 11m ± 1 for some integer k. It follows
that s(n − 5, 11) = 11[(11m ± 1)2 + 10] = 112(11m2 ± 2m + 1) =
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112[10m2+(m±1)2]. We observe that for m = 2, 10m2+(m+1)2 =
49 = 72, which leads to an example so s(18, 11) = 772.

2. [MOSP 1998] Let S(x) be the sum of the digits of the positive integer x in
its decimal representation.

(a) Prove that for every positive integer x , S(x)
S(2x)

≤ 5. Can this bound be
improved?

(b) Prove that S(x)
S(3x)

is not bounded.

Proof:

(a) The maximum carry is 1. This implies that the only carries in 2x
are the ones accounted for in S(2d) for each digit d in the decimal
representation of x . Hence S(2x) = ∑

S(2d), where the sum is taken
over all the digits of x . It is clear that S(d)/S(2d) ≤ 5 for every
decimal digit d = 0. Thus

S(x)

S(2x)
=

∑
S(d)∑
S(2d)

≤ 5.

This bound cannot be improved, since S(5) = 5S(10).

One can also apply Proposition 1.45 (d) to obtain S(x) = S(10x) ≤
S(5)S(2x) = 5S(2x).

(b) Let

pk = 33 . . . 3︸ ︷︷ ︸
k

4.

Then

3pk = 3(33 . . . 3︸ ︷︷ ︸
k+1

+1) = 99 . . . 9︸ ︷︷ ︸
k+1

+3 = 1 00 . . . 0︸ ︷︷ ︸
k

2.

Thus

S(pk)

S(3pk)
= 3k + 4

3
,

which is unbounded. This completes our proof.
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3. Most positive integers can be expressed as a sum of two or more consecu-
tive positive integers. For example, 24 = 7 + 8 + 9 and 51 = 25 + 26. A
positive integer that cannot be expressed as a sum of two or more consec-
utive positive integers is therefore interesting. What are all the interesting
integers?

Solution: A number n is interesting if and only if n is power of 2; that is,
n = 2k for some nonnegative integer k.

Assume that n is not interesting. We can write

n = m + (m + 1) + · · · + (m + k) = (k + 1)(2m + k)

2
(∗)

for some positive integers m and k. Since k + 1 and 2m + k are of different
parity, one of them is an odd integer greater than 3, and so n must have an
odd divisor greater than 3. It follows that 2k (for every positive integer k) is
interesting.

It remains to show that all other positive integers n are not interesting. We
write n = 2h ·� where h is nonnegative and � is an odd number greater than
1. (Note that 2h+1 = �.) If 2h+1 < �, n is not interesting since we can set

k = 2h+1 − 1 and m = � − k

2
= � + 1 − 2h+1

2

in (∗); if 2h+1 > �, n is not interesting since we can set

k = � − 1 and m = 2h+1 − k

2
= 2h+1 + 1 − �

2

in (∗). Hence, in any case, n is not interesting if n has a odd divisor greater
than 1, completing our proof.

4. Set S = {105, 106, . . . , 210}. Determine the minimum value of n such
that any n-element subset T of S contains at least two non-relatively prime
elements.

Solution: The minimum value of n is 26.

Our first step is to compute the number of prime numbers in the set S. For
any positive integer k, let Ak denote the subset of multiples of k in S, and
let P = {2, 3, 5, 7, 11}. We compute the cardinality of the subset of S
consisting of numbers divisible by one or more of 2, 3, 5, 7, or 11:

A =
⋃
k∈P

Ak = A2 ∪ A3 ∪ A5 ∪ A7 ∪ A11,
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using the inclusion and exclusion principle, as follows:

|A| =
∑
k∈P

|Ak | −
∑

i< j∈P

|Ai ∩ A j | +
∑

i< j<k∈P

|Ai ∩ A j ∩ Ak |

−
∑

i< j<k<l∈P

|Ai ∩ A j ∩ Ak ∩ Al | +
∣∣∣∣∣⋂
k∈P

Ak

∣∣∣∣∣
= 137 − 66 + 16 − 1 + 0

= 86.

We now see that the only composite number in S that is not in A is 132 =
169, since 13 · 17 = 221 > 210. Therefore S consists of 87 composite
numbers and 19 primes.

We can now prove that given any 26 numbers in S, there exist two of them
that are not relatively prime. By the pigeonhole principle, since there are
19 primes in S, at least 7 of the 26 numbers we have chosen are composite,
which means that at least 6 of the numbers are in A. But this means, again
by the pigeonhole principle, that two of them belong to the same set Ak , for
some k ∈ P . Thus they share a common factor (namely k), and hence are
not relatively prime.

Finally, we can construct a subset of S with 25 elements in which every pair
of elements is relatively prime. Let P denote the set of all primes in S; then
we can see that the set

P ∪ {112, 53, 27, 32 · 17, 132, 7 · 29}
= P ∪ {121, 125, 128, 153, 169, 203}

is a set of 25 numbers that are all mutually relatively prime.

5. [St. Petersburg 1997] The number

99 . . . 99︸ ︷︷ ︸
1997 9’s

is written on a blackboard. Each minute, one number written on the black-
board is factored into two factors and erased, each factor is (independently)
increased or diminished by 2, and the resulting two numbers are written. Is
it possible that at some point (after the first minute) all of the numbers on
the blackboard equal 9?
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Solution: The answer is negative.

Adding or subtracting 2 from a number motivates us to consider arithmetic
modulo 4. Since a + 2 ≡ a − 2 (mod 4) for any integer a, adding or
subtracting 2 becomes the same operation modulo 4. Note first that the
original number is congruent to 3 modulo 4. We claim that there is always
a number congruent to 3 modulo 4: factoring such a number gives one
factor congruent to 1 modulo 4, and changing that by 2 in either direction
gives a number congruent to 3 modulo 4. On the other hand, 9 is congruent
to 1 modulo 4, and so we cannot have all 9’s written on the board at any
moment.

6. IMO 1986] Let d be any positive integer not equal to 2, 5, or 13. Show that
one can find distinct a, b in the set {2, 5, 13, d} such that ab − 1 is not a
perfect square.

First Proof: Since 2 · 5 − 1 = 32, 2 · 13 − 1 = 52, and 5 · 13 − 1 = 82,
we will look for a non-perfect square in the set {2d − 1, 5d − 1, 13d − 1}.
Assume to the contrary that all these numbers are perfect squares; that is,

2d − 1 = a2, 5d − 1 = b2, and 13d − 1 = c2,

where a, b, and c are integers. Then a is an odd number, say, a = 2x + 1
and d = 2x(x +1)+1. Since x(x +1) is always even, it follows that d ≡ 1
(mod 4), and so b and c are even. Assume that b = 2y and c = 2z. From
5d = b2 + 1 and 13d = c2 + 1, we have 8d = c2 − b2. Thus,

d = 4y2 + 1

5
= 4z2 + 1

13
= 4z2 − 4y2

8
= z2 − y2

2
.

It follows that z and y are of equal parity. In this case, z2−y2 ≡ 0 (mod 4),
while d ≡ 1 (mod 4). Thus, we get a contradiction.

Second Proof: We operate modulo 16. We first calculate n2 modulo 16
for n = 0, 1, . . . , 7, 8 to see that the possible residues modulo 16 are

0, 1, 4, 9.

If 2d−1 is not a perfect square, we are done. Assume that 2d−1 is a perfect
square. Then 2d − 1 is congruent to 0, 1, 4, or 9 modulo 16. Since 2d is
even, 2d is congruent to 2 or 10 modulo 16, implying that d is congruent to
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1, 5, 9, or 13 modulo 16. Thus, we have the following table (modulo 16):

d 5d − 1 13d − 1
1 4 12
5 8 4
9 12 4

13 4 8

Note that all the boldfaced numbers are not perfect squares, and there is
such a number in each row. Thus, for all possible values of d that make
2d − 1 a perfect square, at least one of 5d − 1 and 13d − 1 is a not perfect
square, and we are done.

7. [Russia 2001] A heap of balls consists of one thousand 10-gram balls and
one thousand 9.9-gram balls. We wish to pick out two heaps of balls with
equal numbers of balls in them but different total weights. What is the
minimal number of weighings needed to do this? (The balance scale reports
the weight of the objects in the left pan minus the weight of the objects in
the right pan.)

Proof: It is clear that one has to use at least one weighing. We claim that
it is also enough.

Split the two thousand balls into three heaps H1, H2, H3 of 667, 667, and
666 balls, respectively. Weigh heaps H1 and H2 against each other. If the
total weights are not equal, we are done. Otherwise, discard one ball from
H1 to form a new heap H ′

1 of 666 balls. We claim that H ′
1 and H3 have

different weights. If not, then they have the same number of 10-gram balls,
say, n. Then H1 and H2 either each had n 10-gram balls or each had n + 1
10-gram balls. This would imply that 1000 equals 3n or 3n + 2, which is
impossible.

8. [China 2001] We are given three integers a, b, and c such that a, b, c,
a + b − c, a + c − b, b + c − a, and a + b + c are seven distinct primes. Let
d be the difference between the largest and smallest of these seven primes.
Suppose that 800 is an element in the set {a + b, b + c, c + a}. Determine
the maximum possible value of d .

First Solution: The answer is 1594.

First, observe that a, b, and c must all be odd primes; this follows from the
assumption that the seven quantities listed are distinct primes and the fact
that there is only one even prime, 2. (If, say, a is even, then b and c must
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be odd. Then a + b − c and a + c − b must both be even, and so equal to
2.) Therefore, the smallest of the seven primes is at least 3.

Second, assume without loss of generality that a + b = 800. Because
a + b − c > 0, we must have c < 800. We also know that c is prime;
therefore, since 799 = 17 · 47, we have c ≤ 797. It follows that the largest
prime, a + b + c, is no more than 1597. Combining these two bounds, we
can bound d by d ≤ 1597 − 3 = 1594.

It remains to observe that we can choose a = 13, b = 787, c = 797 to
achieve this bound. The other four primes are then 3, 23, 1571, and 1597.

Second Solution: assume without loss of generality that a + b = 800.
(Clearly, both a and b are odd.) Then c, a+b+c = 800+c, and a+b−c =
800 − c are primes. Consider c, 800 + c, and 800 − c modulo 3. It is
not difficult to see that exactly one of them is congruent to 0 modulo 3;
that is, one of them is equal to 3. Consequently, we have either c = 3 or
800 − c = 3 (and c = 797). If c = 3, d < a + b + c = 803. If c = 797,
then d ≤ a +b+c−3 = 1594. We can finish as we did in the first solution.

9. Prove that the sum

S(m, n) = 1

m
+ 1

m + 1
+ · · · + 1

m + n

is not an integer for any given positive integers m and n.

Proof: Assume to the contrary that S(m, n) is an integer for some pos-
itive integers m and n. Clearly, n ≥ 1. Consequently, there are even
integers among the numbers m, m + 1, . . . , m + n. Let � denote lcm(m,
m + 1, . . . , m + n). Then � is even. We have

�S(m, n) = �

m
+ �

m + 1
+ · · · + �

m + n
. (∗)

By our assumption, the left-hand side of the above identity is even. We will
reach a contradiction by showing that the right-hand side is odd.

For every integer i with 0 ≤ i ≤ n, assume that 2ai fully divides m + i . Let
m = max{a0, a1, . . . , an}. It follows that 2m‖�.

Assume that a j = m (where 0 ≤ j ≤ n). We claim that j is unique.
Assume to the contrary that a j = a j1 with 0 ≤ j < j1 ≤ n. Then m + j =
2a j · k and m + j1 = 2a j1 · k1, where k and k1 are odd positive integers.
Hence k + 1 is an even integer between k and k1, and so

m + j < 2a j · (k + 1) < 2a j · k1 = 2a j1 · k1 = m + j1,
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implying that 2a j +1 divides 2a j · (k + 1), contradicting the maximality of
a j = m. Thus, such a j is unique. It follows that �

m+i is an even integer for

all 0 ≤ i ≤ n with i = j , and �
m+ j is odd. Hence all but one summand on

the right-hand side of (∗) are even, implying that the right-hand side of (∗)

is odd, contradicting the fact that the left-hand side of (∗) is even. Hence
our original assumption was wrong and S(m, n) is not an integer.

10. [St. Petersburg 2001] For all positive integers m > n, prove that

lcm(m, n) + lcm(m + 1, n + 1) >
2mn√
m − n

.

Proof: Let m = n + k. Then

lcm(m, n) + lcm(m + 1, n + 1)

= mn

gcd(m, n)
+ (m + 1)(n + 1)

gcd(m + 1, n + 1)

>
mn

gcd(n + k, n)
+ mn

gcd(m + 1, n + 1)

= mn

gcd(k, n)
+ mn

gcd(n + k + 1, n + 1)

= mn

gcd(k, n)
+ mn

gcd(k, n + 1)
.

Now, gcd(k, n) | k, and gcd(k, n + 1) | k. We conclude that gcd(k, n)

has no common prime factor with gcd(k, n + 1), because if it did, n + 1
would have a common prime factor with n, which is impossible. Since both
divide k, so does their product, implying that gcd(k, n) gcd(k, n + 1) ≤ k.
Consequently,

lcm(m, n) + lcm(m + 1, n + 1) >
mn

gcd(k, n)
+ mn

gcd(k, n + 1)

≥ 2mn

√
1

gcd(k, n) gcd(k, n + 1)
≥ 2mn

√
1

k
= 2mn√

m − n

by the AM-GM inequality.

11. Prove that each nonnegative integer can be represented in the form a2 +
b2 − c2, where a, b, and c are positive integers with a < b < c.
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First Proof: Let k be a nonnegative integer.

If k is even, say k = 2n, the conclusion follows from the identity

2n = (3n)2 + (4n − 1)2 − (5n − 1)2

and the simple algebraic facts 3n < 4n − 1 < 5n − 1 for n > 1,

0 = 32 + 42 − 52, and 2 = 52 + 112 − 122.

If k is odd, we use the identity

2n + 3 = (3n + 2)2 + (4n)2 − (5n + 1)2,

where for n > 2, 3n + 2 < 4n < 5n + 1. Since

1 = 42 + 72 − 82, 3 = 42 + 62 − 72,

5 = 42 + 52 − 62, and 7 = 62 + 142 − 152,

we have exhausted the case k odd as well.

Second Proof: We present a more general approach for this problem. The
key fact is that the positive differences between consecutive perfect squares
are linearly increasing. For every nonnegative integer k, we choose a large
positive integer a with different parity from that of k. We then set c = b+1.
Then k = a2 + b2 − c2 = a2 − (2b + 1). Since k and a has different parity,
a2 − k is odd, and so

b = a2 − k − 1

2

is a positive integer. Since the left-hand side of the above equation is a
quadratic in a, its value is greater than a for large a, and so the condition
a < b < c = b + 1 is satisfied, and we are done.

