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The shortest path between two truths in the real
domain passes through the complex domain.

Jacques Hadamard





Preface

In comparison with the first edition of this work, the main new features of
this version of the book are these:

• A number of important new problems have been added.
• Many solutions to the problems presented in the first edition have been

revised.
• Alternative solutions to several problems have been provided
• Section 4.6.5, “Blundon’s Inequalities,” has been added. It contains a

brand new geometric proof of the fundamental triangle inequality based
on the distance formulas established in the previous subsections.

• A number of typographical errors and LATEX infelicities have been cor-
rected.

• A few new works have been added to the references section.

We would like to thank all readers who have written to us to express their
appreciation of our book, as well as to all who provided pertinent comments
and suggestions for future improvement of the text. Special thanks are given
to Cătălin Barbu, Dumitru Olteanu, Cosmin Pohoaţă, and Daniel Văcăreţu
for their careful proofreading of the material included in this edition.

Happy reading!

Richardson, TX Titu Andreescu
Cluj-Napoca, Romania Dorin Andrica
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Preface to the First Edition

Solving algebraic equations has been historically one of the favorite topics of
mathematicians. While linear equations are always solvable in real numbers,
not all quadratic equations have this property. The simplest such equation is
x2 + 1 = 0. Until the eighteenth century, mathematicians avoided quadratic
equations that were not solvable over R. Leonhard Euler broke the ice by
introducing the “number”

√
−1 in his famous book Elements of Algebra as

“neither nothing, nor greater than nothing, nor less than nothing” and ob-
served the “notwithstanding this, these numbers present themselves to the
mind; they exist in our imagination and we still have a sufficient idea of them
. . . nothing prevents us from making use of these imaginary numbers and em-
ploying them in calculation.” Euler denoted the number

√
−1 by i and called

it the imaginary unit. This became one of the most useful symbols in mathe-
matics. Using this symbol, one defines complex numbers as z = a+ bi, where
a and b are real numbers. The study of complex numbers continues to this
day and has been greatly elaborated over the last two and a half centuries;
in fact, it is impossible to imagine modern mathematics without complex
numbers. All mathematical domains make use of them in some way. This
is true of other disciplines as well, including mechanics, theoretical physics,
hydrodynamics, and chemistry.

Our main goal is to introduce the reader to this fascinating subject. The
book runs smoothly between key concepts and elementary results concerning
complex numbers. The reader has the opportunity to learn how complex
numbers can be employed in solving algebraic equations and to understand
the geometric interpretation of complex numbers and the operations involving
them. The theoretical part of the book is augmented by rich exercises and
problems of various levels of difficulty. In Chaps. 3 and 4 we cover important
applications in Euclidean geometry. Many geometric problems may be solved
efficiently and elegantly using complex numbers. The wealth of examples we
provide, the presentation of many topics in a personal manner, the presence
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x Preface to the First Edition

of numerous original problems, and the attention to detail in the solutions
to selected exercises and problems are only some of the key features of this
book.

Among the techniques presented, for example, are those for the real and
the complex products of complex numbers. In the language of complex num-
bers, these are the analogues of the scalar and cross products, respectively.
Employing these two products turns out to be efficient in solving numerous
problems involving complex numbers. After covering this part, the reader will
appreciate the use of these techniques.

A special feature of the book is Chap. 5, an outstanding selection of genuine
Olympiad and other important mathematical contest problems solved using
the methods already presented.

This work does not cover all aspects of complex numbers. It is not a course
in complex analysis, but rather a stepping stone toward its study, which is
why we have not used the standard notation eit for z = cos t + i sin t or the
usual power series expansions.

The book reflects the unique experience of the authors. It distills a vast
mathematical literature, most of which is unknown to the Western public,
capturing the essence of an flourishing problem-solving culture.

Our work is partly based on the Romanian version, Numere complexe
de la A la. . . Z, written by D. Andrica and N. Bişboacă and published by
Millennium in 2001 (see [17]). We are preserving the title of the Romanian
edition and about 35% of the text. Even this 35% has been significantly
improved and enhanced with up-to-date material.

The targeted audience includes high school students and their teachers, un-
dergraduates, mathematics contestants such as those training for Olympiads
or the W.L. Putnam Mathematical Competition, their coaches, and everyone
interested in essential mathematics.

This book might spawn courses such as complex numbers and Euclidean
geometry for prospective high school teachers, giving future educators ideas
about things they could do with their brighter students or with a math club.
This would be quite a welcome development.

Special thanks are offered to Daniel Văcăreţu, Nicolae Bişboacă, Gabriel
Dospinescu, and Ioan Şerdean for their careful proofreading of the final ver-
sion of the manuscript. We would also like to thank the referees, who pro-
vided pertinent suggestions that directly contributed to the improvement of
the text.

Richardson, TX Titu Andreescu
Cluj-Napoca, Romania Dorin Andrica
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Q The set of rational numbers
R The set of real numbers
R
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Chapter 1

Complex Numbers in Algebraic Form

1.1 Algebraic Representation of Complex Numbers

1.1.1 Definition of Complex Numbers

In what follows, we assume that the definition and basic properties of the set
of real numbers R are known.

Let us consider the set R
2 = R × R = {(x, y)|x, y ∈ R}. Two elements

(x1, y1) and (x2, y2) of R2 are equal if and only if x1 = x2 and y1 = y2.
The operations of addition and multiplication are defined on the set R

2 as
follows:

z1 + z2 = (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) ∈ R
2

and

z1 · z2 = (x1, y1) · (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1) ∈ R
2,

for all z1 = (x1, y1) ∈ R
2 and z2 = (x2, y2) ∈ R

2.
The element z1 + z2 ∈ R

2 is called the sum of z1 and z2, and the element
z1 · z2 ∈ R

2 is called the product of z1 and z2 and will often be written simply
z1z2.

Remarks.

(1) If z1=(x1, 0)∈R
2 and z2=(x2, 0)∈R

2, then z1z2=(x1x2, 0).
(2) If z1 = (0, y1) ∈ R

2 and z2 = (0, y2) ∈ R
2, then z1z2 = (−y1y2, 0).

Examples.

(1) Let z1 = (−5, 6) and z2 = (1, −2). Then

z1 + z2 = (−5, 6) + (1, −2) = (−4, 4)

T. Andreescu and D. Andrica, Complex Numbers from A to ... Z,
DOI 10.1007/978-0-8176-8415-0 1, © Springer Science+Business Media New York 2014
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2 1 Complex Numbers in Algebraic Form

and

z1z2 = (−5, 6) · (1, −2) = (−5 + 12, 10 + 6) = (7, 16).

(2) Let z1 =
(
− 1

2 , 1
)
and z2 =

(
− 1

3 ,
1
2

)
. Then

z1 + z2 =

(
−1

2
− 1

3
, 1 +

1

2

)
=

(
−5

6
,
3

2

)

and

z1z2 =

(
1

6
− 1

2
, −1

4
− 1

3

)
=

(
−1

3
, − 7

12

)
.

Definition. The set R2 together with the operations of addition and multi-
plication is called the set of complex numbers, denoted by C. Every element
z = (x, y) ∈ C is called a complex number.

The notation C
∗ is used to indicate the set C\{(0, 0)}.

1.1.2 Properties Concerning Addition

The addition of complex numbers satisfies the following properties:

(a) Commutative law.

z1 + z2 = z2 + z1 for all z1, z2 ∈ C.

(b) Associative law.

(z1 + z2) + z3 = z1 + (z2 + z3) for all z1, z2, z3 ∈ C.

Indeed, if z1 = (x1, y1) ∈ C, z2 = (x2, y2) ∈ C, z3 = (x3, y3) ∈ C, then

(z1 + z2) + z3 = [(x1, y1) + (x2, y2)] + (x3, y3)

= (x1 + x2, y1 + y2) + (x3, y3) = ((x1 + x2) + x3, (y1 + y2) + y3),

and
z1 + (z2 + z3) = (x1, y1) + [(x2, y2) + (x3, y3)]

= (x1, y1) + (x2 + x3, y2 + y3) = (x1 + (x2 + x3), y1 + (y2 + y3)).

The claim holds due to the associativity of the addition of real numbers.
(c) Additive identity. There is a unique complex number 0 = (0, 0) such

that
z + 0 = 0 + z = z for all z = (x, y) ∈ C.
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(d) Additive inverse. For every complex number z = (x, y), there is a
unique −z = (−x, −y) ∈ C such that

z + (−z) = (−z) + z = 0.