12. Determine whether there exists a sequence of strictly increasing positive
integers {ak}∞k=1 such that the sequence {ak + a}∞k=1 contains only finitely
many primes for all integers a.

Note: One easily thinks about ak = k!. But it is then difficult to deal with
a = 1 or a = −1. We present two ways to modify this sequence.
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First Solution: The answer is positive. There exists such a sequence.
Indeed, for every positive integer k, let ak = (k!)3. If a = ±1, then ak+a =
(k!)3 ± 1 is composite, since polynomials x3 + 1 and x3 − 1 factor into
(x + 1)(x2 − x + 1) and (x − 1)(x2 + x + 1), respectively. If |a| > 1, then
a divides k! for k ≥ |a|, implying that a also divides ak + a for k ≥ |a|.
Second Solution: (By Kevin Modzelewski) We set ak = (2k)! + k. For
all integers k ≥ |a| and k ≥ 2 − a, we have 2 ≤ k + a ≤ 2k. Therefore,
ak + a is divisible by k + a, and thus composite, for all such k.

13. Prove that for different choices of signs + and − the expression

±1 ± 2 ± 3 ± · · · ± (4n + 1)

yields all odd positive integers less than or equal to (2n + 1)(4n + 1).

Proof: We induct on n. For n = 1, from ±1 ± 2 ± 3 ± 4 ± 5 we obtain all
odd positive integers less than or equal to (2 + 1)(4 + 1) = 15:

+1 − 2 + 3 + 4 − 5 = 1, −1 + 2 + 3 + 4 − 5 = 3,

−1 + 2 + 3 − 4 + 5 = 5, −1 + 2 − 3 + 4 + 5 = 7,

−1 − 2 + 3 + 4 + 5 = 9, +1 − 2 + 3 + 4 + 5 = 11,

−1 + 2 + 3 + 4 + 5 = 13, +1 + 2 + 3 + 4 + 5 = 15.

Assume that the conclusion is true for n = k, where k is some positive
integer; that is, from ±1 ± 2 ± · · · ± (4k + 1) with suitable choices of
signs + and − we obtain all odd positive integers less than or equal to
(2k + 1)(4k + 1). Now we assume that n = k + 1.

Observe that −(4k + 2)+ (4k + 3)+ (4k + 4)− (4k + 5) = 0. Hence from
±1 ± 2 ± · · · ± (4k + 5) for suitable choices of signs + and − we obtain all
odd positive numbers less than or equal to (2k + 1)(4k + 1).

It suffices to obtain all odd integers m such that

(2k + 1)(4k + 1) < m ≤ (2k + 3)(4k + 5) = (2n + 1)(4n + 1). (∗)

There are

(2k + 3)(4k + 5) − (2k + 1)(4k + 1)

2
= 8k + 7

such odd integers m. Each of these integers can be written in exactly one
of the following forms:

(2n + 3)(4n + 5) = +1 + 2 + · · · + (4n + 5),
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or

(2n + 3)(4n + 5) − 2k

= +1 + 2 + · · · + (k − 1) − k + (k + 1) + · · · + (4n + 4) + (4n + 5),

for k = 1, 2, . . . , 4n + 5, or

(2n + 1)(4n + 5) − 2�

= +1 + 2 + · · · + (� − 1) − � + (� + 1) + · · · + (4n + 4) − (4n + 5),

for � = 1, 2, . . . , 4n + 1. Hence all numbers m from (∗) are obtained,
completing the inductive step.

14. Let a and b be relatively prime positive integers. Show that

ax + by = n

has nonnegative integer solutions (x, y) for integers n > ab − a − b. What
if n = ab − a − b?

First Proof: We call an integer n representable if there are nonnegative
integers x and y such that n = ax + by.

First we show that n = ab − a − b is not representable. Assume to the
contrary that ab−a−b = ax +by, where x and y are nonnegative integers.
Taking the last equation modulo a and then modulo b leads to −b ≡ by
(mod a) and −a ≡ ax (mod a). Since gcd(a, b) = 1, it follows that
y ≡ −1 (mod a) and x ≡ −1 (mod b). Since x and y are nonnegative,
y ≥ a − 1 and x ≥ b − 1. Hence

ab − a − b = n = ax + by ≥ a(b − 1) + b(a − 1) = 2ab − a − b,

which is impossible for positive integers a and b. Therefore, our assump-
tion was wrong and n = ab − a − b is not representable.

Second we show that n > ab−a −b is representable. Since gcd(a, b) = 1,
by Proposition 1.24,

{n, n − b, n − 2b, . . . , n − (a − 1)b}
is a complete set of residue classes modulo a. Hence there exists exactly
one y, with 0 ≤ y ≤ a − 1, such that n − yb ≡ 0 (mod a), or n − yb = ax
for some integer x . If x ≥ 0, we are done. If x < 0, then x ≤ −1, and so

n − (a − 1)b ≤ n − yb = ax ≤ −a,
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or n ≤ ab − a − b, contradicts the condition n > ab − a − b. Hence both
x and y are nonnegative, and so n > ab − a − b is representable.

Second Proof: We prove the following claim:

If m and n are integers with m + n = ab − a − b, then exactly
one of m and n is representable.

If n > ab − a − b, then m must be negative, which is clearly not repre-
sentable. Hence by our claim, n is representable. If n = ab − a − b, then
since m = 0 is clearly representable (with x = y = 0), n = ab − a − b is
not representable, again by our claim.

It remains to prove our claim. By Bézout’s identity, there exist pairs (x, y)

of integers such that ax+by = n. Since ax+by = a(x−bt)+b(y+bt), we
can always reduce or increase x by a multiple of b. Thus, we can always
assume that 0 ≤ x ≤ b − 1. Furthermore, a number n = ax + by is
representable if and only if it is representable under the additional condition
that 0 ≤ x ≤ b − 1. Assume that

n = ax + by and m = as + bt,

where x, y, s, and t are integers with both x and s nonnegative integers less
than b; that is, 0 ≤ x, x ≤ b − 1. Then

ax + by + as + bt = m + n = ab − a − b,

or

ab − (x + s + 1)a − (y + t + 1)b = 0. (∗)

Since gcd(a, b) = 1, equation (∗) indicates that b must divide x + s + 1.
Note that 1 ≤ x + s + 1 ≤ 2b − 1. Hence x + s + 1 = b, and the equations
(∗) becomes (y + t +1)b = 0, or y + t +1 = 0. It is easy to see that exactly
one of y and t is nonnegative, and exactly one of them is negative; that is,
one of them is representable and the other is equal to 1.

Note: Can you generalize this result for three pairwise relatively prime
numbers a, b, and c?

15. [China 2003] The sides of a triangle have integer lengths k, m, and n. As-
sume that k > m > n and{

3k

104

}
=
{

3m

104

}
=
{

3n

104

}
.

Determine the minimum value of the perimeter of the triangle.
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Solution: It suffices to find positive integers k, m, and n with k > m > n
and k < m + n such that

3k ≡ 3m ≡ 3n (mod 104),

or

3k ≡ 3m ≡ 3n (mod 24) and 3k ≡ 3m ≡ 3n (mod 54). (∗)

Let d1 = ord24(3), d2 = ord54(3), and d = gcd(d1, d2). By Proposition
1.30, d divides both of k − m and m − n.

It is easy to check that d1 = 4. We note that d2 divides ϕ(54) = 54 − 53 =
500, by Proposition 1.30 again. We claim that d2 = 500. If d2 < 500, it
must be a divisor of either 250 = 500

2 or 100 = 500
5 . It suffices to show that

(a) 3250 ≡ 1 (mod 54) and

(b) 3100 ≡ 1 (mod 54).

We establish (a) by noting that 3250 ≡ 32 ≡ −1 (mod 5), since ϕ(5) = 4.
By the binomial theorem, we have

3100 ≡ (10 − 1)50 ≡
(

50

48

)
· 102 −

(
50

49

)
· 10 + 1 ≡ 1 (mod 54),

establishing (b). It follows that d2 = 500 and d = 500. Condition (∗) is
satisfied if and only if both of k − m and m − n are multiples d = 500.

We set m = 500s + n and k = 500t + m = 500(s + t) + n for positive
integers s and t . The perimeter of the triangle is equal to k + m + n =
500(2s + t) + 3n. Condition k < m + n now reads 500t < n. Therefore,
the minimum value of the perimeter is equal to 500 · 3 + 3 · 501 = 3003,
obtained when s = t = 1 and n = 501.

16. [Baltic 1996] Consider the following two-person game. A number of peb-
bles are lying on a table. Two players make their moves alternately. A
move consists in taking off the table x pebbles, where x is the square of
any positive integer. The player who is unable to make a move loses. Prove
that there are infinitely many initial situations in which the player who goes
second has a winning strategy.

Proof: Assume to the contrary that there are only finitely many initial
situations in which the player who goes second has a winning strategy.
Under our assumption, there exists a positive integer N such that if there
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are n > N pebbles on the table, the player who goes first at the moment
has a winning strategy.

Consider the initial situation with (N + 1)2 − 1 pebbles on the table. Let
P1 and P2 denote the players who go first and second, respectively. By
our assumption, P1 has a winning strategy, which requires P1 to remove
x pebbles on his first move. It is clear that x = N 2, and P2 is left with
at least (N + 1)2 − 1 − N 2 = 2N > N pebbles to make the first move.
By our assumption, at this moment, P2 has a winning strategy. But it is
impossible for both players to have a winning strategy for the same initial
situation. Hence our original assumption was wrong and there are infinitely
many initial situations in which the player who goes second has a winning
strategy.

17. [MOSP 1997] Prove that the sequence 1, 11, 111, . . . contains an infinite
subsequence whose terms are pairwise relatively prime.

First Proof: Let xn denote the nth term in the sequence. Then
xn+1 − 10xn = 1, implying that gcd(xn+1, xn) = 1. To prove that there
is an infinite subsequence of numbers any of two of which are relatively
prime, it suffices to prove that no matter how many terms the subsequence
contains, it can always contain at least one more term. To do this, note that
xn divides xmn . Let p be the product (or least common multiple) of all the
indices already in the subsequence. Then any number in the subsequence
divides x p. Hence x p+1 can be added to the subsequence and we are done.

Second Proof: We maintain the same notation as in the first proof. Note
that xn = 10n−1

9 . By introductory problem 38 (2), we have

gcd(xm, xn) = gcd(10m − 1, 10n − 1)

9
= 10gcd(m,n) − 1

9
= 1

for integers m and n with gcd(m, n) = 1. Hence the subsequence {x p}
where p are primes satisfies the conditions of the problem.

Note: Euler’s proof of the existence of infinitely many primes reveals the
connection between these two proofs.

18. Let m and n be integers greater than 1 such that gcd(m, n − 1) =
gcd(m, n) = 1. Prove that the first m − 1 terms of the sequence n1, n2, . . . ,
where n1 = mn + 1 and nk+1 = n · nk + 1, k ≥ 1, cannot all be primes.
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Proof: It is straightforward to show that

nk = nkm + nk−1 + · · · + n + 1 = nkm + nk − 1

n − 1

for every positive integer k. Hence

nϕ(m) = nϕ(m) · m + nϕ(m) − 1

n − 1
.

From Euler’s theorem, m | (nϕ(m) − 1), and since gcd(m, n − 1) = 1, it
follows that

m

∣∣∣∣ nϕ(m) − 1

n − 1
.

Consequently, m divides nϕ(m). Because ϕ(m) ≤ m − 1, nϕ(m) is not a
prime, and we are done.

19. [Ireland 1999] Find all positive integers m such that the fourth power of the
number of positive divisors of m equals m.

Solution: If the given condition holds for some integer m, then m must
be a perfect fourth power and we may write its prime factorization as m =
24a2 34a3 54a5 74a7 · · · for nonnegative integers a2, a3, a5, a7, . . . . The num-
ber of positive divisors of m equals

(4a2 + 1)(4a3 + 1)(4a5 + 1)(4a7 + 1) · · · .

This number is odd, so m is odd and a2 = 0. Thus,

1 = 4a3 + 1

3a3
· 4a5 + 1

5a5
· 4a7 + 1

7a7
· · · = x3x5x7 · · · ,

where we write x p = 4ap+1
pap for each p. We proceed to examine x p through

three cases: p = 3, p = 5, and p > 5.

When a3 = 1, x3 = 5
3 ; when a3 = 0 or 2, x3 = 1. When a3 > 2, by

Bernoulli’s inequality we have

3a3 = (8 + 1)a3/2 > 8(a3/2) + 1 = 4a3 + 1,

so that x3 < 1.

When a5 = 0 or 1, x5 = 1; when a5 ≥ 2, by Bernoulli’s inequality we have

5a5 = (24 + 1)
a5
2 ≥ 24 · a5

2
+ 1 = 12a5 + 1,
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so that

x5 ≤ 4a5 + 1

12a5 + 1
≤ 9

25
.

Finally, for any p > 5, when ap = 0 we have x p = 1; when ap = 1 we
have pap = p > 5 = 4ap + 1, so that x p < 1; and when ap > 1 then again
by Bernoulli’s inequality we have

pap > 5ap > 12ap + 1,

so that as above, x p < 9
25 .

Now if a3 = 1 then we have x p ≤ 1 for all p. Because 1 = x2x3x5 · · ·
we must actually have x p = 1 for all p. This means that a3 ∈ {0, 2},
a5 ∈ {0, 1}, and a7 = a11 = · · · = 0. Hence m = 14, (32)4, 54, or (32 · 5)4.

Otherwise, if a3 = 1 then 3 divides m = 54(4a5 + 1)4(4a7 + 1)4 · · · . Then
for some prime p′ ≥ 5, 3 | (4ap′ + 1), so that ap′ ≥ 2; from above, we
have x p′ ≤ 9

25 . Then

x3x5x7 · · · ≤ 5

3
· 9

25
< 1,

which is a contradiction.

Thus, the only such integers m are 1, 54, 38, and 38 · 54, and it is easily
verified that these integers work.

20. [Romania 1999]

(1) Show that it is possible to choose one number out of any 39 consecu-
tive positive integers having the sum of its digits divisible by 11.

(2) Find the first 38 consecutive positive integers none of which has the
sum of its digits divisible by 11.

Proof: Call an integer deadly if its sum of digits is divisible by 11, and
let d(n) equal the sum of the digits of a positive integer n. We have the
following observations:

(a) If n ends in a 0, then the numbers n, n + 1, . . . , n + 9 differ only
in their units digits, which range from 0 to 9. Hence d(n), d(n +
1), . . . , d(n +9) is an arithmetic progression with common difference
1. Thus if d(n) ≡ 1 (mod 11), then one of these numbers is deadly.