The reader can easily prove the claims (a), (c), and (d).
The number z1−z2 = z1+(−z2) is called the difference of the numbers z1
and z2. The operation that assigns to the numbers z1 and z2 the number
z1 − z2 is called subtraction and is defined by

z1 − z2 = (x1, y1)− (x2, y2) = (x1 − x2, y1 − y2) ∈ C.

1.1.3 Properties Concerning Multiplication

The multiplication of complex numbers satisfies the following properties:

(a) Commutative law.

z1 · z2 = z2 · z1 for all z1, z2 ∈ C.

(b) Associative law.

(z1 · z2) · z3 = z1 · (z2 · z3) for all z1, z2, z3 ∈ C.

(c) Multiplicative identity. There is a unique complex number 1 =
(1, 0) ∈ C such that

z · 1 = 1 · z = z for all z ∈ C.

A simple algebraic manipulation is all that is needed to verify these
equalities:

z · 1 = (x, y) · (1, 0) = (x · 1− y · 0, x · 0 + y · 1) = (x, y) = z

and

1 · z = (1, 0) · (x, y) = (1 · x− 0 · y, 1 · y + 0 · x) = (x, y) = z.

(d) Multiplicative inverse. For every complex number z = (x, y) ∈ C
∗,

there is a unique number z−1 = (x′, y′) ∈ C such that

z · z−1 = z−1 · z = 1.

To find z−1 = (x′, y′), observe that (x, y) �= (0, 0) implies x �= 0 or y �= 0,
and consequently, x2 + y2 �= 0.
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The relation z · z−1 = 1 gives (x, y) · (x′, y′) = (1, 0), or equivalently,

{
xx ′ − yy ′ = 1,
yx ′ + xy ′ = 0.

Solving this system with respect to x′ and y′, one obtains

x′ =
x

x2 + y2
and y′ = − y

x2 + y2
;

hence the multiplicative inverse of the complex number z = (x, y) ∈ C
∗ is

z−1 =
1

z
=

(
x

x2 + y2
, − y

x2 + y2

)
∈ C

∗.

By the commutative law, we also have z−1 · z = 1.
Two complex numbers z1 = (x1, y1) ∈ C and z = (x, y) ∈ C

∗

uniquely determine a third number, called their quotient, denoted by z1
z and

defined by

z1
z

= z1 · z−1 = (x1, y1) ·
(

x

x2 + y2
, − y

x2 + y2

)

=

(
x1x+ y1y

x2 + y2
,
−x1y + y1x

x2 + y2

)
∈ C.

Examples.

(1) If z = (1, 2), then

z−1 =

(
1

12 + 22
,

−2

12 + 22

)
=

(
1

5
,
−2

5

)
.

(2) If z1 = (1, 2) and z2 = (3, 4), then

z1
z2

=

(
3 + 8

9 + 16
,
−4 + 6

9 + 16

)
=

(
11

25
,

2

25

)
.

An integer power of a complex number z ∈ C
∗ is defined by

z0 = 1; z1 = z; z2 = z · z;

zn = z · z · · · z︸ ︷︷ ︸
n times

for all integersn > 0

and zn = (z−1)−n for all integers n < 0.

The following properties hold for all complex numbers z, z1, z2 ∈ C
∗ and

for all integers m, n:
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(1) zm · zn = zm+n;

(2)
zm

zn
= zm−n;

(3) (zm)n = zmn;

(4) (z1 · z2)n = zn1 · zn2 ;

(5)

(
z1
z2

)n
=

zn1
zn2

.

When z = 0, we define 0n = 0 for all integers n > 0.

(e) Distributive law.

z1 · (z2 + z3) = z1 · z2 + z1 · z3 for all z1, z2, z3 ∈ C.

The above properties of addition and multiplication show that the set C
of all complex numbers, together with these operations, forms a field.

1.1.4 Complex Numbers in Algebraic Form

For algebraic manipulation, it is inconvenient to represent a complex number
as an ordered pair. For this reason, another form of writing is preferred.

To introduce this new algebraic representation, consider the set R× {0},
together with the addition and multiplication operations defined on R

2. The
function

f : R → R× {0}, f(x) = (x, 0),

is bijective, and moreover,

(x, 0) + (y, 0) = (x+ y, 0) and (x, 0) · (y, 0) = (xy , 0).

The reader will not fail to notice that the algebraic operations on R×{0}
are similar to the operations on R; therefore, we can identify the ordered pair
(x, 0) with the number x for all x ∈ R. Hence we can use, by the above
bijection f , the notation (x, 0) = x.

Setting i = (0, 1), we obtain

z = (x, y) = (x, 0) + (0, y) = (x, 0) + (y, 0) · (0, 1)

= x+ yi = (x, 0) + (0, 1) · (y, 0) = x+ iy .

In this way, we obtain the following result.

Proposition. Every complex number z = (x, y) can be uniquely represented
in the form

z = x+ yi ,

where x, y are real numbers. The relation i2 = −1 holds.
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The formula i2 = −1 follows directly from the definition of multiplication:

i2 = i · i = (0, 1) · (0, 1) = (−1, 0) = −1.

The expression x + yi is called the algebraic representation (form) of the
complex number z = (x, y), so we can write C = {x+ yi |x ∈ R, y ∈ R, i2 =
−1}. From now on, we will denote the complex number z = (x, y) by x+ iy .
The real number x = Re(z) is called the real part of the complex number z,
and similarly, y = Im(z) is called the imaginary part of z. Complex numbers
of the form iy , y ∈ R

∗, are called purely imaginary and the complex number
i is called the imaginary unit.

The following relations are easy to verify:

(a) z1 = z2 if and only if Re(z1) = Re(z2) and Im(z1) = Im(z2).
(b) z ∈ R if and only if Im(z) = 0.
(c) z ∈ C\R if and only if Im(z) �= 0.

Using the algebraic representation, the usual operations with complex
numbers can be performed as follows:

1. Addition

z1 + z2 = (x1 + y1i) + (x2 + y2i) = (x1 + x2) + (y1 + y2)i ∈ C.

It is easy to observe that the sum of two complex numbers is a complex
number whose real (imaginary) part is the sum of the real (imaginary)
parts of the given numbers:

Re(z1 + z2) = Re(z1) + Re(z2);

Im(z1 + z2) = Im(z1) + Im(z2).

2. Multiplication

z1 · z2 = (x1 + y1i)(x2 + y2i) = (x1x2 − y1y2) + (x1y2 + x2y1)i ∈ C.

In other words,

Re(z1z2) = Re(z1) ·Re(z2)− Im(z1) · Im(z2)

and
Im(z1z2) = Im(z1) · Re(z2) + Im(z2) ·Re(z1).

For a real number λ and a complex number z = x+ yi ,

λ · z = λ(x+ yi) = λx+ λyi ∈ C

is the product of a real number and a complex number. The following
properties are obvious:

(1) λ(z1 + z2) = λz1 + λz2;
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(2) λ1(λ2z) = (λ1λ2)z;
(3) (λ1 + λ2)z = λ1z + λ2z for all z, z1, z2 ∈ C and λ, λ1, λ2 ∈ R.

In fact, relations (1) and (3) are special cases of the distributive law, and
relation (2) comes from the associative law of multiplication for complex
numbers.

3. Subtraction

z1 − z2 = (x1 + y1i)− (x2 + y2i) = (x1 − x2) + (y1 − y2)i ∈ C.

That is,

Re(z1 − z2) = Re(z1)− Re(z2);

Im(z1 − z2) = = Im(z1)− Im(z2).

1.1.5 Powers of the Number i

The formulas for the powers of a complex number with integer exponents are
preserved for the algebraic form z = x+ iy . Setting z = i, we obtain

i0 = 1; i1 = i; i2 = −1; i3 = i2 · i = −i;

i4 = i3 · i = 1; i5 = i4 · i = i; i6 = i5 · i = −1; i7 = i6 · i = −i.

One can prove by induction that for every positive integer n,

i4n = 1; i4n+1 = i; i4n+2 = −1; i4n+3 = −i.

Hence in ∈ {−1, 1, −i, i} for all integers n ≥ 0. If n is a negative integer, we
have

in = (i−1)−n =

(
1

i

)−n

= (−i)−n.

Examples.

(1) We have

i105 + i23 + i20 − i34 = i4·26+1 + i4·5+3 + i4·5 − i4·8+2 = i− i+ 1 + 1 = 2.

(2) Let us solve the equation z3 = 18 + 26i, where z = x + yi and x, y are
integers. We can write

(x+ yi)3 = (x+ yi)2(x+ yi) = (x2 − y2 + 2xyi)(x + yi)

= (x3 − 3xy2) + (3x2y − y3)i = 18 + 26i.
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Using the definition of equality of complex numbers, we obtain

{
x3 − 3xy2 = 18,
3x2y − y3 = 26.

Setting y = tx in the equality 18(3x2y − y3) = 26(x3 − 3xy2), let us observe
that x �= 0 and y �= 0 implies 18(3t− t3) = 26(1 − 3t2), which is equivalent
to (3t − 1)(3t2 − 12t − 13) = 0.

The only rational solution of this equation is t = 1
3 ; hence,

x = 3, y = 1, and z = 3 + i.

1.1.6 Conjugate of a Complex Number

For a complex number z = x+yi the number z = x−yi is called the complex
conjugate of z or occasionally the conjugate complex number of z.

Proposition.

(1) The relation z = z holds if and only if z ∈ R.
(2) For every complex number z, the relation z = z holds.
(3) For every complex number z, the number z · z ∈ R is a nonnegative real

number.
(4) z1 + z2 = z1 + z2 (the conjugate of a sum is the sum of the conjugates).
(5) z1 · z2 = z1 · z2 (the conjugate of a product is the product of the conju-

gates).
(6) For every nonzero complex number z, the relation z−1 = (z)−1 holds.

(7)

(
z1
z2

)
=

z1
z2

, z2 �= 0 (the conjugate of a quotient is the quotient of the

conjugates).
(8) The formulas

Re(z) =
z + z

2
and Im(z) =

z − z

2i

are valid for all z ∈ C.

Proof.

(1) If z = x + yi , then the relation z = z is equivalent to x + yi = x − yi .
Hence 2yi = 0, so y = 0, and finally, z = x ∈ R.

(2) We have z = x− yi and z = x− (−y)i = x+ yi = z.
(3) Observe that z · z = (x+ yi)(x − yi) = x2 + y2 ≥ 0.
(4) Note that

z1 + z2 = (x1 + x2) + (y1 + y2)i = (x1 + x2)− (y1 + y2)i

= (x1 − y1i) + (x2 − y2i) = z1 + z2.
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(5) We can write

z1 · z2 = (x1x2 − y1y2) + (x1y2 + x2y1)i

= (x1x2 − y1y2)− (x1y2 + x2y1)i = (x1 − y1i)(x2 − y2i) = z1 · z2.

(6) Because z · 1
z
= 1, we have

(
z · 1

z

)
= 1, and consequently, z ·

(
1

z

)
= 1,

yielding (z−1) = (z)−1.

(7) Observe that

(
z1
z2

)
=

(
z1 ·

1

z2

)
= z1 ·

(
1

z2

)
= z1 ·

1

z2
=

z1
z1

.

(8) From the relations

z + z = (x+ yi) + (x − yi) = 2x,

z − z = (x+ yi)− (x − yi) = 2yi ,

it follows that

Re(z) =
z + z

2
and Im(z) =

z − z

2i
,

as desired. �

Properties (4) and (5) can be easily extended to give

(4′)
(

n∑

k=1

zk

)
=

n∑

k=1

zk;

(5′)
(

n∏

k=1

zk

)
=

n∏

k=1

zk for all zk ∈ C, k = 1, 2, . . . , n.

As a consequence of (5′) and (6), we have
(5′′) (zn) = (z)n for every integer n and for every z ∈ C. If n < 0, then the

formula holds for every z �= 0.

Comments.

(a) To obtain the multiplicative inverse of a complex number z ∈ C
∗, one

can use the following approach:

1

z
=

z

z · z =
x− yi

x2 + y2
=

x

x2 + y2
− y

x2 + y2
i.

(b) The complex conjugate allows us to obtain the quotient of two complex
numbers as follows:

z1
z2

=
z1 · z2
z2 · z2

=
(x1 + y1i)(x2 − y2i)

x2
2 + y22

=
x1x2 + y1y2
x2
2 + y22

+
−x1y2 + x2y1

x2
2 + y22

i.
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Examples.

(1) Compute z = 5+5i
3−4i +

20
4+3i .

Solution. We can write

z =
(5 + 5i)(3 + 4i)

9− 16i2
+

20(4− 3i)

16− 9i2
=

−5 + 35i

25
+

80− 60i

25

=
75− 25i

25
= 3− i.

(2) Let z1, z2 ∈ C. Prove that the number E = z1 · z2 + z1 · z2 is a real
number.

Solution. We have

E = z1 · z2 + z1 · z2 = z1 · z2 + z1 · z2 = E; soE ∈ R.

1.1.7 The Modulus of a Complex Number

The number |z| =
√
x2 + y2 is called the modulus or the absolute value of

the complex number z = x+ yi . For example, the complex numbers

z1 = 4 + 3i, z2 = −3i, z3 = 2

have moduli

|z1| =
√
42 + 32 = 5, |z2| =

√
02 + (−3)2 = 3, |z3| =

√
22 = 2.

Proposition. The following properties are satisfied:

(1) −|z| ≤ Re(z) ≤ |z| and − |z| ≤ Im(z) ≤ |z|.
(2) |z| ≥ 0 for all z ∈ C. Moreover, we have |z| = 0 if and only if z = 0.
(3) |z| = | − z| = |z|.
(4) z · z = |z|2.
(5) |z1 · z2| = |z1|·|z2| (the modulus of a product is the product of the moduli).
(6) |z1| − |z2| ≤ |z1 + z2| ≤ |z1|+ |z2|.
(7) |z−1| = |z|−1, z �= 0.

(8)

∣
∣∣
∣
z1
z2

∣
∣∣
∣ =

|z1|
|z2|

, z2 �= 0 (the modulus of a quotient is the quotient of the

moduli).
(9) |z1| − |z2| ≤ |z1 − z2| ≤ |z1|+ |z2|.

Proof. One can easily check that (1) through (4) hold.

(5) We have |z1 · z2|2 = (z1 · z2)(z1 · z2) = (z1 · z1)(z2 · z2) = |z1|2 · |z2|2, and
consequently, |z1 · z2| = |z1| · |z2|, since |z| ≥ 0 for all z ∈ C.
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(6) Observe that

|z1+z2|2= (z1+z2)(z1 + z2) = (z1+z2)(z1+z2) = |z1|2+z1z2+z1·z2+|z2|2.

Because z1 · z2 = z1 · z2 = z1 · z2, it follows that

z1z2 + z1 · z2 = 2Re(z1 z2) ≤ 2|z1 · z2| = 2|z1| · |z2|,

whence
|z1 + z2|2 ≤ (|z1|+ |z2|)2,

and consequently, |z1 + z2| ≤ |z1|+ |z2|, as desired.
In order to obtain the inequality on the left-hand side, note that

|z1| = |z1 + z2 + (−z2)| ≤ |z1 + z2|+ | − z2| = |z1 + z2|+ |z2|,

whence
|z1| − |z2| ≤ |z1 + z2|.

(7) Note that the relation z · 1
z
= 1 implies |z| ·

∣
∣
∣∣
1

z

∣
∣
∣∣ = 1, or

∣
∣
∣∣
1

z

∣
∣
∣∣ =

1

|z| . Hence

|z−1| = |z|−1.
(8) We have

∣
∣∣
∣
z1
z2

∣
∣∣
∣ =
∣
∣∣
∣z1 ·

1

z2

∣
∣∣
∣ =
∣∣z1 · z−1

2

∣∣ = |z1| · |z−1
2 | = |z1| · |z2|−1 =

|z1|
|z2|

.

(9) We can write |z1| = |z1−z2+z2| ≤ |z1−z2|+ |z2|, so |z1−z2| ≥ |z1|−|z2|.
On the other hand,

|z1 − z2| = |z1 + (−z2)| ≤ |z1|+ | − z2| = |z1|+ |z2|. �

Remarks.

(1) The inequality |z1 + z2| ≤ |z1| + |z2| becomes an equality if and only
if Re(z1z2) = |z1||z2|. This is equivalent to z1 = tz2, where t is a
nonnegative real number.