(b) Next suppose that n ends in k ≥ 0 nines. Then d(n + 1) = d(n) +
1 − 9k: the last k digits of n + 1 are 0’s instead of 9’s, and the next
digit to the left is 1 greater than the corresponding digit in n.
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(c) Finally, suppose that n ends in a 0 and that d(n) ≡ d(n + 10) ≡ 1
(mod 11). Because d(n) ≡ 1 (mod 11), we must have d(n+9) ≡ 10
(mod 11). If n +9 ends in k 9’s, then we have 2 ≡ d(n +10)−d(n +
9) ≡ 1 − 9k (mod 11), implying that k ≡ 6 (mod 11).

(1) Suppose we had 39 consecutive integers, none of them deadly. One of
the first ten must end in a 0: call it n. Because none of n, n+1, . . . , n+
9 are deadly, we must have d(n) ≡ 1 (mod 11), by (a) above. Simi-
larly, d(n + 10) ≡ 1 (mod 11) and d(n + 20) ≡ 1 (mod 11). From
(c) above, this implies that both n + 9 and n + 19 must end in at least
six 9’s. This is impossible, because n + 10 and n + 20 can’t both be
multiples of one million!

(2) Suppose we have 38 consecutive numbers N , N+1, . . . , N+37, none
of which is deadly. By an analysis similar to that in part (1), none of
the first nine can end in a 0. Hence, N + 9 must end in a 0, as must
N + 19 and N + 29. Then we must have d(N + 9) ≡ d(N + 19) ≡
1 (mod 11). Therefore d(N + 18) ≡ 10 (mod 11). Furthermore, if
N + 18 ends in k 9’s we must have k ≡ 6 (mod 11).

The smallest possible such number is 999999, yielding the 38 consec-
utive numbers 999981, 999982, . . . , 1000018. Indeed, none of these
numbers is deadly: their sums of digits are congruent to 1, 2, . . . , 10,

1, 2, . . . , 10, 1, 2, . . . , 10, 2, 3, . . . , 9, and 10 (mod 11), respec-
tively.

21. [APMO 1998] Find the largest integer n such that n is divisible by all posi-
tive integers less than 3

√
n.

Solution: The answer is 420, which satisfies the condition since 7 <
3
√

420 < 8 and 420 = lcm{1, 2, 3, 4, 5, 6, 7}.
Suppose n > 420 is an integer such that every positive integer less than
3
√

n divides n. Then 3
√

n > 7, so 420 = lcm(1, 2, 3, 4, 5, 6, 7) divides n;
thus n ≥ 840 and 3

√
n > 0. Thus 2520 = lcm(1, 2, . . . , 9) divides n and

3
√

n > 13. Now let m be the largest positive integer less than 3
√

n; that is,
m < 3

√
n ≤ m + 1. We have m ≥ 13 and lcm(1, 2, . . . , m) divides n. But

lcm(m − 3, m − 2, m − 1, m) ≥ m(m − 1)(m − 2)(m − 3)

6
, (†)

since 2 and 3 are the only possible common divisors of these four numbers.
Thus

m(m − 1)(m − 2)(m − 3)

6
≤ n ≤ (m + 1)3,
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implying that

m ≤ 6

(
1 + 2

m − 1

)(
1 + 3

m − 2

)(
1 + 4

m − 3

)
.

The left-hand side of the inequality is an increasing function of m, and the
right-hand side is a decreasing function of m. But for m = 13, we have

13 · 12 · 11 · 10 = 17160 > 16464 = 6 · 143,

so this inequality is false for all m ≥ 13. Thus no n > 420 satisfies the
given condition.

Note: Ryan Ko pointed out that the inequality (†) can be improved to

lcm(m − 3, m − 2, m − 1, m) ≥ (m − 1)(m − 2)(m − 3)(m − 4)

2
.

Why?

22. [USAMO 1991] Show that for any fixed positive integer n, the sequence

2, 22, 222
, 2222

, . . . (mod n)

is eventually constant. (The tower of exponents is defined by a1 = 2 and
ai+1 = 2ai for every positive integer i .)

Proof: We apply strong induction on n. The base case n = 1 is clearly
true. Assume that the conclusion is true for n ≤ k, where k is some positive
integer. We consider the case n = k + 1.

If n = k + 1 is odd, 2ϕ(n) ≡ 1 (mod n) by Euler’s theorem. Because
ϕ(n) < n, by the induction hypothesis, the sequence a1, a2, . . . is eventu-
ally constant modulo ϕ(n); that is, ai ≡ c (mod ϕ(n)) for large i . Conse-
quently,

ai+1 ≡ 2ai ≡ 2c (mod n)

is constant, completing the inductive step for this case.

If n = k + 1 is even, we write n = k + 1 = 2q · m for some positive integer
k and odd positive integer m. By the induction hypothesis, the sequence
a1, a2, . . . is eventually constant modulo m. Clearly, ai ≡ 0 (mod 2q) for
all sufficiently large i . Because 2q and m are relatively prime, each of 2q

and m divides ai+1 − ai , which implies that n = 2q · m divides ai+1 − ai ;
that is, the sequence a1, a2, . . . is eventually constant modulo n = k + 1,
completing the inductive step for this case, and our induction is complete.
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23. Prove that for n ≥ 5, fn + fn−1 − 1 has at least n + 1 prime factors.

Proof: For each k ≥ 1, we have

fk+1 + fk − 1 = 22k+1 + 22k + 1 = (22k + 1)2 − (22k−1
)2

= (22k + 1 − 22k−1
)(22k + 1 + 22k−1

).

Hence

fk+1 + fk − 1 = ak( fk + fk−1 − 1), (∗)

where ak = fk − fk−1 + 1.

We proceed by induction. We have

f5 + f4 − 1 = 3 · 7 · 13 · 97 · 241 · 673,

and the property holds. Assume that for some k ≥ 5, fk + fk−1 − 1 has at
least k + 1 prime factors. Using (∗) and the fact that

gcd( fk + fk−1 − 1, ak) = gcd( fk + fk−1 − 1, fk − fk−1 + 1)

= gcd( fk − fk−1 + 1, 2 · 22k−1
) = 1,

we conclude that fk+1 + fk − 1 has at least k + 2 prime factors, and we are
done.

24. Prove that any integer can be written as the sum of the cubes of five integers,
not necessarily distinct.

Proof: We use the identity 6k = (k + 1)3 + (k − 1)3 − k3 − k3 for

k = n3 − n

6
= n(n − 1)(n + 1)

6
,

which is an integer for all n. We obtain

n3 − n =
(

n3 − n

6
+ 1

)3

+
(

n3 − n

6
− 1

)3

−
(

n3 − n

6

)3

−
(

n3 − n

6

)3

.

Therefore, n is equal to the sum

(−n)3 +
(

n3 − n

6

)3

+
(

n3 − n

6

)3

+
(

n − n3

6
− 1

)3

+
(

n − n3

6
+ 1

)3

.

Remark: One can prove that any rational number is the sum of the cubes
of three rational numbers.
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25. Integer or fractional parts?

(1) [Czech and Slovak 1998] Find all real numbers x such that

x�x�x�x			 = 88.

(2) [Belarus 1999] Show that the equation

{x3} + {y3} = {z3}
has infinitely many rational noninteger solutions.

Solution:

(1) Let f (x) = x�x�x�x			.

We claim that if a and b are real numbers with the same sign and
|a| > |b| ≥ 1, then | f (a)| > | f (b)|. We notice that |�a	| ≥ |�b	| ≥
1. Multiplying this by |a| > |b| ≥ 1, we have |a�a	| > |b�b	| ≥
1. Notice that a�a	 and a�a�a		 have the same signs as b�b	 and
b�b�b		 respectively. In a similar manner,

|a�a�a		| > |b�b�b		| ≥ 1, |�a�a�a			| ≥ |�b�b�b			| ≥ 1,

and | f (a)| > | f (b)|, establishing our claim.

We have f (x) = 0 for |x | < 1, f (1) = f (−1) = 1. Suppose that
f (x) = 88. So |x | > 1, and we consider the following two cases.

In the first case,we assume that x ≥ 1. It is easy to check that

f
(

22
7

)
= 88. From our claim, we know that f (x) is increasing for

x > 1. So x = 22
7 is the unique solution on this interval.

In the second case, we assume that x ≤ −1. From our claim, we
know that f (x) is decreasing for x < 1. Since

| f (−3)| = 81 < f (x) = 88 <

∣∣∣∣ f

(
112

37

)∣∣∣∣ = 112,

−3 > x > − 112
37 and �x�x�x			 = −37. But then x = − 88

37 > −3, a
contradiction. Thus there is no solution on this interval.

Therefore, x = 22
7 is the only solution.

Finally, we note that 22
7 and − 112

37 are found by finding �x	, �x�x		,
and �x�x�x			 in that order. For example, for x ≥ 1, f (3) < 88 <

f (4), and so 3 < x < 4. Then �x	 = 3 and x�x�3x		 = 88. Then
f (3) < 88 < f (10/3), so �x�x		 = 9, and so on.



5. Solutions to Advanced Problems 151

(2) Let

x = 3

5
· (125k + 1), y = 4

5
· (125k + 1), and z = 6

5
· (125k + 1)

for every integer k. These are never integers because 5 does not divide
125k + 1. Moreover, we note that

125x3 = 33(125k + 1)3 ≡ 33 (mod 125).

Hence, 125 divides 125x3 − 33 and x3 −
(

3
5

)3
is an integer. Thus,

{x3} = 27

125
.

Similarly,

{y3} = 64

125
and {z3} = 216

125
− 1 = 91

125
= 27

125
+ 64

125
,

implying that {x3} + {y3} = {z3}.

26. Let n be a given positive integer greater than 1. If p is a prime divisor of
the Fermat number fn , prove that p − 1 is divisible by 2n+2.

Proof: Since n > 1, fn−1 = 22n−1 + 1 is defined. Note that

( fn−1)
2n+1 =

(
22n−1 + 1

)2n+1

=
(

22n + 1 + 22n−1+1
)2n

=
(

fn + 22n−1+1
)2n

.

By the binomial theorem, we obtain

( fn−1)
2n+1 ≡

(
fn + 22n−1+1

)2n

≡
(

22n−1+1
)2n

≡
(

22n
)2n−1+1

≡ ( fn − 1)2n−1+1 ≡ (−1)2n−1+1 ≡ −1 (mod fn),

implying that fn divides ( fn−1)
2n+1 + 1. Since p divides fn , p divides

( fn−1)
2n+1 + 1, from which the desired conclusion follows by setting a =

fn−1 in introductory problem 1.49 (2).
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27. [USAMO 1999 proposal, by Gerald Heuer] The sequence

{an}∞n=1 = {1, 2, 4, 5, 7, 9, 10, 12, 14, 16, 17, . . . }
of positive integers is formed by taking one odd integer, then two even
integers, then three odd integers, etc. Express an in closed form.

Solution: The solution is similar to the second proof of Example 1.70. We
claim that

an = 2n −
⌊

1 + √
8n − 7

2

⌋

for every positive integer n.

We rewrite the given sequence in blocks as

{an}∞n=1 = {1; 2, 4; 5, 7, 9; 10, 12, 14, 16; 17, . . . }.
Consider the sequence

{bn}∞n=1 = {1; 2, 2; 3, 3, 3; 4, 4, 4, 4; 5, . . . }.
We show that

an + bn = 2n (∗)

for all positive integers n. This is clear for n = 1 and n = 2. Within each
block in each sequence, an+1 = an +2 and bn+1 = bn , so if the relation (∗)

holds for the first integer of a block, it holds for all integers in that block. If
it is true for the last integer of a block, then it is true for the first integer of
the next block because an and bn each increase by 1. By induction, relation
(∗) holds for every positive integer n.

It suffices to show that

bn =
⌊

1 + √
8n − 7

2

⌋
. (†)

If bn = k, it is in the kth group and is preceded by at least k − 1 groups
containing 1 + 2 + · · · + (k − 1) terms. Considering also the fact that there
are n − 1 terms before bn , we conclude that

1 + 2 + · · · + (bn − 1) ≤ n − 1,

or

bn(bn − 1)

2
≤ n − 1.
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Solving the above quadratic inequality for bn gives

bn ≤ 1 + √
8n + 7

2
,

from which (†) follows, by noting that bn is the largest integer satisfying
this inequality.

28. [USAMO 1998, by Bjorn Poonen] Prove that for each n ≥ 2, there is a set
S of n integers such that (a − b)2 divides ab for every distinct a, b ∈ S.

Proof: We will prove the assertion by induction on n that we can find
such a set, all of whose elements are nonnegative. For n = 2, we may take
S = {0, 1}.
Now suppose that for some n ≥ 2, the desired set Sn of n nonnegative
integers exists. Let L be the least common multiple of (a − b)2 and ab,
with (a, b) ranging over pairs of distinct elements from Sn . Define

Sn+1 = {L + a : a ∈ S} ∪ {0}.
Then Sn+1 consists of n + 1 nonnegative integers, since L > 0. If α, β ∈
Sn+1 and either α of β is zero, then (α − β)2 divides αβ. If L + a, L + b ∈
Sn+1, with a, b distinct elements of Sn , then

(L + a)(L + b) ≡ ab ≡ 0 (mod (a − b)2)),

so [(L + a) − (L + b)]2 divides (L + a)(L + b), completing the inductive
step.

29. [St. Petersburg 2001] Show that there exist infinitely many positive integers
n such that the largest prime divisor of n4 + 1 is greater than 2n.

Proof: We claim first that there are infinitely many numbers that are prime
divisors of m4 + 1 for some m. Suppose to the contrary that there is only a
finite number of such primes. Let p1, p2, . . . , pk be all of them. Let p be
any prime divisor of (p1 p2 · · · pk)

4 + 1. This number cannot equal any pi .
This contradicts our assumption, and establishes the claim.

Let P be the set of all numbers that are prime divisors of m4 + 1 for some
m. Pick any p from P and any integer m such that p divides m4 + 1. Let
r be the residue of m modulo p. It follows that r < p and p divides both
r4 + 1 and (p − r)4 + 1. Let n be the minimum of r and p − r . It follows
that n <

p
2 or p > 2n. If n can be obtained using the construction above,
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then it satisfies the desired condition. If it is constructed using the prime p,
then p divides n4 + 1. Thus, any such number n can be constructed with
only a finite number of primes p. Since the set P is infinite, and for each
integer m such a number n can be constructed, there is an infinite number
of integers n satisfying the desired condition.

Note: The interested reader might want to solve the following more chal-
lenging problem which appeared in USAMO in 2006.

For integral m, let p(m) be the greatest prime divisor of m.
By convention, we set p(±1) = 1 and p(0) = ∞. Find all
polynomials f with integer coefficients such that the sequence
{p( f (n2)) − 2n}n≥0 is bounded above. (In particular, this re-
quires f (n2) = 0 for n ≥ 0.)

30. [Hungary 2003] For a positive integer k, let p(k) denote the greatest odd
divisor of k. Prove that for every positive integer n,

2n

3
<

p(1)

1
+ p(2)

2
+ · · · + p(n)

n
<

2(n + 1)

3
.

Proof: Let

s(n) = p(1)

1
+ p(2)

2
+ · · · + p(n)

n
.

We need to show that

2n

3
< s(n) <

2(n + 1)

3
. (∗)

We apply strong induction on n. The statement (∗) is true for n = 1 and
n = 2, since

2 · 1

3
= 2

3
< s(1) = 1 <

2(1 + 1)

3
= 4

3

and

2 · 2

3
= 4

3
< s(2) = 1 + 1

2
= 3

2
<

2(2 + 1)

3
= 2.

Assume that the statement (∗) is true for all integers n less than k, where
k is some positive integer. We will show that the statement (∗) is true for
integers n = k + 1. The key fact is that p(2k) = p(k). We consider two
cases.
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In the first case, we assume that k is even. We write k = 2m, where m is a
positive integer less than k. For n = k + 1 = 2m + 1, we note that

s(2m + 1) =
(

p(1)

1
+ p(3)

3
+ · · · + p(2m + 1)

2m + 1

)

+
(

p(2)

2
+ p(4)

4
+ · · · + p(2m)

2m

)

= (m + 1) +
(

p(1)

2
+ p(2)

4
+ · · · + p(m)

2m

)

= (m + 1) + 1

2

(
p(1)

1
+ p(2)

2
+ · · · + p(m)

m

)

= (m + 1) + s(m)

2
.

By the induction hypothesis, we have

(m + 1) + m

3
< (m + 1) + s(m)

2
= s(2m + 1) < (m + 1) + (m + 1)

3
.

Since 2(2m+1)
3 = 4m+2

3 < 4m+3
3 = (m + 1) + m

3 and (m + 1) + (m+1)
3 =

4(m+1)
3 = 2(2m+1+1)

3 , it follows that

2(2m + 1)

3
< s(2m + 1) <

2(2m + 1 + 1)

3
,

which is (∗) for n = 2m + 1.

In the second case, we assume that k is odd. We write k = 2m + 1 and
n = k + 1 = 2m + 2. Similar to the first case, we can show that

s(2m + 2) = (m + 1) + s(m + 1)

2
.

By the induction hypothesis, it is not difficult to show that the statement (∗)

is also true for n = 2m + 2, which completes our induction.

31. If pt is an odd prime power and m is an integer relatively prime to both p
and p − 1, then for any a and b relatively prime to p,

am ≡ bm (mod pt ) if and only if a ≡ b (mod pt ).

Proof: Since (a − b) divides (am − bm), if pt divides (a − b) then pt

divides (am − bm).
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Conversely, suppose a and b are relatively prime to p and am ≡ bm

(mod pt ). Since m is relatively prime to both p and p − 1, m is rela-
tively prime to (p − 1)pt−1 = ϕ(pt ), so there exists a positive integer k
such that mk ≡ 1 (mod ϕ(pt )). Then

a ≡ amk = (am)k ≡ (bm)k = bmk ≡ b (mod pt ),

as desired.

Note: We can view this as an additional property for Proposition 1.18.
In Proposition 1.18 (f), if we have a ≡ b (mod m), then for any positive
integer k, ak ≡ bk (mod m). This problem allows us to take roots for
congruence relations under certain relations.

32. [Turkey 1997] Prove that for each prime p ≥ 7, there exists a positive
integer n and integers x1, . . . , xn, y1, . . . , yn not divisible by p such that

x2
1 + y2

1 ≡ x2
2 (mod p),

x2
2 + y2

2 ≡ x2
3 (mod p),

...

x2
n + y2

n ≡ x2
1 (mod p).

Proof: We claim that n = p − 1 satisfies the conditions of the problem.

We first consider a system of equations

x2
1 + y2

1 = x2
2 ,

x2
2 + y2

2 = x2
3 ,

...

x2
n + y2

n = x2
n+1.

We repeatedly use the most well-known Pythagorean triple 32 + 42 = 52 to
obtain the following equalities

(3n)2 + (3n−1 · 4)2 = (3n−1 · 5)2,

(3n−1 · 5)2 + (3n−2 · 5 · 4)2 = (3n−2 · 52)2,

(3n−2 · 52)2 + (3n−3 · 52 · 4)2 = (3n−3 · 53)2,

. . .

(3n+1−i · 5i−1)2 + (3n−i · 5i−1 · 4)2 = (3n−i · 5i )2,

...

(3 · 5n−1)2 + (5n−1 · 4)2 = (5n)2.
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Indeed, we set

xi = 3n+1−i · 5i−1, yi = 4 · 3n−i · 5i−1,

for every i = 1, . . . , n, and xn+1 = 5n .

To finish our proof, we only need to note that by Fermat’s little theorem,
we have

x2
n+1 − x2

1 ≡ 52n − 32n ≡ 25p−1 − 9p−1 ≡ 0 (mod p).

Note: There are infinitely many such n, for instance all multiples of p −1.

33. [HMMT 2004] For every positive integer n, prove that

σ(1)

1
+ σ(2)

2
+ · · · + σ(n)

n
≤ 2n.

Proof: If d is a divisor of i , then so is i
d , and i/d

i = 1
d . Summing over

all divisors d of i (which is σ(i)), we see that σ(i)
i is the sum of all the

reciprocals of the divisors of i ; that is,

σ(i)

i
=
∑
d|i

1

d

for every positive integer i . Consequently, the desired inequality becomes

∑
d|1

1

d
+
∑
d|2

1

d
+ · · · +

∑
d|n

1

d
≤ 2n.

As we have shown in the solution of introductory problem 27, if we write
out all these summands on the left-hand side explicitly, each number 1

d ,
with 1 ≤ d ≤ n, appears

⌊ n
d

⌋
times, once for each multiple of d that is less

than or equal to n. Hence the desired inequality becomes

1

1

⌊n

1

⌋
+ 1

2

⌊n

2

⌋
+ 1

3

⌊n

3

⌋
+ · · · + 1

n

⌊n

n

⌋
< 2n.

For each positive integer i , we have 1
i

⌊ n
i

⌋
< 1

i · n
i = n

i2 . Hence it suffices
to show that

n

12
+ n

22
+ · · · + n

n2
< 2n,
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or

1

22
+ 1

32
+ · · · + 1

n2
< 1,

which follows from

1

22
+ 1

32
+ · · · + 1

n2
<

1

1 · 2
+ 1

2 · 3
+ · · · + 1

n(n − 1)

=
(

1

1
− 1

2

)
+
(

1

2
− 1

3

)
+ · · · +

(
1

n − 1
− 1

n

)

= 1 − 1

n
< 1.

Note: From calculus, we also know that

1

12
+ 1

22
+ · · · = π2

6
< 2.

34. [USAMO 2005, by Răzvan Gelca] Prove that the system

x6 + x3 + x3 y + y = 147157,

x3 + x3 y + y2 + y + z9 = 157147,

has no solutions in integers x , y, and z.

First Proof: Add the two equations; then add 1 to each side to obtain

(x3 + y + 1)2 + z9 = 147157 + 157147 + 1.

We prove that the two sides of this expression cannot be congruent modulo
19. We choose 19 because the least common multiple of the exponents 2
and 9 is 18, and by Fermat’s little theorem, a18 ≡ 1 (mod 19) when a is
not a multiple of 19. In particular, (z9)2 ≡ 0 or 1 (mod 19), and it follows
that the possible remainders when z9 is divided by 19 are

−1, 0, 1.

Next calculate n2 modulo 19 for n = 0, 1, . . . , 9 to see that the possible
residues modulo 19 are

−8, −3, −2, 0, 1, 4, 5, 6, 7, 9.
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Consequently, adding a number from the last two lists gives the possible
residues modulo 19 for (x3 + y + 1)2 + z9:

−8 −3 −2 0 1 4 5 6 7 9
−1 −9 −4 −3 −1 0 3 4 5 6 8

0 −8 −3 −2 0 1 4 5 6 7 9
1 −7 −2 −1 1 2 5 6 7 8 10

Finally, apply Fermat’s little theorem to see that

147157 + 157147 + 1 ≡ 14 (mod 19).

Because we cannot obtain 14 (or −5), which does not appear in the table
above, the system has no solution in integers x, y, and z.

Second Proof: We will show there is no solution to the system modulo
13. Add the two equations and add 1 to obtain

(x3 + y + 1)2 + z9 = 147157 + 157147 + 1.

By Fermat’s little theorem, a12 ≡ 1 (mod 13) when a is not a multiple of
13. Hence we compute 147157 ≡ 41 ≡ 4 (mod 13) and 157147 ≡ 13 ≡ 1
(mod 13). Thus

(x3 + y + 1)2 + z9 ≡ 6 (mod 13).

The cubes modulo 13 are 0, ±1, and ±5. Writing the first given equation
as

(x3 + 1)(x3 + y) ≡ 4 (mod 13),

we see that there is no solution in the case x3 ≡ −1 (mod 13) and for
x3 congruent to 0, 1, 5, −5 modulo 13. Correspondingly, x3 + y must be
congruent to 4, 2, 5, −1. Hence

(x3 + y + 1)2 ≡ 12, 9, 10, or 0 (mod 13).

Also, z9 is a cube; hence z9 must be 0, 1, 5, 8, or 12 modulo 13. The
following table shows that 6 modulo 13 is not obtained by adding one of 0,
9, 10, 12 to one of 0, 1, 5, 8, 12:

0 1 5 8 12
0 0 1 5 8 12
9 9 10 1 4 8
10 10 11 2 5 9
12 12 0 4 7 11

Hence the system has no solutions in integers.
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Note: This argument shows that there is no solution even if z9 is replaced
by z3.

35. [St. Petersburg 2000] What is the smallest number of weighings on a bal-
ance scale needed to identify the individual weights of a set of objects
known to weigh 1, 3, 32, . . . , 326 in some order? (The balance scale reports
the weight of the objects in the left pan minus the weight of the objects in
the right pan.)

Solution: At least three weighings are necessary: each of the first two
weighings divides the weights into three categories (the weights in the left
pan, the weights in the right pan, and the weights remaining off the scale).
Because 27 > 3 · 3, some two weights must fall into the same category on
both weighings, implying that these weights cannot be distinguished. We
now show that three weighings indeed suffice.

Label the 27 weights using the three-letter words made up of the letters
L , R, O . In the i th weighing, put the weights whose i th letter is L on
the left pan and the weights whose i th letter is R on the right pan. The
difference between the total weight of the objects in the left pan and the
total weight of the objects in the right pan equals

ε030 + ε131 + · · · + ε26326,

where ε j equals 1,−1, or 0 if 3 j is in the left pan, in the right pan, or off
the scale, respectively. The value of the above sum uniquely determines all
of the ε j : the value of the sum modulo 3 determines ε0, then the value of
the sum modulo 9 determines ε1; and so on.

Thus, for j = 0, . . . , 26, the i th weighing determines the i th letter of the
weight that measures 3 j . After three weighings, we thus know exactly
which weight measures 3 j , as desired.

Note: This is a case of a more general result, that each integer has a unique
representation in base 3 using the digits −1, 0, 1. Clearly, this works for
numbers n with 0 ≤ n < 31 (since 0 = 0, 1 = 1, and 2 = 3 − 1). Assume
that this works for numbers n with 0 ≤ n < 3k for some positive integer
k. We consider n with 3k ≤ n < 3k+1. If 3k ≤ n < 2 · 3k , it works
because n = 3k + n1, where 0 ≤ n1 < 3k ; if 2 · 3k ≤ n < 3k+1, it works
because n = 3k+1 − 3k + n1 with 0 ≤ n1 < 3k . It is not difficult to see that
it works for negative numbers and the representation is unique for every
integer. Indeed, we can convert a regular base-3 representation easily to
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this new base-3 representation. For example,

49 = 1211(3) = 33 + 2 · 32 + 3 + 1

= 2 · 33 − 32 + 3 + 1 = 34 − 33 − 32 + 3 + 1.

36. [Iberoamerican 1998] Let λ be the positive root of the equation
t2 − 1998t − 1 = 0. Define the sequence x0, x1, . . . by setting

x0 = 1, xn+1 = �λxn	 (n ≥ 0).

Find the remainder when x1998 is divided by 1998.

Solution: We have

1998 < λ = 1998 + √
19982 + 4

2
= 999 +

√
9992 + 1 < 1999,

x1 = 1998, x2 = 19982. Since λ2 − 1998λ − 1 = 0,

λ = 1998 + 1

λ
and xλ = 1998x + x

λ

for all real numbers x . Since xn = �xn−1λ	 and xn−1 is an integer and λ is
irrational, we have

xn < xn−1λ < xn + 1, or
xn

λ
< xn−1 <

xn + 1

λ
.

Since λ > 1998,
⌊ xn

λ

⌋ = xn−1 − 1. Therefore,

xn+1 = �xnλ	 =
⌊

1998xn + xn

λ

⌋
= 1998xn + xn−1 − 1,

that is, xn+1 ≡ xn−1 − 1 (mod 1998). Therefore by induction x1998 ≡
x0 − 999 ≡ 1000 (mod 1998).

37. [USAMO 1996, by Richard Stong] Determine (with proof) whether there
is a subset X of the integers with the following property: for any integer n
there is exactly one solution of a + 2b = n with a, b ∈ X .

First Proof: Yes, there is such a subset. As shown in introductory problem
39 (3), if the problem is restricted to the nonnegative integers, then the set
of integers whose representations in base-4 contain only the digits 0 and
1 satisfies the desired property. To accommodate the negative integers as
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well, we switch to “base-(−4).” That is, we represent every integer in the
form

∑k
i=0 ci (−4)i , with ci ∈ {0, 1, 2, 3} for all i and ck = 0, and let X be

the set of numbers whose representations use only the digits 0 and 1. This
X will again have the desired property, once we show that every integer has
a unique representation in this fashion.

To show that base-(−4) representations are unique, let {ci } and {di } be two
distinct finite sequences of elements of {0, 1, 2, 3}, and let j be the smallest
integer such that c j = d j . Then

k∑
i=0

ci (−4)i ≡
k∑

i=0

di (−4)i (mod 4 j ),

so in particular the two numbers represented by {ci } and {di } are distinct.
On the other hand, to show that n admits a base-(−4) representation, find
an integer k such that

1 + 42 + · · · + 42k ≥ n

and express

n + 4 + · · · + 42k−1 =
2k∑

i=0

ci 4
i .

Now set d2i = c2i and d2i−1 = 3−c2i−1, and note that n = ∑2k
i=0 di (−4)i .