(2) Properties (5) and (6) can be easily extended to give

(5′)
∣
∣
∣∣

n∏

k=1

zk

∣
∣
∣∣ =

n∏

k=1

|zk|;

(6′)
∣
∣∣
∣

n∑

k=1

zk

∣
∣∣
∣ ≤

n∑

k=1

|zk| for all zk ∈ C, k = 1, . . . , n.

As a consequence of (5′) and (7), we have
(5′′) |zn| = |z|n for every integer n and complex number z, provided that

z �= 0 for n < 0.
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Problem 1. Prove the identity

|z1 + z2|2 + |z1 − z2|2 = 2(|z1|2 + |z2|2)

for all complex numbers z1, z2.

Solution. Using property (4) in the proposition above, we obtain

|z1 + z2|2 + |z1 − z2|2 = (z1 + z2)(z1 + z2) + (z1 − z2)(z1 − z2)

= |z1|2 + z1 · z2 + z2 · z1 + |z2|2 + |z1|2 − z1 · z2 · −z2 · z1 + |z2|2

= 2(|z1|2 + |z2|2).

Problem 2. Prove that if |z1| = |z2| = 1 and z1z2 �= −1, then
z1 + z2
1 + z1z2

is a

real number.

Solution. Using again property (4) in the above proposition, we have

z1 · z1 = |z1|2 = 1 and z1 =
1

z1
.

Likewise, z2 = 1
z2
. Hence denoting by A the number in the problem, we have

A =
z1 + z2

1 + z1 · z2
=

1
z1

+ 1
z2

1 + 1
z1

· 1
z2

=
z1 + z2
1 + z1z2

= A,

so A is a real number.

Problem 3. Let a be a positive real number and let

Ma =

{
z ∈ C

∗ :

∣∣
∣
∣z +

1

z

∣∣
∣
∣ = a

}
.

Find the minimum and maximum values of |z| when z ∈ Ma.

Solution. Squaring both sides of the equality a =

∣
∣
∣
∣z +

1

z

∣
∣
∣
∣, we get

a2 =

∣
∣∣
∣z +

1

z

∣
∣∣
∣

2

=

(
z +

1

z

)(
z +

1

z

)
= |z|2 + z2 + (z)2

|z|2 +
1

|z|2

=
|z|4 + (z + z)2 − 2|z|2 + 1

|z|2 .

Hence
|z|4 − |z|2 · (a2 + 2) + 1 = −(z + z)2 ≤ 0,
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and consequently,

|z|2 ∈
[
a2 + 2−

√
a4 + 4a2

2
,
a2 + 2 +

√
a4 + 4a2

2

]

.

It follows that |z| ∈
[
−a+

√
a2+4

2 , a+
√
a2+4
2

]
, so

max |z| = a+
√
a2 + 4

2
, min |z| = −a+

√
a2 + 4

2
,

and the extreme values are obtained for the complex numbers in M satisfying
z = −z.

Problem 4. Prove that for every complex number z,

|z + 1| ≥ 1√
2
or |z2 + 1| ≥ 1.

Solution. Suppose by way of contradiction that

|1 + z| < 1√
2
and |1 + z2| < 1.

Setting z = a+ bi with a, b ∈ R yields z2 = a2 − b2 + 2abi . We obtain

(1 + a2 − b2)2 + 4a2b2 < 1 and (1 + a)2 + b2 <
1

2
,

and consequently,

(a2 + b2)2 + 2(a2 − b2) < 0 and 2(a2 + b2) + 4a+ 1 < 0.

Summing these inequalities implies

(a2 + b2)2 + (2a+ 1)2 < 0,

which is a contradiction.

Problem 5. Prove that

√
3 ≤ |1 + z|+ |1− z + z2| ≤ 13

4

for all complex numbers z such that |z| = 1.

Solution. Let t = |1 + z| ∈ [0, 2]. We have

t2 = (1 + z)(1 + z) = 2 + 2Re(z), so Re(z) =
t2 − 2

2
.
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Then

|1− z + z2|2 = (1− z + z2)(1 − z + z2) = (1− z + z2)

(
1− 1

z
+

1

z2

)

=

(
z2 − z + 1

z

)2
=

(
z +

1

z
− 1

)2
= (z+z−1)2 = [2Re(z)−1]2 = (t2−3)2,

and we obtain |1− z + z2| = |t2 − 3|. It suffices to find the extreme values of
the function (Fig. 1.1).

f : [0, 2] → R, f(t) = t+ |t2 − 3| =
{
−t2 + t+ 3 if t ∈ [0,

√
3],

t2 + t− 3 if t ∈ [
√
3, 2].

The graph of the function f is shown in Figure 1.1,
and we obtain

f(
√
3) =

√
3 ≤ t+ |t2 − 3| ≤ f

(
1

2

)
=

13

4
.

3

√
3

√
31

2 2
O t

13
4

Figure 1.1.

Problem 6. Consider the set

H = {z ∈ C : z = x− 1 + xi , x ∈ R}.

Prove that there is a unique number z ∈ H such that |z| ≤ |w| for all w ∈ H .
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Solution. Let ω = y − 1 + yi, with y ∈ R.
It suffices to prove that there is a unique number x ∈ R such that

(x − 1)2 + x2 ≤ (y − 1)2 + y2

for all y ∈ R.
In other words, x is the minimum point of the function

f : R → R, f(y) = (y − 1)2 + y2 = 2y2 − 2y + 1 = 2

(
y − 1

2

)2
+

1

2
,

whence x = 1
2 and z = − 1

2 + 1
2 i.

Problem 7. Let x, y, z be distinct complex numbers such that

y = tx + (1− t)z, t ∈ (0, 1).

Prove that
|z| − |y|
|z − y| ≥ |z| − |x|

|z − x| ≥ |y| − |x|
|y − x| .

Solution. The relation y = tx+ (1− t)z is equivalent to

z − y = t(z − x).

The inequality
|z| − |y|
|z − y| ≥ |z| − |x|

|z − x|
becomes

|z| − |y| ≥ t (|z| − |x|),

and consequently,
|y| ≤ (1− t)|z|+ t|x|.

This is the triangle inequality for

y = (1 − t)z + tx .

The second inequality can be proved similarly, by writing the equality

y = tx + (1 − t)z

as
y − x = (1− t)(z − x).
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1.1.8 Solving Quadratic Equations

We are now able to solve the quadratic equation with real coefficients

ax2 + bx + c = 0, a �= 0,

in the case that its discriminant Δ = b2 − 4ac is negative.
By completing the square, we easily get the equivalent form

a

[(
x+

b

2a

)2
+

−Δ

4a2

]

= 0.

Therefore,
(
x+

b

2a

)2
− i2
(√

−Δ

2a

)2
= 0,

and so x1 =
−b+ i

√
−Δ

2a
, x2 =

−b− i
√
−Δ

2a
.

Observe that the roots are conjugate complex numbers, and the factoriza-
tion formula

ax2 + bx+ c = a(x− x1)(x− x2)

holds even in the case Δ < 0.
Let us consider now the general quadratic equation with complex coeffi-

cients
az2 + bz + c = 0, a �= 0.

Using the same algebraic manipulation as in the case of real coefficients, we
get

a

[(
z +

b

2a

)2
− Δ

4a2

]

= 0.

This is equivalent to (
z +

b

2a

)2
=

Δ

4a2
,

or
(2az + b)2 = Δ,

where Δ = b2 − 4ac is also called the discriminant of the quadratic equation.
If we set y = 2az + b, the equation is reduced to

y2 = Δ = u+ vi ,

where u and v are real numbers.
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This equation has the solutions

y1,2 = ±
(√

r + u

2
+ sgn(v)

√
r − u

2
i

)

,

where r = |Δ| and sgn(v) is the sign of the real number v. Indeed, we have
y21,2 = r+u

2 + 2i 12
√
r2 − u2sgn(v) = u+ i|v|sgn(v) = u+ iv.

The roots of the initial equation are

z1,2 =
1

2a
(−b+ y1,2).

Observe that the relations

z1 + z2 = − b

a
, z1z2 =

c

a
,

between roots and coefficients as well as the factorization formula

az2 + bz + c = a(z − z1)(z − z2)

are also preserved when the coefficients of the equation are elements of the
field of complex numbers C.