Second Proof: For any S of integers, let S∗ = {a + 2b| a, b ∈ S}. Call a
finite set of integers S = {a1, a2, . . . , am} good if |S∗| = |S|2; that is, if the
values ai +2a j (1 ≤ i, j ≤ m) are distinct. We first prove that given a good
set and an integer n, we can always find a good superset T of S such that
n is an element in T ∗. If n is in S∗ already, take T = S. Otherwise, take
T = S ∪ {k, n − 2k}, where k is to be chosen. Then put T ∗ = S∗ ∪ Q ∪ R,
where

Q = {3k, 3(n − 2k), k + 2(n − 2k), (n − 2k) + 2k}
and

R = {k + 2ai , (n − 2k) + 2ai , ai + 2k, ai + 2(n − 2k)| 1 ≤ i ≤ m}.
Note that for any choice of k, we have n = (n − 2k) + 2k in Q, which is
a subset of T ∗. Except for n, the new values are distinct nonconstant linear
forms in k, so if k is sufficiently large, they will all be distinct from each
other and from the elements of S∗. This proves that T ∗ is good.
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Starting with the good set X0 = {0}, we thus obtain a sequence of sets
X1, X2, X3, . . . such that for each positive integer j , X j is a good superset
of X j−1 and X∗

j contains the j th term of the sequence 1, −1, 2, −2, 3, −3,
. . . . It follows that

X =
∞⋃
j=0

X j

has the desired property.

38. The number xn is defined as the last digit in the decimal representation

of the integer
⌊√

2
n
⌋

(n = 1, 2, . . . ). Determine whether the sequence

x1, x2, . . . , xn, . . . is periodic.

Solution: The answer is negative.

Set yn = 0 if xn is even and yn = 1 otherwise. The new sequence
y1, y2, . . . , yn, . . . is formed by the residues of the numbers xn modulo
2. If x1, x2, . . . , xn, . . . is periodic, then so is y1, y2, . . . , yn, . . . . We shall
prove that y1, y2, . . . , yn, . . . is not periodic, which implies that the answer
to the question is negative.

Let us consider the sequence y1, y3, y5, . . . , y2n+1, . . . . Its term y2n+1 can
be obtained as follows. Write down

√
2 in base-2, multiply by 2n (this gives

(
√

2)2n+1), and discard the fractional part of the result to get⌊
(
√

2)2n+1
⌋

.

Then take the last (binary) digit of this integer; it is y2n+1. But multiplying
by 2n in base 2 amounts simply to shifting the binary point n positions
to the right. This implies that y2n+1 is in fact the nth digit of

√
2 after

the binary point. Since
√

2 is irrational, we conclude that the sequence
y1, y3, . . . , y2n+1, . . . is not periodic. It is easy to infer from here that
y1, y2, . . . , yn, . . . is not periodic too, and we are done.

39. [Erdös-Suranyi] Prove that every integer n can be represented in infinitely
many ways as

n = ±12 ± 22 ± · · · ± k2

for a convenient k and a suitable choice of the signs + and −.
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Proof: It suffices to prove the statement for nonnegative n’s, because
for negative n’s we can simply change all the signs. The proof goes by
induction of step 4; that is, establishing the statement for n = k + 4 based
on the induction hypothesis for n = k.

We first show that the statement holds for n = 0, 1, 2, and 3. We consider
representations 0, 1, 2 and 3:

0 = 12 + 22 − 32 + 42 − 52 − 62 + 72, 1 = 12,

2 = −12 − 22 − 32 + 42, 3 = −12 + 22.

If n is representable in the desired form then so is n + 4, because 4 can be
written as

4 = (k + 1)2 − (k + 2)2 − (k + 3)2 + (k + 4)2 (∗)

for any k. It follows inductively that a representation of the desired form
can be written for any nonnegative integer n.

Note: From (∗) it also follows that

(k + 1)2 − (k + 2)2 − (k + 3) + (k + 4)2

− (k + 5)2 + (k + 6)2 + (k + 7)2 − (k + 8)2 = 0

for every integer k; hence it can be easily inferred that the number of repre-
sentations of an integer in the desired form is infinite.

40. [China 2004] Let n be a given integer with n ≥ 4. For a positive integer m,
let Sm denote the set {m, m + 1, . . . , m + n − 1}. Determine the minimum
value of f (n) such that every f (n)-element subset of Sm (for every m)
contains at least three pairwise relatively prime elements.

First Proof: The answer is

f (n) =
⌊

n + 1

2

⌋
+
⌊

n + 1

3

⌋
−
⌊

n + 1

6

⌋
+ 1. (∗)

Let us call a set T good if T contains three (distinct) elements that are
relatively prime.

In the first step, we establish two simple claims:

(a) f (n) exists and f (n) ≤ n;

(b) f (n + 1) ≤ f (n) + 1.
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Since n ≥ 4, m, m+1, m+2, m+3 are distinct element in Sm . If m is even,
then the set {m + 1, m + 2, m + 3} is good; if m is odd, {m, m + 1, m + 2}
is good. Hence the n-element set Sm is good for all m, and so f (n) ≤ n,
establishing (a). Claim (b) follows directly from the relation

{m, m + 1, . . . , m + n} = {m, m + 1, . . . , m + n − 1} ∪ {m + n}.
Next we give a lower bound for f (n). Consider S2 = {2, 3, . . . , n + 1} and
its subset T2 that contains those elements in S2 that are multiples of either
2 or 3 or both. By the pigeonhole principle, any three elements in T must
share a common factor (of either 2 or 3). Hence T2 is not good. But by the
inclusion and exclusion principle,

|T2| =
⌊

n + 1

2

⌋
+
⌊

n + 1

3

⌋
−
⌊

n + 1

6

⌋
,

and so

f (n) ≥
⌊

n + 1

2

⌋
+
⌊

n + 1

3

⌋
−
⌊

n + 1

6

⌋
+ 1, (∗∗)

where �x	 is the greatest integer less than or equal to x . We claim that this
lower bound is in fact the exact value of f (n).

Since n ≥ 4, we know that m +1, m +2, m +3, m +4 are distinct elements
in Sm . If m is even, then {m + 1, m + 2, m + 3} is good; if m is odd, then
{m + 2, m + 3, m + 4) is good. Hence the n-element set Sm is good for all
m. Using this fact with (∗∗) gives us f (4) = 4 and f (5) = 5.

By simple computation, the last inequality gives f (4) ≥ 4, f (5) ≥ 5,
f (6) ≥ 5, f (7) ≥ 6, f (8) ≥ 7, and f (9) ≥ 8. Since f (n) ≤ n, we
conclude that f (4) = 4 and f (5) = 5. We claim that f (6) = 5. Then by
claim (b), we have f (7) = 6, f (8) = 7, and f (9) = 8.

We now show that f (6) = 5; that is, any 5-element subset T of a set
of 6 consecutive numbers is good. Among these 6 numbers, 3 are odd
consecutive numbers (which is a good triple) and 3 are even consecutive
numbers. If all three odd numbers are in T , then T is good and we are
done. Otherwise, T must contain all the even numbers, and two of the
three odd numbers. If the two odd numbers in T are consecutive (of the
form 2x + 1 and 2x + 3), then T is good since (2x + 1, 2x + 2, 2x + 3)

is in T ; otherwise, the two odd numbers in T are of the form 2x + 1 and
2x + 5, and T is good since T contains both (2x + 1, 2x + 2, 2x + 5) and
(2x + 1, 2x + 4, 2x + 5), and at least one of these two triples is good (since
at least one of 2x + 1 and 2x + 5 is not divisible by 3).
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Since it is clear that f (n + 1) ≤ f (n) + 1, this combined with (∗∗) gives
f (7) = 6, f (8) = 7, and f (9) = 8.

Finally, we prove the result (∗) by induction on n. The above arguments
show that the base cases for n ≤ 9 are true. Assume that (∗) is true for
some n = k, where k is an integer greater than or equal to 9. For n = k +1,
note that

Sm = {m, m + 1, . . . , m + k}
= {m, m + 1, . . . , m + k − 6} ∪ {m + k − 5, . . . , m + k}.

Hence, by the pigeonhole principle, f (k + 1) ≤ f (k − 5) + f (6) − 1.
Applying the induction hypothesis to f (k − 5), and using f (6) = 5, we
have

f (k + 1) ≤
⌊

k − 4

2

⌋
+
⌊

k − 4

3

⌋
−
⌊

k − 4

6

⌋
+ 5

=
⌊

k + 2

2

⌋
+
⌊

k + 2

3

⌋
−
⌊

k + 2

6

⌋
+ 1.

This combined with (∗∗) establishes (∗) for n = k + 1, and our induction
is complete.

Second Proof: (By Kevin Modzelewski) We maintain the same notation
as in the first solution. As we have shown in the first proof, all 5-element
subsets of a set of 6 consecutive integers are good. Now we consider some
cases.

(i) In this case we assume that n ≡ 0 (mod 6). We write n = 6k. We
can partition the set Sm into k subsets of 6 consecutive integers. If
4k + 1 numbers are chosen, by the pigeonhole principle one these
subsets contains 5 of the chosen numbers, and hence is good. On the
other hand, each subset contains 4 numbers that are either divisible by
2 or 3 (those numbers that are congruent to 0, 2, 3, 4 modulo 6). The
4k-element subset consisting of these numbers is not good. Hence
f (n) = 4k + 1 = 4

⌊ n
6

⌋+ 1.

(ii) In this case we assume that n ≡ 1 (mod 6). We write n = 6k +1. By
(i) and observation (b) in the first solution, we have f (n) = 4k + 1
or f (n) = 4k + 2. On the other hand, there are 4k + 1 elements in
S1 = {2, 3, . . . , n + 1} = {2, 3, . . . , 6k + 2} that are divisible by 2 or
3. Hence f (n) = 4k + 2 = 4

⌊ n
6

⌋+ 2.

(iii) In this case we assume that n ≡ 2 (mod 6). We write n = 6k +2. By
(ii) and observation (b), we have f (n) = 4k +2 or f (n) = 4k +3. On
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the other hand, there are 4k + 2 elements in S1 = {2, 3, . . . , 6k + 3}
that are divisible by 2 or 3. Hence f (n) = 4k + 3 = 4

⌊ n
6

⌋+ 3.

(iv) In this case we assume that n ≡ 3 (mod 6). We write n = 6k + 3.
Again, we have f (n) = 4k + 2 or f (n) = 4k + 3. On the other hand,
there are 4k + 2 elements in S1 = {2, 3, . . . , 6k + 4} that are divisible
by 2 or 3. Hence f (n) = 4k + 4 = 4

⌊ n
6

⌋+ 4.

(v) In this case we assume that n ≡ 4 (mod 6). We write n = 6k + 4.
We can partition set Sm into {6k + 1, 6k + 2, 6k + 3, 6k + 4} and k
subsets of 6 consecutive integers. Let T be a subset of Sm that is not
good. Each of the 6-element subsets can have 4 elements in T . Also
note that 6k + 1 and 6k + 3 cannot be both in T . Hence T can have at
most 4k + 3 elements. Hence f (n) ≤ 4k + 4. By (iv) and observation
(b), we conclude that f (n) = 4k + 4 = 4

⌊ n
6

⌋+ 4.

(vi) In this case we assume that n ≡ 5 (mod 6). We write n = 6k + 5.
Again, we have f (n) = 4k + 4 or f (n) = 4k + 5. On the other hand,
there are 4k + 4 elements in S1 = {2, 3, . . . , 6k + 6} that are divisible
by 2 or 3. Hence f (n) = 4k + 5 = 4

⌊ n
6

⌋+ 5.

Combining the above, we conclude that

f (n) = 4 ·
⌊n

6

⌋
+

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 n ≡ 0 (mod 6),

2 n ≡ 1 (mod 6),

3 n ≡ 2 (mod 6),

4 n ≡ 3 (mod 6),

4 n ≡ 4 (mod 6),

5 n ≡ 5 (mod 6).

It is then not difficult to check that

f (n) =
⌊

n + 1

2

⌋
+
⌊

n + 1

3

⌋
−
⌊

n + 1

6

⌋
+ 1.

Note: Note also that f (n) can be expressed as

f (n) = n −
⌊n

6

⌋
−
⌊

n + 2

6

⌋
+ 1.

Indeed, the above expression might be more convenient in the second solu-
tion. The equivalence of the two expressions can be established by repeated
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applying the Hermite identity (Proposition 1.48) as follows:

n =
⌊

2 · n

2

⌋
=
⌊n

2

⌋
+
⌊

n

2
+ 1

2

⌋
=
⌊n

2

⌋
+
⌊

n + 1

2

⌋
,

⌊n

2

⌋
=
⌊

3 · n

6

⌋
=
⌊n

6

⌋
+
⌊

n + 2

6

⌋
+
⌊

n + 4

6

⌋
,⌊

n + 1

3

⌋
=
⌊

2 · n + 1

6

⌋
=
⌊

n + 1

6

⌋
+
⌊

n + 4

6

⌋
.

41. [China 1999] Find the least positive integer r such that for any positive
integers a, b, c, d, ((abcd)!)r is divisible by the product of

(a!)bcd+1, (b!)acd+1, (c!)abd+1, (d!)abc+1,

((ab)!)cd+1, ((bc)!)ad+1, ((cd)!)ab+1, ((ac)!)bd+1,

((bd)!)ac+1, ((ad)!)bc+1, ((abc)!)d+1, ((abd)!)c+1,

((acd)!)b+1, ((bcd)!)a+1.

Solution: Let p denote the product of the 14 numbers. Setting b = c =
d = 1, then p = (a!)2+3·2+3·2 = (a!)14, implying that r ≥ 14. We claim
that r = 14. It suffices to show that p divides ((abcd)!)14.

We pair numbers (a!)bcd+1 and ((bcd)!)a+1. Indeed, we have

(a!)bcd+1 · ((bcd)!)a+1 =
[
(a!)bcd · (bcd)!

] [
((bcd)!)a · (a)!

]
and its cyclic analogous forms. Likewise, we have

((ab!)cd+1 · ((cd)!)ab+1 =
[
((ab)!)cd · (cd)!

] [
((cd)!)ab · (ab)!

]
and its cyclic analogous forms. It is then not difficult to see that our claim
follows Example 1.74 (1).

42. Two classics on L.C.M.

(1) Let a0 < a1 < a2 < · · · < an be positive integers. Prove that

1

lcm(a0, a1)
+ 1

lcm(a1, a2)
+ · · · + 1

lcm(an−1, an)
≤ 1 − 1

2n
.

(2) Several positive integers are given not exceeding a fixed integer con-
stant m. Prove that if every positive integer less than or equal to m
is not divisible by any pair of the given numbers, then the sum of the
reciprocals of these numbers is less than 3

2 .
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Proof: While it is clear that (1) is a property of L.C.M., it is not obvious
that (2) is also related to L.C.M.

(1) We induct on n. The base case n = 1 is trivial, since lcm(a0, a1) ≥
lcm(1, 2) = 2. We assume that the statement is true for n = k; that
is, if a0 < a1 < a2 < · · · < ak are positive integers, then

1

lcm(a0, a1)
+ 1

lcm(a1, a2)
+ · · · + 1

lcm(ak−1, ak)
≤ 1 − 1

2k
.

Now we consider the case n = k + 1. Let a0 < a1 < a2 < · · · <

ak < ak+1 be positive integers. We consider two cases.

• In the first case, we assume that ak+1 ≥ 2k+1. Then we have
lcm(ak, ak+1) ≥ ak+1 ≥ 2k+1. It follows by the induction hy-
pothesis that

1

lcm(a0, a1)
+ · · · + 1

lcm(ak−1, ak)
+ 1

lcm(ak, ak+1)

≤ 1 − 1

2k
+ 1

2k+1
= 1 − 1

2k+1
,

establishing the inductive step.
• In the second case, we assume that ak < 2k+1. We have

1

lcm(ai−1, ai )
= gcd(ai−1, ai )

ai−1ai
≤ a1 − ai−1

ai−1a1
= 1

ai−1
− 1

ai
.

Adding the above inequalities for i from 1 through k + 1 gives

1

lcm(a0, a1)
+ · · · + 1

lcm(ak−1, ak)
+ 1

lcm(ak, ak+1)

≤ 1

a0
− 1

ak+1
≤ 1 − 1

2k+1
,

again establishing the inductive step.

(2) The key is to interpret the sentence “every positive integer less than or
equal to m is not divisible by any pair of the given numbers.” Indeed,
this implies that the least common multiple of every two of the given
numbers is greater than m.
Given n numbers, denote them by x1, x2, . . . , xn . For a given i , there

are
⌊

m
xi

⌋
multiples of xi among 1, 2, . . . , m. None of them is a mul-

tiple of x j for j = i , since the least common multiple of xi and x j is
greater than m. Hence there are⌊

m

x1

⌋
+
⌊

m

x2

⌋
+ · · · +

⌊
m

xn

⌋
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distinct elements in the set {1, 2, . . . , m} that are divisible by one of
the numbers x1, x2, . . . , xn . None of these elements can be 1 (unless
n = 1, in which case the claim is obvious). Hence⌊

m

x1

⌋
+
⌊

m

x2

⌋
+ · · · +

⌊
m

xn

⌋
≤ m − 1.

Taking into account that m
xi

<
⌊

m
xi

⌋
+ 1 for each i , we obtain

m

(
1

x1
+ 1

x2
+ · · · + 1

xn

)
< m + n − 1.

We now claim that n ≤ m+1
2 , which will imply

1

x1
+ 1

x2
+ · · · + 1

xn
< 1 + n − 1

m
<

3

2
.

Indeed, note that the greatest odd divisors of x1, x2, . . . , xn are all
distinct. Otherwise, if some two of the given numbers shared the same
greatest odd divisor, one of them would be a multiple of the other,
contradicting the hypothesis. Hence n does not exceed the number of
odd integers among 1, 2, . . . , m, and our claim n ≤ m+1

2 follows.

43. For a positive integer n, let r(n) denote the sum of the remainders of n
divided by 1, 2, . . . , n. Prove that there are infinitely many n such that
r(n) = r(n − 1).

Solution: By Proposition 1.46 (a), the remainder when n is divided by k
is equal to

{ n
k

} · k = n − ⌊ n
k

⌋ · k. Hence we have

r(n) =
∑
k=1

n
(

n −
⌊n

k

⌋
· k
)

.

Thus, the condition r(n) = r(n − 1) is equivalent to the equation

∑
k=1

n
(

n −
⌊n

k

⌋
· k
)

=
∑
k=1

n − 1

(
n − 1 −

⌊
n − 1

k

⌋
· k

)
,

or

2n − 1 = n +
n−1∑
k=1

[n − (n − 1)] =
n∑

k=1

⌊n

k

⌋
· k −

n−1∑
k=1

⌊
n − 1

k

⌋
· k. (∗)
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If k does not divide n, then
⌊ n

k

⌋ =
⌊

n−1
k

⌋
, and so

⌊ n
k

⌋ · k =
⌊

n−1
k

⌋
· k; if

k divides n, then
⌊ n

k

⌋ =
⌊

n−1
k

⌋
+ 1, and so

⌊ n
k

⌋ · k =
⌊

n−1
k

⌋
· k + k. We

conclude that the equation (∗) is equivalent to

2n − 1 =
∑
k|n

k.

But the last equation can easily be satisfied by setting n = 2m , where m is
a nonnegative integer. Indeed,

2n − 1 = 2m+1 − 1 = 1 + 2 + 22 + · · · + 2m .

Therefore, if n is a perfect power of 2, then r(n) = r(n − 1).

44. Two related IMO problems.

(1) [IMO 1994 Short List] A wobbly number is a positive integer whose
digits are alternately nonzero and zero with the units digit being non-
zero. Determine all positive integers that do not divide any wobbly
numbers.

(2) [IMO 2004] A positive integer is called alternating if among any two
consecutive digits in its decimal representation, one is even and the
other is odd. Find all positive integers n such that n has a multiple
that is alternating.

Solution: This is a continuation of introductory problem 52.

(1) If n is a multiple of 10, then the last digit of any of its multiples is 0,
and so n does not divide any wobbly numbers. If n is a multiple of
25, then the last two digits of any of its multiples are 25, or 50, or 75,
or 00, and so n does not divide any wobbly numbers. We now prove
that these are the only numbers not dividing any wobbly numbers.

First, we consider odd numbers m not divisible by 5. Then
gcd(m, 10) = 1 and gcd((10k − 1)m, 10) = 1 for every positive
integer k. By Euler’s theorem, there exists an integer � such that

10� ≡ 1 (mod (10k − 1)m),

implying that

10k� ≡ 1 (mod (10k − 1)m).
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Since

10k� − 1 =
(

10k − 1
) (

10k(�−1) + 10k(�−2) + · · · + 10k + 1
)

,

we conclude that

wk = 101010 . . . 1︸ ︷︷ ︸
2�−1 digits

= 102(�−1) + 102(�−2) + · · · + 102 + 1

is divisible by m. In particular, w2 is a wobbly number (with digits 0
and 1) divisible by m.
Second, we consider odd numbers m′ that are divisible by 5. Since
the number is not a multiple of 25, we can write m′ = 5m. Then 5w2
is a wobbly number (with digits 0 and 5) divisible by m′.
Next, we consider perfect powers of 2. It suffices to show that 22t+1

(for every nonnegative integer t) divides a (2t −1)-digit wobbly num-
ber. We induct on t . The base case t = 1 is trivial by considering
wobbly numbers v1 = a1 = 8. For t = 2, we consider numbers
in the form v2 = a208 = 100a2 + 8 = 4(25a2 + 2). We need to
find a nonzero digit a2 such that 25a2 + 2 ≡ 0 (mod 8). It is easy
to check that a2 = 6 satisfies the condition, and so 608 is a wobbly
multiple of 25. In general, assume that 22t+1 divides wobbly number
vt = at 0at−1 . . . 0a1. We write vt = 22t+1ut . Consider the numbers
in the form

at+10at 0at−1 . . . 0a1 = at+1 · 102t + 22t+1ut = 22t
(
52t at+1 + 2ut

)
.

We need to find a digit at+1 such that 52t at+1 + 2ut ≡ 8. Since
S = {0, 1, 2, 3, 4, 5, 6, 7, 8} forms a complete set of residue classes
modulo 8, there is an element at+1 in S such that 52t at+1 + 2ut ≡ 8,
and for this at+1, the (2t + 1)-digit wobbly number

vt+1 = at+10at 0at−1 . . . 0a1

is divisible by 22t+3, completing the induction.
Finally, we consider the number of the form 2t m, where t ≥ 1 and
gcd(m, 10) = 1. It suffices to show that 22t+1m divides a wobbly
number. We claim that the concatenation of � − 1 vt 0 = vt · 10’s and
a vt will do the job. Indeed,

vt 0vt 0 . . . vt︸ ︷︷ ︸
� vt ’s

= vt · w2t ,

because 22t+1 divides vt and m divides w2t .
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(2) The answers are those positive integers that are not divisible by 20.
We call an integer n an alternator if it has a multiple that is alternating.
Because any multiple of 20 ends with an even digit followed by 0,
multiples of 20 are not alternating. Hence multiples of 20 are not
alternators. We show that all other numbers are alternators. Let n be
a positive integer not a multiple of 20. Note that all divisors of an
alternator are alternators. We may assume that n is a even number.
We first establish the following key fact:

If n = 2� or 2 · 5�, for some positive integer �, then there
exists a multiple X (n) of n such that X (n) is alternating and
X (n) has n digits.

Indeed, we can set

m = 10n+1 − 10

99
= 101010 . . . 10︸ ︷︷ ︸

n digits

.

For every integer k = 0, 1, . . . , n − 1, there exists a sequence e0, e1,
. . . , ek ∈ {0, 2, 4, 6, 8} such that

M +
k∑

i=0

ei · 10i

is divisible by 2k+2 if n is of the form 2�, or by 2 · 5k+1 if n = 2 ·
5�. This is straightforwardly proved by induction on k (as we did
in the proof of part (1) or Example 1.53). In particular, there exist
e0, . . . , en−1 ∈ {0, 2, 4, 6, 8} such that

X (n) = m +
n−1∑
i=0

ei · 10i

is divisible by n. This X (n) is alternating and has n digits, establishing
this fact.
Now we prove our main result. Because n is even and not divisible
by 20, we write n in the form n′m, where n′ = 2� or 2 · 5� and
gcd(m, 10) = 1. (Clearly, n′ ≥ �.) Let c ≥ n′ be an integer such that
10c ≡ 1 (mod m). (Such a c exists because 10ϕ(m) ≡ 1 (mod m), by
Euler’s theorem.) Let M be the concatenation of 1010 . . . and X ′(n).
More precisely, we set

M = 102mc+1 − 10

99
· 10n′ + X (n′) = 101010 . . . 10︸ ︷︷ ︸

2mc digits

X (n′).
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Since X (n′) is an alternating number with exactly n′ digits, M is
clearly an alternating number. Because n′ ≥ �, M is divisible by
n′. Since gcd(2, m) = 1, there exists k ∈ {0, 1, 2, . . . , m − 1} such
that M ≡ −2k (mod m). We consider the number

X (n) = M +
k∑

i=1

2 · 10ci .

Note that 10c > X (n′), because c ≥ n′ and X (n′) has exactly n′ digits
(by the key fact we established earlier). It is not difficult to show that
X (n) is also alternating. It is clear that X (n) ≡ m+2k ≡ 0 (mod m),
that is, X (n) is divisible by m. This X (n) is also divisible by n′ (since
n′ divides 10n′

, which divides 10c) and is alternating. Thus X (n) is
an alternating number divisible by n; that is, n is an alternator.

Note: There are different approaches to both parts. Nevertheless, all these
methods work on powers of 2 and 5 first, and applying certain concatena-
tions of wobbly/alternating numbers. These particular methods have been
chosen because they are independent of the Chinese Remainder Theorem.

45. [USAMO 1995] Let p be an odd prime. The sequence (an)n≥0 is defined
as follows: a0 = 0, a1 = 1, . . . , ap−2 = p − 2, and for all n ≥ p − 1, an is
the least positive integer that does not form an arithmetic sequence of length
p with any of the preceding terms. Prove that for all n, an is the number
obtained by writing n in base-(p − 1) and reading the result in base-p.

Proof: We say that a subset of positive integers is p-progression-free if it
does not contain an arithmetic progression of length p. Denote by bn the
number obtained by writing n in base-(p −1) and reading it in base-p. One
can easily prove that an = bn for all n = 0, 1, 2, . . . by induction, using
the following properties of the set B = {b0, b1, . . . , bn, . . . }:

(a) B is p-progression-free;

(b) If bn−1 < a < bn for some n ≥ 1, then the set {b0, b1, . . . , bn−1, a}
is not p-progression-free.

Indeed, assume that (a) and (b) hold. By the definitions of ak and bk , we
have ak = bk for k = 0, 1, . . . , p − 2. Let ak = bk for all k ≤ n − 1, where
n ≥ p − 1. By (a), the set

{a0, a1, . . . , an−1, bn} = {b0, b1, . . . , bn−1, bn}
is p-progression-free, so an ≤ bn . Also, the inequality an < bn is impossi-
ble in view of (b). Hence an = bn and we are done.
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It remains to establish properties (a) and (b). Let us note first that B consists
of all numbers whose base-p representation does not contain the digit p−1.
Hence (a) follows from the fact that if a, a + d, . . . , a + (p − 1)d is any
arithmetic progression of length p, then all base-p digits occur in the base-
p representation of its terms. To see this, represent d in the form d = pmk,
where gcd(k, p) = 1. Then d ends in m zeros, and the digit δ preceding
them is nonzero. It is easy to see that if α is the (m + 1)st digit of a (from
right to left), then the corresponding digits of a, a + d, . . . , a + (p − 1)d
are the remainders of α, α + δ, . . . , α + (p − 1)δ modulo p, respectively. It
remains to note that α, α+δ, . . . , α+ (p −1)δ is a complete set of residues
modulo p, because δ is relatively prime to p. This finishes the proof of (a).

We start proving (b) by the remark that bn−1 < a < bn implies that a is not
in B. Since B consists precisely of the numbers whose base-p representa-
tions do not contain the digit p − 1, this very digit must occur in the base-p
representation of a. Let d be the number obtained from a by replacing each
of its digits by 0 if the digit is not p − 1, and by 1 if it is p − 1. Consider
the progression

a − (p − 1)d, a − (p − 2)d, . . . , a − d, a.

As the definition of d implies, the first p − 1 terms do not contain p − 1
in their base-p representation. Hence, being less than a, they must belong
to the set {b0, b1, . . . , bn−1}. Therefore the set {b0, b1, . . . , bn−1, a} is not
p-progression-free, and the proof is complete.

46. [IMO 2000] Determine whether there exists a positive integer n such that n
is divisible by exactly 2000 different prime numbers, and 2n +1 is divisible
by n.

Solution: The answer is positive.

We claim the following key fact:

For any integer a > 2 there exists a prime p such that p divides
(a3 + 1) but p does not divide (a + 1).

Indeed, since a3 + 1 = (a + 1)(a2 − a + 1), we need to show that there
exists a prime p such that p | (a2 − a + 1) but p � (a + 1). Since

a2 − a + 1 = (a + 1)(a − 2) + 3,

it follows that gcd(a2 − a + 1, a + 1) = 1 or gcd(a2 − a + 1, a + 1) = 3.
In the first case, our claim is clearly true. In the second case, we note that 3
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divides both a +1 and a −2, and so 3 fully divides a2 −a +1. Since a > 2,
a2 − a + 1 > 3, and so there is a prime p = 3 that divides a2 − a + 1, and
this prime p satisfies the conditions of the claim.