Problem 1. Solve, in complex numbers, the quadratic equation

z2 − 8(1− i)z + 63− 16i = 0.

Solution. We have

Δ′ = (4− 4i)2 − (63− 16i) = −63− 16i

and r = |Δ′| =
√
632 + 162 = 65, where Δ′ =

(
b
2

)2 − ac.
The equation

y2 = −63− 16i

has the solution y1,2 = ±
(√

65−63
2 + i

√
65+63

2

)
= ±(1 − 8i). It follows that

z1,2 = 4− 4i± (1 − 8i). Hence

z1 = 5− 12i and z2 = 3 + 4i.

Problem 2. Let p and q be complex numbers with q �= 0. Prove that if the
roots of the quadratic equation x2+px +q2 = 0 have the same absolute value,
then p

q is a real number.

(1999 Romanian Mathematical Olympiad, Final Round)
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Solution. Let x1 and x2 be the roots of the equation and let r = |x1| = |x2|.
Then

p2

q2
=

(x1 + x2)
2

x1x2
=

x1

x2
+

x2

x1
+ 2 =

x1x2

r2
+

x2x1

r2
+ 2 = 2 +

2

r2
Re(x1x2)

is a real number. Moreover,

Re(x1x2) ≥ −|x1x2| = −r2, so
p2

q2
≥ 0.

Therefore p
q is a real number, as claimed.

Problem 3. Let a, b, c be distinct nonzero complex numbers with
|a| = |b| = |c|.

(a) Prove that if a root of the equation az2 + bz + c = 0 has modulus equal
to 1, then b2 = ac.

(b) If each of the equations

az2 + bz + c = 0 and bz2 + cz + a = 0

has a root of modulus 1, then |a− b| = |b − c| = |c− a|.

Solution.

(a) Let z1, z2 be the roots of the equation with |z1| = 1. From z2 = c
a · 1

z1
,

it follows that |z2| = | ca | ·
1

|z1 | = 1. Because z1 + z2 = − b

a
and |a| = |b|,

we have |z1 + z2|2 = 1. This is equivalent to

(z1 + z2)(z1 + z2) = 1, i.e., (z1 + z2)
(

1
z1

+ 1
z2

)
= 1.

We find that

(z1 + z2)
2 = z1z2, i.e.,

(
b

a

)2
=

c

a
,

which reduces to b2 = ac, as desired.
(b) As we have already seen, we have b2 = ac and c2 = ab. Multiplying these

relations yields b2c2 = a2bc, and hence a2 = bc. Therefore,

a2 + b2 + c2 = ab + bc + ca. (1)

Relation (1) is equivalent to

(a− b)2 + (b− c)2 + (c− a)2 = 0,

i.e.,

(a− b)2 + (b − c)2 + 2(a− b)(b− c) + (c− a)2 = 2(a− b)(b− c).



1.1 Algebraic Representation of Complex Numbers 19

It follows that (a−c)2 = (a−b)(b−c). Taking absolute values, we obtain
β2 = γα, where α = |b − c|, β = |c − a|, γ = |a − b|. In an analogous
way, we obtain α2 = βγ and γ2 = αβ. Adding these relations yields
α2 + β2 + γ2 = αβ + βγ + γα, i.e., (α − β)2 + (β − γ)2 + (γ − α)2 = 0.
Hence α = β = γ.

1.1.9 Problems

1. Consider the complex numbers z1 = (1, 2), z2 = (−2, 3), and z3 =
(1, −1). Compute the following:

(a) z1 + z2 + z3; (b) z1z2 + z2z3 + z3z1; (c) z1z2z3;

(d) z21 + z22 + z23 ; (e)
z1
z2

+
z2
z3

+
z3
z1

; (f)
z21 + z22
z22 + z23

.

2. Solve the following equations:

(a) z + (−5, 7) = (2, −1); (b) (2, 3) + z = (−5, −1);

(c) z · (2, 3) = (4, 5); (d)
z

(−1, 3)
= (3, 2).

3. Solve in C the equations:

(a) z2 + z + 1 = 0; (b) z3 + 1 = 0.

4. Let z = (0, 1) ∈ C. Express
n∑

k=0

zk in terms of the positive integer n.

5. Solve the following equations:

(a) z · (1, 2) = (−1, 3); (b) (1, 1) · z2 = (−1, 7).

6. Let z = (a, b) ∈ C. Compute z2, z3, and z4.
7. Let z0 = (a, b) ∈ C. Find z ∈ C such that z2 = z0.
8. Let z = (1, −1). Compute zn, where n is a positive integer.
9. Find real numbers x and y in each of the following cases:

(a) (1 − 2i)x+ (1 + 2i)y = 1 + i; (b)
x− 3

3 + i
+

y − 3

3− i
= i;

(c) (4 − 3i)x2 + (3 + 2i)xy = 4y2 − 1
2x

2 + (3xy − 2y2)i.

10. Compute the following:

(a) (2 − i)(−3 + 2i)(5− 4i); (b) (2− 4i)(5 + 2i) + (3 + 4i)(−6− i);

(c)

(
1 + i

1− i

)16
+

(
1− i

1 + i

)8
; (d)

(
−1 + i

√
3

2

)6

+

(
1− i

√
7

2

)6

;

(e)
3 + 7i

2 + 3i
+

5− 8i

2− 3i
.



20 1 Complex Numbers in Algebraic Form

11. Compute the following:

(a) i2000 + i1999 + i201 + i82 + i47;
(b) En = 1 + i+ i2 + i3 + · · ·+ in for n ≥ 1;
(c) i1 · i2 · i3 · · · i2000;
(d) i−5 + (−i)−7 + (−i)13 + i−100 + (−i)94.

12. Solve in C the following equations:

(a) z2 = i; (b) z2 = −i; (c) z2 = 1
2 − i

√
2
2 .

13. Find all complex numbers z �= 0 such that z +
1

z
∈ R.

14. Prove the following:

(a) E1 = (2 + i
√
5)7 + (2− i

√
5)7 ∈ R;

(b) E2 =

(
19 + 7i

9− i

)n
+

(
20 + 5i

7 + 6i

)n
∈ R.

15. Prove the following identities:

(a) |z1+z2|2+ |z2+z3|2+ |z3+z1|2 = |z1|2+ |z2|2+ |z3|2+ |z1+z2+z3|2;
(b) |1 + z1z2|2 + |z1 − z2|2 = (1 + |z1|2)(1 + |z2|2);
(c) |1− z1z2|2 − |z1 − z2|2 = (1− |z1|2)(1 − |z2|2);
(d) |z1 + z2 + z3|2 + | − z1 + z2 + z3|2 + |z1 − z2 + z3|2 + |z1 + z2 − z3|2

= 4(|z1|2 + |z2|2 + |z3|2).

16. Let z ∈ C
∗ be such that

∣
∣
∣∣z

3 +
1

z3

∣
∣
∣∣ ≤ 2. Prove that

∣
∣
∣∣z +

1

z

∣
∣
∣∣ ≤ 2.

17. Find all complex numbers z such that

|z| = 1 and |z2 + z2| = 1.

18. Find all complex numbers z such that

4z2 + 8|z|2 = 8.

19. Find all complex numbers z such that z3 = z.
20. Consider z ∈ C with Re(z) > 1. Prove that

∣
∣
∣
∣
1

z
− 1

2

∣
∣
∣
∣ <

1

2
.

21. Let a, b, c be real numbers and ω = − 1
2 + i

√
3
2 . Compute

(a+ bω + cω2)(a+ bω2 + cω).

22. Solve the following equations:

(a) |z| − 2z = 3− 4i;
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(b) |z|+ z = 3 + 4i;
(c) z3 = 2 + 11i, where z = x+ yi and x, y ∈ Z;
(d) iz2 + (1 + 2i)z + 1 = 0;
(e) z4 + 6(1 + i)z2 + 5 + 6i = 0;
(f) (1 + i)z2 + 2+ 11i = 0.

23. Find all real numbers m for which the equation

z3 + (3 + i)z2 − 3z − (m+ i) = 0

has at least one real root.
24. Find all complex numbers z such that

z′ = (z − 2)(z + i)

is a real number.