By our claim, there exist (odd) distinct primes p1, p2, p3, . . . , p2000 such
that p1 = 3, p2 = 3, p2 | (232 + 1), and

pi+1 | (23i+1 + 1), pi+1 � (23i + 1),

for every 2 ≤ i ≤ 1999. It is not difficult to see that

n = p2000
1 · p2 · · · p2000 = 32000 p2 · p2000

satisfies the conditions of the problem. Indeed, for every 2 ≤ i ≤ 2000,
3i | 32000, and so

pi | 23i + 1 | 232000 + 1.

By a simple induction, we also note that 3k+1 fully divides 23k +1 for every
positive integer k, because 3 fully divides a2 − a + 1 for a = 23k

(as we
have shown in the proof of our claim). Therefore,

n | 232000 + 1 | 2n + 1,

since n is a odd multiple of 32000.

47. Two cyclic symmetric divisibility relations.

(1) [Russia 2000] Determine whether there exist pairwise relatively prime
integers a, b, and c with a, b, c > 1 such that

b | 2a + 1, c | 2b + 1, a | 2c + 1.

(2) [TST 2003, by Reid Barton] Find all ordered triples of primes
(p, q, r) such that

p | qr + 1, q | r p + 1, r | pq + 1.

Solution: Order is the key word to this problem.

(1) The answer is negative. We claim that no such integers exist.
Assume for the sake of the contradiction that we did have pairwise
relatively prime integers a, b, c > 1 such that b divides 2a + 1, c
divides 2b + 1, and a divides 2c + 1. Then a, b, and c are all odd.



5. Solutions to Advanced Problems 177

To make our life a bit easier, we first assume that all a, b, c are primes.
By cyclic conditions given in the problem, we may assume that a < b
and a < c. By Fermat’s little theorem and Proposition 1.30, orda(2) |
gcd(2c, a − 1) = 2, by noting that c is a prime greater than a. Since
a is an odd prime, orda(2) must then be 2, implying that a = 3, and
so b | 2a + 1 = 9, which is a contradiction.
What if a, b, c are not all primes? We try to generalize our previ-
ous method. Let π(n) denote the smallest prime factor of a positive
integer n. We make the following claim:

If p is a prime such that p | (2y + 1) and p < π(y), then
p = 3.

The proof of our claim is similar to our previous discussion for the
case that all a, b, c are primes. Then ordp(2) | gcd(2y, p − 1) = 2.
Again, we have ordp(2) = 2 and p = 3, establishing our claim.
Now we solve our main problem. Since a, b, c are pairwise relatively
prime, π(a), π(b), and π(c) are distinct. Without loss of generality,
assume that π(a) < π(b), π(c). Applying the claim with (p, y) =
(π(a), c), we find that π(a) = 3. Write a = 3a0.
We claim that 3 fully divides a0. Otherwise, 9 would divide 2c + 1
and hence 22c − 1. Because 2n ≡ 1 (mod 9) only if 6 | n, we must
have 6 | 2c. Then 3 | c, contradicting the assumption that a and c are
relatively prime. Thus, 3 does not divide a0, b, or c. Let q = π(a0bc),
so that π(q) = q ≤ min{π(b), π(c)}.
Suppose, for the sake of contradiction, that q divides a. Because a and
c are relatively prime, q cannot divide c, implying that π(q) = q is
not equal to π(c). Because π(q) ≤ π(c), we must have π(q) < π(c).
Furthermore, q must divide 2c +1 because it divides a factor of 2c +1
(namely, a). Applying our claim with (p, y) = (q, c), we find that
q = 3, a contradiction. Hence, our assumption was wrong, and q
does not divide a. Similarly, q does not divide c. It follows that q
must divide b.
Now, let e be the order of 2 modulo q. Then e ≤ q − 1, so e has
no prime factors less than q . Also, q divides b and hence 2a + 1 and
22a −1, implying that e | 2a. The only prime factors of 2a less than q
are 2 and 3, so e | 6. Thus, q | (26 − 1), and q = 7. However, 23 ≡ 1
(mod 7), so

2a + 1 ≡ (23)a0 + 1 ≡ 1a0 + 1 ≡ 2 (mod 7).

Hence, q does not divide 2a + 1, contradicting the assumption that q
divides b, which divides 2a + 1.
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(2) The answers are (2, 5, 3) and cyclic permutations.
We check that this is a solution:

2 | 126 = 53 + 1, 5 | 10 = 32 + 1, 3 | 33 = 25 + 1.

Now let p, q , r be three primes satisfying the given divisibility rela-
tions. Since q does not divide qr + 1, p = q, and similarly q = r ,
r = p, so p, q , and r are all distinct. We apply introductory problem
1.49 (1) in this solution.
We first consider the case that p, q , and r are all odd. Since p | qr +1,
by introductory problem 49 (1), either 2r | p − 1 or p | q2 − 1. But
2r | p − 1 is impossible because 2r | p − 1 leads to p ≡ 1 (mod r),
or 0 ≡ pq + 1 ≡ 2 (mod r), which contradicts the fact that r > 2.
Thus we must have p | q2 − 1 = (q − 1)(q + 1). Since p is an
odd prime and q − 1, q + 1 are both even, we must have p | q−1

2 or

p | q+1
2 ; either way, p ≤ q+1

2 < q . But then by a similar argument
we may conclude that q < r , r < p, a contradiction.
Thus, at least one of p, q , r must equal 2. By a cyclic permutation we
may assume that q = 2. Now p | 2r + 1, so by introductory problem
49 (1) again, either 2r | p − 1 or p | 22 − 1 = 3. But 2r | p − 1 is
impossible as before, because r divides pq +1 = p2+1 = (p2−1)+2
and r > 2. Hence, we must have p = 3, and r | pq +1 = 32+1 = 10.
Because r = q , we must have r = 5. Hence (2, 5, 3) and its cyclic
permutations are the only solutions.

48. [IMO 2002 Short List] Let n be a positive integer, and let p1, p2, . . . , pn

be distinct primes greater than 3. Prove that 2p1 p2···pn + 1 has at least 4n

divisors.

First Proof: We induct on n.

For n = 1, we consider the number a1 = 2p1 +1. Since p1 is odd, 2p1 +1 ≡
−1 + 1 ≡ 0 (mod 3). Hence a1 has distinct divisors 1, 3, and a1 itself.
Since p1 > 3, it follows that a1 > 9, and so a1

3 is another divisor of a1,
implying that a1 has at least 4 distinct divisors 1, 3,

a1
3 , and a1, establishing

the base case.

Assume that the statement is true for n = k for some positive integer k;
that is, ak = 2p1 p2···pk + 1 has at least 4k divisors. We consider the case
n = k +1. Since p1, p2, . . . , pk+1 are odd, 3 divides both ak and 2pk+1 +1.
Also, by introductory problem 38 (3),

gcd(ak, 2pk+1 + 1) = gcd(2p1 p2···pk + 1, 2pk+1 + 1) = 3,
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or

gcd

(
ak,

2pk+1 + 1

3

)
= 1. (∗)

We note that both ak and 2pk+1 +1 divide ak+1, because p1 · · · pk and pk+1
are odd. We conclude that

ak+1 = ak · 2pk+1 + 1

3
· bk (∗∗)

for some integer bk . By the induction hypothesis, and by (∗), we conclude
that the product

ak · 2pk+1 + 1

3

has has at least 4k · 2 divisors, namely, those 4k divisors d1, d2, . . . , d4k of
ak and another 4k divisors

di · 2pk+1 + 1

3

for every 1 ≤ i ≤ 4k . We arrange these 2 ·4k divisors in increasing order as
d1 < d2 < · · · < d2·4k . By (∗∗), these numbers are also divisors of ak+1.
We now consider numbers

d1bk, d2bk, . . . , d2·4k bk .

They are also divisors of ak+1. We claim that

d1, d2, . . . , d2·4k , d1bk, d2bk, . . . , d2·4k bk

are distinct divisors of ak+1, from which our inductive step follows, since
we find 4k+1 divisors of ak+1. To establish our claim, it suffices to show
that

d1bk ≥ d2·4k .

Since d1 ≥ 1 and d2·4k ≤ ak · 2pk+1+1
3 , it suffices to show that

bk ≥ ak · 2pk+1 + 1

3
,

or (
ak · 2pk+1 + 1

3

)2

≤ ak+1,
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by (∗∗). The last inequality is equivalent to

(2p1 p2···pk + 1)2(2pk+1 + 1)2 ≤ 9(2p1 p2···pk+1 + 1),

which follows from the inequality

(2u + 1)2(2v + 1)2 ≤ 9(2uv + 1)

for integers u and v with u and v greater than or equal to 5. Indeed, we
have

(2u + 1)2(2v + 1)2 ≤ (22u + 2 · 2u + 1)(22v + 2 · 2v + 1)

< (3 · 22u + 1)(3 · 22v + 1) < 9(22u + 1)(22v + 1)

= 9(22u+2v + 22u + 22v + 1) < 9(22u+2v+2 + 1)

< 9(2uv + 1),

since uv − 2u − 2v − 2 = (u − 2)(v − 2) − 6 > 3.

Second Proof: (Based on work by Hyun Soo Kim) Call an integer “tene-
brous” if it is odd, square-free, not divisible by 3, and at least 5. For
any integer m, let ψ(m) denote the number of distinct prime factors of
m, and let d(m) denote the number of factors of m. We wish to prove that
d(2a + 1) ≥ 4τ(a) for all tenebrous integers a.

Induct on τ(a). For the base case τ(a) = 1, 2a + 1 is divisible by 3 exactly
once and is greater than 3, so τ(2a + 1) ≥ 2 and d(2a + 1) ≥ 4.

Now let a, b be relatively prime tenebrous integers such that the claim holds
for both a and b. Clearly 2ab + 1 is divisible by both 2a + 1 and 2b + 1, so
we can write

2ab + 1 = C · lcm[2a + 1, 2b + 1].

Because ab − 2a − 2b − 4 = (a − 2)(b − 2) − 8 > 0,

2ab + 1 > 22a+2b+4 > (2a + 1)2(2b + 1)2 > lcm[2a + 1, 2b + 1]2,

so C ≥ lcm[2a + 1, 2b + 1]. From the comment, we have gcd(2a + 1, 2b +
1) = 3, so as 3 divides each of 2a + 1 and 2b + 1 exactly once,

d(lcm[2a + 1, 2b + 1]) = d(2a + 1)d(2b + 1)

2
≥ 22τ(a)+2τ(b)−1.

For every divisor m of lcm[2a + 1, 2b + 1], both m and Cm are divisors of
2ab + 1. Since C > lcm[2a + 1, 2b + 1],

d(2ab + 1) ≥ 2 · d(lcm[2a + 1, 2b + 1]) ≥ 4τ(a)+τ(b),
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completing the induction.

Third Proof: (Based on work by Eric Price) Following the notation of the
second solution, a stronger claim is that for any tenebrous integer a,

τ(2a + 1) ≥ 2τ(a).

We proceed by induction on τ(a). The base case is the same as in the first
solution.

Now let a, b be coprime tenebrous integers. We claim that τ(2ab + 1) ≥
τ(2a + 1) + τ(2b + 1).

Note that

2ab + 1

2a + 1
=

b∑
i=1

(
b

i

)
(−2a − 1)i−1 ≡ b −

(
b

2

)
(2a + 1) (mod (2a + 1)2),

so if a prime p divides 2a + 1 exactly k ≥ 1 times, then p divides 2ab + 1
either k times (if p doesn’t divide b) or k + 1 times (if p divides b). In any
case p divides 2ab + 1 at most twice as many times as p divides 2a + 1.
The same is true for prime factors of 2b + 1.

As in the first solution, 2ab + 1 > (2a + 1)2(2b + 1)2, so in light of the
above, 2ab + 1 must have a prime factor dividing neither 2a + 1 nor 2b + 1.

Clearly 2ab + 1 is divisible by lcm[2a + 1, 2b + 1]. Because 2ab + 1 has a
prime factor not dividing lcm[2a + 1, 2b + 1], we have

τ(2ab + 1) ≥ τ(lcm[2a + 1, 2b + 1]) + 1

= τ(2a + 1) + τ(2b + 1) − τ(gcd(2a + 1, 2b + 1)) + 1

= τ(2a + 1) + τ(2b + 1) − τ(3) + 1

= τ(2a + 1) + τ(2b + 1),

completing the induction.

49. [Zhenfu Cao] Let p be a prime, and let {ak}∞k=0 be a sequence of integers
such that a0 = 0, a1 = 1, and

ak+2 = 2ak+1 − pak

for k = 0, 1, 2, . . . . Suppose that −1 appears in the sequence. Find all
possible values of p.
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Solution: The answer is p = 5. It is not difficult to see that it is a solution.
For p = 5, a3 = −1. Now we prove that it is the only solution.

Assume that am = −1 for some nonnegative integer m. Clearly, p = 2,
because otherwise ak+2 = 2ak+1 − 2ak is even and −1 will not appear in
the sequence. Thus, we can assume that gcd(2, p) = 1. We consider the
recursive relation

ak+2 = 2ak+1 − pak

modulo p, and then modulo p − 1. First, we obtain

ak+2 ≡ 2ak+1 (mod p),

implying that ak+1 ≡ 2ka1 mod p. In particular, we have

−1 ≡ am ≡ 2m−1a1 ≡ 2m−1 (mod p). (∗)

Second, we obtain

ak+2 ≡ 2ak+1 − ak (mod p − 1),

or

ak+2 − ak+1 ≡ ak+1 − ak (mod p − 1);
that is, the sequence is arithmetic modulo p − 1. Hence

ak+1 ≡ (k + 1)(a1 − a0) + a0 ≡ k + 1 (mod p − 1).

In particular, we have

−1 ≡ am ≡ m (mod p − 1),

or

m + 1 ≡ 0 (mod p − 1).

Since gcd(2, p) = 1, by Fermat’s little theorem, we have 2p−1 ≡ 1
(mod p). Combining the last two congruence relations and (∗), we have

1 ≡ 2m+1 ≡ 4 · 2m−1 ≡ −4 (mod p),

implying that 5 ≡ 0 (mod p); that is, p = 5 is the only possible value.
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50. [Qinsan Zhu] Let F be a set of subsets of the set {1, 2, . . . , n} such that

(a) if A is an element of F , then A contains exactly three elements;

(b) if A and B are two distinct elements in F , A and B share at most one
common element;

Let f (n) denote the maximum number of elements in F . Prove that

(n − 1)(n − 2)

6
≤ f (n) ≤ (n − 1)n

6
.

Proof: We will begin with the upper-bound inequality, since it is easier
to prove. For such a set F , let us count the number of distinct doubletons
{x, y} ⊂ {1, 2, . . . , n} that are subsets of some element of F . Since any set
A ∈ F contains 3 such distinct doubletons, and no two elements of F can
share a common doubleton, it means that

3 f (n) ≤
(

n

2

)
= n(n − 1)

2
,

so the right inequality is proved.

Now we prove the lower-bound inequality. The set S = {1, 2, . . . , n} has(n
3

) = n(n−1)(n−2)
6 3-element subsets. Let T denote the set of all these

3-element subsets. We consider the subsets

Ti = {{a, b, c} | {a, b, c} ∈ T , a + b + c ≡ i (mod n)} ,

for i = 0, 1, . . . , n − 1. It is clear that these subsets are nonintersecting
and their union is T ; that is, they form a partition of T . Since T has(n

3

) = n(n−1)(n−2)
6 elements, we may conclude by the pigeonhole principle

that at least one of these n subsets has at least n(n−1)(n−2)
6n = (n−1)(n−2)

6
elements. Say T j is such a subset. We claim that T j satisfies both conditions
(a) and (b).

It is clear T j satisfies condition (a). For (b), assume (for contradiction)
that there are two distinct elements A and B in T j that share at least two
elements. Assume that A = {x, y, z1} and B = {x, y, z2}. Since A and
B are elements of T j , we have x + y + z1 ≡ x + y + z2 ≡ j (mod n),
implying that z1 ≡ z2 (mod n). But recall that 1 ≤ z1, z2 ≤ n. So we
must have z1 = z2, and thus A = B, a contradiction.

It follows that we can set F = T j , and so f (n) is at least the number of
elements in T j ; that is,

f (n) ≥ (n − 1)(n − 2)

6
.
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Note: Under the same conditions, the last problem in the 6th Balkan Math-
ematics Olympiad (1989) was asking for

n(n − 4)

6
≤ f (n) ≤ (n − 1)n

6
.

Qinsan Zhu improved this result when he encountered this problem during
his preparation for the IMO 2004.

51. [IMO 1998] Determine all positive integers k such that

τ(n2)

τ (n)
= k,

for some n.

Note: Let n = pa1
1 pa2

2 · · · par
r be a prime decomposition of n. Then

τ(n) = (a1 + 1)(a2 + 1) · · · (ar + 1)

and

τ(n2) = (2a1 + 1)(2a2 + 1) · · · (2ar + 1).

It follows that τ(n2) is always odd, so if k is an integer, then it must be odd.

We now prove that the converse is also true; that is, if k is an odd positive
integer, then

k = τ(n2)

τ (n)
= (2a1 + 1)(2a2 + 1) · · · (2ar + 1)

(a1 + 1)(a2 + 1) · · · (ar + 1)
(∗)

for some nonnegative integers a1, a2, . . . , ar . (Since there are infinitely
many primes, we can always set n = pa1

1 pa2
2 · · · par

r .) We call a positive
integer acceptable if can be written in the above form.

First Solution: A natural approach is strong induction on k. The result is
trivial for k = 1 by setting n = 1, r = 1, and a1 = 0.

For any odd integer k > 1, if it is of the form 4m + 1, then

k = 4m + 1

2m + 1
· 2m + 1.

Since 2m + 1 < k, it is acceptable by the induction hypothesis. Hence k is
also acceptable.
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However, if k is of the form 4m + 3, then we further assume that it is of the
form 8m + 3. Then we have

k = 24m + 9

12m + 5
· 12m + 5

6m + 3
· (2m + 1),

and so k is acceptable by applying the induction hypothesis to 2m + 1 < k.
Our proof remains open for the case k = 8m + 7. We have to split into two
more cases again. To terminate this process, we reformulate the above idea
as follows.

Since every odd positive integer k can be written in the form 2s x − 1 for
some positive integer x , it suffices to show that if x is acceptable, then so is
2s x − 1 for every s ≥ 1. Let � be such that

τ(�2)

τ (�)
= x .

If s = 1, then

k = 2s x − 1 = 2x − 1 = 2x − 1

x
· x

shows that k = 2x − 1 is acceptable.

For s > 1, then

2s x − 1 = 2s · 3x − 3

2s−1 · 3x − 1
· 2s−132x − 3

2s−232x − 1
· 2s−233x − 3

2s−333x − 1
· · ·

223k−2x − 3

2 · 3k−2x − 1
· 2 · 3k−1x − 3

3k−1x
· x

shows that k = 2s x − 1 is acceptable. Our induction is thus complete.

Second Proof: The proof is again by strong induction. Clearly the asser-
tion is true for k = 1. Next assume that k > 1 is an odd positive integer
and that the assertion is true for all positive odd integers less than k. As in
the first solution, write k = 2s x − 1, where x is an odd integer less than k.
By the induction hypothesis, k0 is acceptable.

It suffices to find a1, a2, . . . , ar such that

k = x · 2a1 + 1

a1 + 1
· 2a2 + 1

a2 + 1
· · · 2at + 1

at + 1
. (∗∗)

Note that if we set a2 = 2a1, a3 = 2a2, and so on, the equation (∗∗) can be
simplified to

2s x − 1 = k = x · 2t a1 + 1

a1 + 1
,
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or

1 = 2s x − 2t a1 + 1

a1 + 1
· x = 2sa1 + 2s − 2t a1 − 1

a1 + 1
· x .

It is convenient to set t = s, and further reduce the above equation to

1 = 2s − 1

a1 + 1
· x,

or a1 + 1 = (2s − 1)x . Combining the above, we conclude that equation
(∗∗) can be satisfied by setting t = s, a1 = (2s − 1)x − 1, a2 = 2a1,
a3 = 2a2, . . . , at = 2at−1. Our induction is complete.

52. [China 2005] Let n be a positive integer greater than two. Prove that the
Fermat number fn has a prime divisor greater than 2n+2(n + 1).

Proof: For 1 ≤ n ≤ 4, we know that fn are primes, and the conclusion is
trivial. Now we assume that n ≥ 5.

By introductory problem 49, we may assume that

fn = pk1
1 pk2

2 · · · pkm
m , (∗)

where k is some positive integer, p1, . . . , pk are distinct primes, and k1,
. . . , km are positive integers with

pi = 2n+1xi + 1

for some positive integer xi , for every 1 ≤ i ≤ m. It suffices to show that

xi ≥ 2(n + 1) (∗∗)

for some 1 ≤ i ≤ m.

First, we give an upper bound for the sum k1 + k2 + · · · + km . Note that for
every i , pi ≥ 2n+1 + 1. It follows from (∗) and the binomial theorem that

22n + 1 = fn ≥ (2n+1 + 1)k1+k2+···+km ≥ 2(n+1)(k1+k2+···+km ) + 1,

implying that

k1 + k2 + · · · + km ≤ 2n

n + 1
. (†)

Second, we give a lower bound for the sum x1k1 + x2k2 + · · · + xmkm . By
the binomial theorem again, we have

pki
i ≡ (2n+1xi + 1)ki ≡ 2n+1xi ki + 1 (mod 22n+2).
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Since 2n > 2n + 2 for n ≥ 5, we have fn ≡ 1 (mod 22n+2). Taking the
equation (∗) modulo 22n+2 gives

1 ≡ (2n+1x1k1 + 1)(2n+1x2k2 + 1) · · · (2n+1xmkm + 1)

≡ 1 + 2n+1x1k1 + 2n+1x2k2 + · · · + 2n+1x2k2 (mod 22n+2),

or

0 ≡ 2n+1(x1k1 + x2k2 + · · · + xmkm) (mod 22n+2).

It follows that

0 ≡ x1k1 + x2k2 + · · · + xmkm (mod 2n+1).

Since the xi ’s and ki ’s are nonnegative, we conclude that

x1k1 + x2k2 + · · · + xmkm ≥ 2n+1. (‡)

Let xi = max{x1, x2, . . . , xm}. Then inequality (‡) implies that

xi (k1 + k2 + · · · + km) ≥ 2n+1.

By inequality (†), we conclude that

xi ≥ 2n+1

k1 + k2 + · · · + km
≥ 2n+1

2n

n+1

= 2(n + 1),

establishing the desired inequality (∗∗).
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Arithmetic function

A function defined on the positive integers that is complex valued.

Arithmetic-Geometric Means Inequality

If n is a positive integer and a1, a2, . . . , an are nonnegative real numbers, then

1

n

n∑
i=1

ai ≥ (a1a2 · · · an)1/n,

with equality if and only if a1 = a2 = · · · = an . This inequality is a special case
of the power mean inequality.

Base-b representation

Let b be an integer greater than 1. For any integer n ≥ 1 there is a unique system
(k, a0, a1, . . . , ak) of integers such that 0 ≤ ai ≤ b − 1, i = 0, 1, . . . , k, ak = 0
and

n = akbk + ak−1bk−1 + · · · + a1b + a0.

Beatty’s theorem

Let α and β be two positive irrational real numbers such that

1

α
+ 1

β
= 1.

The sets {�α	, �2α	, �3α	, . . . }, {�β	, �2β	, �3β	, . . . } form a partition of the set
of positive integers.
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Bernoulli’s inequality

For x > −1 and a > 1,

(1 + x)a ≥ 1 + ax,

with equality when x = 0.

Bézout’s identity

For positive integers m and n, there exist integers x and y such that mx + by =
gcd(m, n).

Binomial coefficient

(
n

k

)
= n!

k!(n − k)!
,

the coefficient of xk in the expansion of (x + 1)n .

Binomial theorem

The expansion

(x + y)n =
(

n

0

)
xn +

(
n

1

)
xn−1 y +

(
n

2

)
xn−2 y +· · ·+

(
n

n − 1

)
xyn−1 +

(
n

n

)
yn .

Canonical factorization

Any integer n > 1 can be written uniquely in the form

n = pα1
1 · · · pαk

k ,

where p1, . . . , pk are distinct primes and α1, . . . , αk are positive integers.

Carmichael numbers

The composite integers n satisfying an ≡ a (mod n) for every integer a.

Complete set of residue classes modulo n

A set S of integers such that for each 0 ≤ i ≤ n − 1 there is an element s ∈ S
with i ≡ s (mod n).
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Congruence relation

Let a, b, and m be integers, with m = 0. We say that a and b are congruent
modulo m if m | (a − b). We denote this by a ≡ b (mod m). The relation “≡”
on the set Z of integers is called the congruence relation.

Division algorithm

For any positive integers a and b there exists a unique pair (q, r) of nonnegative
integers such that b = aq + r and r < a.

Euclidean algorithm

Repeated application of the division algorithm:

m = nq1 + r1, 1 ≤ r1 < n,

n = r1q2 + r2, 1 ≤ r2 < r1,

...

rk−2 = rk−1qk + rk, 1 ≤ rk < rk−1,

rk−1 = rkqk+1 + rk+1, rk+1 = 0

This chain of equalities is finite because n > r1 > r2 > · · · > rk .

Euler’s theorem

Let a and m be relatively prime positive integers. Then

aϕ(m) ≡ 1 (mod m).

Euler’s totient function

The function ϕ(m) is defined to be the number of integers between 1 and n that
are relatively prime to m.

Factorial base expansion

Every positive integer k has a unique expansion

k = 1! · f1 + 2! · f2 + 3! · f3 + · · · + m! · fm,

where each fi is an integer, 0 ≤ fi ≤ i , and fm > 0.
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Fermat’s little theorem

Let a be a positive integer and let p be a prime. Then

a p ≡ a (mod p).

Fermat numbers

The integers fn = 22n + 1, n ≥ 0.

Fibonacci sequence

The sequence defined by F0 = 1, F1 = 1, and Fn+1 = Fn + Fn−1 for every
positive integer n.

Floor function

For a real number x there is a unique integer n such that n ≤ x < n + 1. We say
that n is the greatest integer less than or equal to x or the floor of x and we write
n = �x	.

Fractional part

The difference x − �x	 is called the fractional part of x and is denoted by {x}.

Fundamental theorem of arithmetic

Any integer n greater than 1 has a unique representation (up to a permutation) as
a product of primes.

Hermite’s identity

For any real number x and for any positive integer n,

�x	 +
⌊
+1

n

⌋
+
⌊
+2

n

⌋
+ · · · +

⌊
+n − 1

n

⌋
= �nx	.

Legendre’s formula

For any prime p and any positive integer n,

ep(n) =
∑
i≥1

⌊
n

pi

⌋
.
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Legendre’s function

Let p be a prime. For any positive integer n, let ep(n) be the exponent of p in the
prime factorization of n!.

Linear Diophantine equation

An equation of the form

a1x1 + · · · + an xn = b,

where a1, a2, . . . , an, b are fixed integers.

Mersenne numbers

The integers Mn = 2n − 1, n ≥ 1.

Möbius function

The arithmetic function µ defined by

µ(n) =
⎧⎨
⎩

1 if n = 1,

0 if p2 | n for some prime p > 1,

(−1)k if n = p1 · · · pk, where p1, . . . , pk are distinct primes.

Möbius inversion formula

Let f be an arithmetic function and let F be its summation function. Then

f (n) =
∑
d|n

µ(d)F
(n

d

)
.

Multiplicative function

An arithmetic function f = 0 with the property that for any relatively prime
positive integers m and n,

f (mn) = f (m) f (n).

Number of divisors

For a positive integer n denote by τ(n) the number of its divisors. It is clear that

τ(n) =
∑
d|n

1.
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Order modulo m

We say that a has order d modulo m, denoted by ordm(a) = d, if d is the smallest
positive integer such that ad ≡ 1 (mod m).

Perfect number

An integer n ≥ 2 with the property that the sum of its divisors is equal to 2n.

Pigeonhole Principle

If n objects are distributed among k < n boxes, some box contains at least two
objects.

Prime number theorem

The relation

lim
n→∞

π(n)

n/ log n
= 1,

where π(n) denotes the number of primes less than or equal to n.

Prime number theorem for arithmetic progressions

For relatively prime integers a and r , let πa,d(n) denote the number of primes in
the arithmetic progression a, a + d, a + 2d, a + 3d, . . . that are less than or equal
to n. Then

lim
n→∞

πa,d(n)

n/ log n
= 1

ϕ(d)
.

This result was conjectured by Legendre and Dirichlet and proved by Charles De
la Vallée Poussin.

Sum of divisors

For a positive integer n denote by σ(n) the sum of its positive divisors including
1 and n itself. It is clear that

σ(n) =
∑
d|n

d.
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Summation function

For an arithmetic function f the function F defined by

F(n) =
∑
d|n

f (d).

Wilson’s theorem

For any prime p, (p − 1)! ≡ −1 (mod p).

Zeckendorf representation

Each nonnegative integer n can be written uniquely in the form

n =
∞∑

k=0

αk Fk,

where αk ∈ {0, 1} and (αk, αk+1) = (1, 1) for each k.
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