25. Find all complex numbers z such that |z| = |1
z
|.

26. Let z1, z2 ∈ C be complex numbers such that |z1 + z2| =
√
3 and

|z1| = |z2| = 1. Compute |z1 − z2|.
27. Find all positive integers n such that

(
−1 + i

√
3

2

)n

+

(
−1− i

√
3

2

)n

= 2.

28. Let n > 2 be an integer. Find the number of solutions to the equation

zn−1 = iz.

29. Let z1, z2, z3 be complex numbers with

|z1| = |z2| = |z3| = R > 0.

Prove that

|z1 − z2| · |z2 − z3|+ |z3 − z1| · |z1 − z2|+ |z2 − z3| · |z3 − z1| ≤ 9R2.

30. Let u, v, w, z be complex numbers such that |u| < 1, |v| = 1, and

w =
v(u− z)

u · z − 1
. Prove that |w| ≤ 1 if and only if |z| ≤ 1.

31. Let z1, z2, z3 be complex numbers such that

z1 + z2 + z3 = 0 and |z1| = |z2| = |z3| = 1.

Prove that
z21 + z22 + z23 = 0.
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32. Consider the complex numbers z1, z2, . . . , zn with

|z1| = |z2| = · · · = |zn| = r > 0.

Prove that the number

E =
(z1 + z2)(z2 + z3) · · · (zn−1 + zn)(zn + z1)

z1 · z2 . . . zn

is real.
33. Let z1, z2, z3 be distinct complex numbers such that

|z1| = |z2| = |z3| > 0.

If z1 + z2z3, z2 + z1z3, and z3 + z1z2 are real numbers, prove that
z1z2z3 = 1.

34. Let x1 and x2 be the roots of the equation x2 − x+1 = 0. Compute the
following:

(a) x2000
1 + x2000

2 ; (b) x1999
1 + x1999

2 ; (c) xn
1 + xn

2 , for n ∈ N.

35. Factorize (in linear polynomials) the following polynomials:

(a) x4 + 16; (b) x3 − 27; (c) x3 + 8; (d) x4 + x2 + 1.

36. Find all quadratic equations with real coefficients that have one of the
following roots:

(a) (2 + i)(3− i); (b)
5 + i

2− i
; (c) i51 + 2i80 + 3i45 + 4i38.

37. (Hlawka’s inequality) Prove that the inequality

|z1 + z2|+ |z2 + z3|+ |z3 + z1| ≤ |z1|+ |z2|+ |z3|+ |z1 + z2 + z3|

holds for all complex numbers z1, z2, z3.
38. Suppose that complex numbers xi, yi, i = 1, 2, . . . , n, satisfy |xi| = |yi| =

1. Let

x =
1

n

n∑

i=1

xi, y =
1

n

n∑

i=1

yi, and zi = xyi + yxi − xiyi.

Prove that

n∑

i=1

|zi| ≤ n.
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1.2 Geometric Interpretation of the Algebraic
Operations

1.2.1 Geometric Interpretation of a Complex Number

We have defined a complex number z = (x, y) = x + yi to be an ordered
pair of real numbers (x, y) ∈ R×R, so it is natural to let a complex number
z = x+ yi correspond to a point M(x, y) in the plane R× R.

For a formal introduction, let us consider P to be the set of points of a
given planeΠ equipped with a coordinate system xOy. Consider the bijective
function ϕ : C → P , ϕ(z) = M(x, y).

Definition. The point M(x, y) is called the geometric image of the complex
number z = x+ yi .

The complex number z = x + yi is called the complex coordinate of the
point M(x, y). We will use the notation M(z) to indicate that the complex
coordinate of M is the complex number z.

Figure 1.2.
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The geometric image of the complex conjugate z of a complex number
z = x + yi is the reflection point M ′(x, −y) across the x-axis of the point
M(x, y) (see Fig. 1.2).

The geometric image of the additive inverse −z of a complex number
z = x + yi is the reflection M ′′(−x, −y) across the origin of the point
M(x, y) (see Fig. 1.2).

The bijective function ϕ maps the set R onto the x-axis, which is called
the real axis. On the other hand, the imaginary complex numbers correspond
to the y-axis, which is called the imaginary axis. The plane Π , whose points
are identified with complex numbers, is called the complex plane.

On the other hand, we can also identify a complex number z = x+yi with

the vector −→v =
−−→
OM , where M(x, y) is the geometric image of the complex

number z (Fig. 1.3).

Figure 1.3.

Let V0 be the set of vectors whose initial points are the origin O. Then we
can define the bijective function

ϕ′ : C → V0, ϕ′(z) =
−−→
OM = −→v = x

−→
i + y

−→
j ,

where
−→
i ,

−→
j are the unit vectors of the x-axis and y-axis, respectively.

1.2.2 Geometric Interpretation of the Modulus

Let us consider a complex number z = x + yi and the geometric image
M(x, y) in the complex plane. The Euclidean distance OM is given by the
formula

OM =
√
(xM − xO)2 + (yM − yO)2;
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hence OM =
√
x2 + y2 = |z| = |→v |. In other words, the absolute value |z|

of a complex number z = x + yi is the length of the segment OM or the

magnitude of the vector −→v = x
−→
i + y

−→
j .

Remarks.

(a) For a positive real number r, the set of complex numbers with modulus
r corresponds in the complex plane to C(O; r), our notation for the circle
C with center O and radius r.

(b) The complex numbers z with |z| < r correspond to the interior points
of circle C; on the other hand, the complex numbers z with |z| > r
correspond to the points in the exterior of circle C.

Example. The numbers zk = ±1

2
±

√
3

2
i, k = 1, 2, 3, 4, are represented in

the complex plane by four points on the unit circle centered at the origin,
since

|z1| = |z2| = |z3| = |z4| = 1.

1.2.3 Geometric Interpretation of the Algebraic
Operations

(a) Addition and subtraction. Consider the complex numbers z1 = x1 +

y1i and z2 = x2 + y2i and the corresponding vectors −→v 1 = x1
−→
i + y1

−→
j

and −→v 2 = x2
−→
i + y2

−→
j . Observe that the sum of the complex numbers is

z1 + z2 = (x1 + x2) + (y1 + y2)i,

and the sum of the vectors is

−→v 1 +
−→v 2 = (x1 + x2)

−→
i + (y1 + y2)

−→
j .

Therefore, the sum z1 + z2 corresponds to the sum −→v 1 +
−→v 2 (Fig. 1.4).

Examples.

(1) We have (3+5i)+(6+ i) = 9+6i; hence the geometric image of the sum
is given in Fig. 1.5.

(2) Observe that (6 − 2i) + (−2 + 5i) = 4 + 3i. Therefore, the geometric
image of the sum of these two complex numbers is the point M(4, 3) (see
Fig. 1.6).
On the other hand, the difference of the complex numbers z1 and z2 is

z1 − z2 = (x1 − x2) + (y1 − y2)i,
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Figure 1.4.

Figure 1.5.

Figure 1.6.
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and the difference of the vectors v1 and v2 is

−→v 1 −−→v 2 = (x1 − x2)
−→
i + (y1 − y2)

−→
j .

Hence, the difference z1 − z2 corresponds to the difference −→v 1 −−→v 2.
(3) We have (−3+ i)− (2 + 3i) = (−3 + i) + (−2− 3i) = −5− 2i; hence the

geometric image of the difference of these two complex numbers is the
point M(−5, −2) given in Fig. 1.7.

Figure 1.7.

(4) Note that (3 − 2i)− (−2− 4i) = (3− 2i) + (2 + 4i) = 5 + 2i; we obtain
the point M2(−2, −4) as the geometric image of the difference of these
two complex numbers (see Fig. 1.8).

Figure 1.8.
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Remark. The distance between M1(x1, y1) and M2(x2, y2) is equal to the
modulus of the complex number z1−z2, or to the length of the vector−→v 1−−→v 2.
Indeed,

|M1M2| = |z1 − z2| = |−→v 1 −−→v 2| =
√
(x2 − x1)2 + (y2 − y1)2.

(b) Real multiples of a complex number. Consider a complex number

z = x + iy and the corresponding vector −→v = x
−→
i + y

−→
j . If λ is a real

number, then the real multiple λz = λx+ iλy corresponds to the vector

λ−→v = λx
−→
i + λy

−→
j .

Note that if λ > 0, then the vectors λ−→v and −→v have the same orientation
and

|λ−→v | = λ|−→v |.

When λ < 0, the vector λ−→v changes to the opposite orientation, and

|λ−→v | = −λ|−→v |. Of course, if λ = 0, then λ−→v =
−→
0 (Fig. 1.9).

Figure 1.9.

Examples.

(1) We have 3(1 + 2i) = 3 + 6i; therefore, M ′(3, 6) is the geometric image
of the product of 3 and z = 1 + 2i.

(2) Observe that −2(−3 + 2i) = 6 − 4i; we obtain the point M ′(6, −4) as
the geometric image of the product of −2 and z = −3 + 2i (Fig. 1.10).
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Figure 1.10.

1.2.4 Problems

1. Represent the geometric images of the following complex numbers:

z1 = 3 + i; z2 = −4 + 2i; z3 = −5− 4i; z4 = 5− i;

z5 = 1; z6 = −3i; z7 = 2i; z8 = −4.

2. Find the geometric interpretation for the following equalities:

(a) (−5 + 4i) + (2 − 3i) = −3 + i;
(b) (4− i) + (−6 + 4i) = −2 + 3i;
(c) (−3− 2i)− (−5 + i) = 2− 3i;
(d) (8− i)− (5 + 3i) = 3− 4i;
(e) 2(−4 + 2i) = −8 + 4i;
(f) −3(−1 + 2i) = 3− 6i.

3. Find the geometric image of the complex number z in each of the following
cases:

(a) |z − 2| = 3; (b) |z + i| < 1; (c) |z − 1 + 2i| > 3;
(d) |z − 2| − |z + 2| < 2; (e) 0 < Re(iz) < 1; (f) −1 < Im(z) < 1;

(g) Re

(
z − 2

z − 1

)
= 0; (h)

1 + z

z
∈ R.

4. Find the set of points P (x, y) in the complex plane such that

∣
∣
∣
√
x2 + 4 + i

√
y − 4
∣
∣
∣ =

√
10.
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5. Let z1 = 1 + i and z2 = −1 − i. Find z3 ∈ C such that the triangle
z1, z2, z3 is equilateral.

6. Find the geometric images of the complex numbers z such that the
triangle with vertices at z, z2, and z3 is a right triangle.

7. Find the geometric images of the complex numbers z such that

∣
∣∣
∣z +

1

z

∣
∣∣
∣ = 2.



Chapter 2

Complex Numbers in Trigonometric
Form

2.1 Polar Representation of Complex Numbers

2.1.1 Polar Coordinates in the Plane

Let us consider a coordinate plane and a point M(x, y) that is not the origin.

The real number r =
√
x2 + y2 is called the polar radius of the point M .

The direct angle t∗ ∈ [0, 2π) between the vector
−−→
OM and the positive x-axis is

called the polar argument of the point M . The pair (r, t∗) are called the polar
coordinates of the point M . We will write M(r, t∗). Note that the function
h : R× R\{(0, 0)} → (0, ∞)× [0, 2π), h((x, y)) = (r, t∗) is bijective.

The origin O is the unique point such that r = 0; the argument t∗ of the
origin is not defined.

For each point M in the plane there is a unique intersection point P of
the ray (OM with the unit circle centered at the origin. The point P has the
same polar argument t∗. Using the definition of the sine and cosine functions,
we find that

x = r cos t∗ and y = r sin t∗.

Therefore, it is easy to obtain the Cartesian coordinates of a point from its
polar coordinates (Fig. 2.1).

Conversely, let us consider a point M(x, y). The polar radius is

r =
√
x2 + y2.

To determine the polar argument, we study the following cases:

(a) If x �= 0, from tan t∗ =
y

x
we deduce that

t∗ = arctan
y

x
+ kπ,

T. Andreescu and D. Andrica, Complex Numbers from A to ... Z,
DOI 10.1007/978-0-8176-8415-0 2, © Springer Science+Business Media New York 2014
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Figure 2.1.

where

k =

⎧
⎨

⎩

0, for x > 0 and y ≥ 0,
1, for x < 0 and any y,
2, for x > 0 and y < 0.

(b) If x = 0 and y �= 0, then

t∗ =

{
π/2, for y > 0,
3π/2, for y < 0.

Examples.

1. Let us find the polar coordinates of the points M1(2,−2), M2(−1, 0),
M3(−2

√
3,−2), M4(

√
3, 1), M5(3, 0), M6(−2, 2), M7(0, 1) and M8(0,−4).

In this case, we have r1 =
√
22 + (−2)2 = 2

√
2; t∗1 = arctan(−1) + 2π =

−π

4
+ 2π =

7π

4
, so M1

(
2
√
2, 7π

4

)
.

Observe that r2 = 1, t∗2 = arctan 0 + π = π, so M2(1, π).

We have r3 = 4, t∗3 = arctan

√
3

3
+ π =

π

6
+ π =

7π

6
, so M3

(
4,

7π

6

)
.

Note that r4 = 2, t∗4 = arctan
√
3
3 = π

6 , so M4

(
2, π

6

)
.

We have r5 = 3, t∗5 = arctan 0 + 0 = 0, so M5(3, 0).

We have r6 = 2
√
2, t∗6 = arctan(−1) + π = −π

4
+ π =

3π

4
, so

M6

(
2
√
2,

3π

4

)
.

Note that r7 = 1, t∗7 =
π

2
, so M7

(
1,

π

2

)
.

Observe that r8 = 4, t∗8 =
3π

2
, so M8

(
1,

3π

2

)
.

2. Let us find the Cartesian coordinates of the following points given in polar

coordinates: M1

(
2,

2π

3

)
, M2

(
3,

7π

4

)
, and M3(1, 1).
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We have x1 = 2 cos
2π

3
= 2

(
−1

2

)
= −1, y1 = 2 sin

2π

3
= 2

√
3

2
=

√
3, so

M1(−1,
√
3).

Note that

x2 = 3 cos
7π

4
=

3
√
2

2
, y2 = 3 sin

7π

4
= −3

√
2

2
,

so

M2

(
3
√
2

2
,−3

√
2

2

)

.

Observe that x3 = cos 1, y3 = sin 1, so M3(cos 1, sin 1).

2.1.2 Polar Representation of a Complex Number

For a complex number z = x+ yi , we can write the polar representation

z = r(cos t∗ + i sin t∗),

where r ∈ [0, ∞) and t∗ ∈ [0, 2π) are the polar coordinates of the geometric
image of z.

The polar argument t∗ of the geometric image of z is called the principal (or
reduced) argument of z, denoted by arg z. The polar radius r of the geometric
image of z is equal to the modulus of z. For z �= 0, the modulus and argument
of z are uniquely determined.

Consider z = r(cos t∗+ i sin t∗) and let t = t∗+2kπ for an integer k. Then

z = r[cos(t− 2kπ) + i sin(t− 2kπ)] = r(cos t + i sin t),

i.e., every complex number z can be represented as z = r(cos t+i sin t), where
r ≥ 0 and t ∈ R. The set Arg z = {t : t∗ +2kπ, k ∈ Z} is called the extended
argument of the complex number z.

Therefore, two complex numbers z1, z2 �= 0 represented as

z1 = r1(cos t1 + i sin t1) and z2 = r2(cos t2 + i sin t2)

are equal if and only if r1 = r2 and t1 − t2 = 2kπ, for some integer k.

Example 1. Let us find the polar representation of the following numbers:

(a) z1 = −1− i,
(b) z2 = 2 + 2i,
(c) z3 = −1 + i

√
3,

(d) z4 = 1− i
√
3,

and determine their extended arguments (Fig. 2.2).
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(a) As in Figure 2.2, the geometric image P1(−1, −1) lies in the third quad-
rant. Then r1 =

√
(−1)2 + (−1)2 =

√
2 and

t∗1 = arctan
y

x
+ π = arctan1 + π =

π

4
+ π =

5π

4
.

Figure 2.2.

Hence

z1 =
√
2

(
cos

5π

4
+ i sin

5π

4

)

and

Arg z1 =

{
5π

4
+ 2kπ|k ∈ Z

}
.

(b) The point P2(2, 2) lies in the first quadrant, so we can write

r2 =
√
22 + 22 = 2

√
2 and t∗2 = arctan 1 =

π

4
.

Hence
z2 = 2

√
2
(
cos

π

4
+ i sin

π

4

)

and
Arg z =

{π
4
+ 2kπ|k ∈ Z

}
.

(c) The point P3(−1,
√
3) lies in the second quadrant, so (Fig. 2.3)

r3 = 2 and t∗3 = arctan(−
√
3) + π = −π

3
+ π =

2π

3
.

Therefore,

z3 = 2

(
cos

2π

3
+ i sin

2π

3

)
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Figure 2.3.

and

Arg z3 =

{
2π

3
+ 2kπ|k ∈ Z

}
.

(d) The point P4(1, −
√
3) lies in the fourth quadrant (Fig. 2.4), so

r4 = 2 and t∗4 = arctan(−
√
3) + 2π = −π

3
+ 2π =

5π

3
.

Figure 2.4.

Hence

z4 = 2

(
cos

5π

3
+ i sin

5π

3

)

and

Arg z4 =

{
5π

3
+ 2kπ|k ∈ Z

}
.
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Example 2. Let us find the polar representation of the following numbers:

(a) z1 = 2i,
(b) z2 = −1,
(c) z3 = 2,
(d) z4 = −3i,

and determine their extended arguments.

(a) The point P1(0, 2) lies on the positive y-axis, so

r1 = 2, t∗1 =
π

2
, z1 = 2

(
cos

π

2
+ i sin

π

2

)

and
Arg z1 =

{π
2
+ 2kπ|k ∈ Z

}
.

(b) The point P2(−1, 0) lies on the negative x-axis, so

r2 = 1, t∗2 = π, z2 = cosπ + i sinπ

and
Arg z2 = {π + 2kπ|k ∈ Z}.

(c) The point P3(2, 0) lies on the positive x-axis, so

r3 = 2, t∗3 = 0, z3 = 2(cos 0 + i sin 0)

and
Arg z3 = {2kπ|k ∈ Z}.

(d) The point P4(0, −3) lies on the negative y-axis, so

r4 = 3, t∗4 =
3π

2
, z4 = 3

(
cos

3π

2
+ i sin

3π

2

)

and

Arg z4 =

{
3π

2
+ 2kπ|k ∈ Z

}
.

Remark. The following formulas should be memorized:

1 = cos 0 + i sin 0; i = cos
π

2
+ i sin

π

2
;

−1 = cosπ + i sinπ; −i = cos
3π

2
+ i sin

3π

2
.

Problem 1. Find the polar representation of the complex number

z = 1 + cos a+ i sina, a ∈ (0, 2π).



2.1 Polar Representation of Complex Numbers 37

Solution. The modulus is

|z| =
√
(1 + cos a)2 + sin2 a =

√
2(1 + cos a) =

√
4 cos2

a

2
= 2
∣
∣
∣cos

a

2

∣
∣
∣ .

The argument of z is determined as follows:

(a) If a ∈ (0, π), then
a

2
∈
(
0,

π

2

)
, and the point P (1 + cos a, sin a) lies in

the first quadrant. Hence

t∗ = arctan
sin a

1 + cos a
= arctan

(
tan

a

2

)
=

a

2
,

and in this case,

z = 2 cos
a

2

(
cos

a

2
+ i sin

a

2

)
.

(b) If a ∈ (π, 2π), then
a

2
∈
(π
2
, π
)
, and the point P (1 + cos a, sin a) lies in

the fourth quadrant. Hence

t∗ = arctan
(
tan

a

2

)
+ 2π =

a

2
− π + 2π =

a

2
+ π

and
z = −2 cos

a

2

(
cos
(a
2
+ π
)
+ i sin

(a
2
+ π
))

.

(c) If a = π, then z = 0.

Problem 2. Find all complex numbers z such that |z| = 1 and

∣
∣
∣
∣
z

z
+

z

z

∣
∣
∣
∣ = 1.

Solution. Let z = cosx+ i sinx, x ∈ [0, 2π). Then

1 =

∣
∣
∣
∣
z

z
+

z

z

∣
∣
∣
∣ =

|z2 + z2|
|z|2 = | cos 2x+ i sin 2x+ cos 2x− i sin 2x| = 2| cos 2x|,

whence

cos 2x =
1

2
or cos 2x = −1

2
.

If cos 2x = 1
2 , then

x1 =
π

6
, x2 =

5π

6
, x3 =

7π

6
, x4 =

11π

6
.

If cos 2x = − 1
2 , then

x5 =
π

3
, x6 =

2π

3
, x7 =

4π

3
, x8 =

5π

3
.
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Hence there are eight solutions:

zk = cosxk + i sinxk, k = 1, 2, . . . , 8.

2.1.3 Operations with Complex Numbers in Polar
Representation

1. Multiplication

Proposition. Suppose that

z1 = r1(cos t1 + i sin t1) and z2 = r2(cos t2 + i sin t2).

Then
z1z2 = r1r2(cos(t1 + t2) + i sin(t1 + t2)). (1)

Proof. Indeed,

z1z2 = r1r2(cos t1 + i sin t1)(cos t2 + i sin t2)

= r1r2((cos t1 cos t2 − sin t1 sin t2) + i(sin t1 cos t2 + sin t2 cos t1))

= r1r2(cos(t1 + t2) + i sin(t1 + t2)). �

Remarks.

(a) We find again that |z1z2| = |z1| · |z2|.
(b) We have arg(z1z2) = arg z1 + arg z2 − 2kπ, where

k =

{
0, for arg z1 + arg z2 < 2π,
1, for arg z1 + arg z2 ≥ 2π.

(c) Also we can write Arg(z1z2) = {arg z1 + arg z2 + 2kπ : k ∈ Z}.
(d) Formula (1) can be extended to n ≥ 2 complex numbers. If zk =

rk(cos tk + i sin tk), k = 1, . . . , n, then

z1z2 . . . zn = r1r2 · · · rn(cos(t1 + t2 + · · ·+ tn) + i sin(t1 + t2 + · · ·+ tn)).

The proof by induction is immediate. This formula can be written as

n∏

k=1

zk =

n∏

k=1

rk

(

cos

n∑

k=1

tk + i sin

n∑

k=1

tk

)

. (2)

Example. Let z1 = 1− i and z2 =
√
3 + i. Then

z1 =
√
2

(
cos

7π

4
+ i sin

7π

4

)
, z2 = 2

(
cos

π

6
+ i sin

π

6

)
,
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and

z1z2 = 2
√
2

[
cos

(
7π

4
+

π

6

)
+ i sin

(
7π

4
+

π

6

)]

= 2
√
2

(
cos

23π

12
+ i sin

23π

12

)
.

2. The power of a complex number

Proposition. (De Moivre1) For z = r(cos t+ i sin t) and n ∈ N, we have

zn = rn(cosnt+ i sinnt). (3)

Proof. Apply formula (2) with z = z1 = z2 = · · · = zn to obtain

zn = r · r · · · r︸ ︷︷ ︸
n times

(cos(t+ t+ · · ·+ t︸ ︷︷ ︸
n times

) + i sin(t+ t+ · · ·+ t︸ ︷︷ ︸
n times

))

= rn (cosnt + i sinnt). �

Remarks.

(a) We find again that |zn| = |z|n.
(b) If r = 1, then (cos t + i sin t)n = cosnt+ i sinnt.
(c) We can write Arg zn = {n arg z + 2kπ : k ∈ Z}.

Example. Let us compute (1 + i)1000.

The polar representation of 1 + i is
√
2
(
cos

π

4
+ i sin

π

4

)
. Applying de

Moivre’s formula, we obtain

(1 + i)1000 = (
√
2)1000

(
cos 1000

π

4
+ i sin 1000

π

4

)

= 2500(cos 250π + i sin 250π) = 2500.

Problem. Prove that

sin 5t = 16 sin5 t − 20 sin3 t + 5 sin t;

cos 5t = 16 cos5 t − 20 cos3 t + 5 cos t.

Solution. Using de Moivre’s theorem to expand (cos t + i sin t)5, then using
the binomial theorem, we have

cos 5t + i sin 5t = cos5 t+ 5i cos4 t sin t+ 10i2 cos3 t sin2 t

+ 10i3 cos2 t sin3 t+ 5i4 cos t sin4 t + i5 sin5 t.

1 Abraham de Moivre (1667–1754), French mathematician, a pioneer in probability theory
and trigonometry.
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Hence

cos 5t + i sin 5t = cos5 t − 10 cos3 t (1− cos2 t) + 5 cos t (1− cos2 t)2

+ i(5(1− sin2 t)2 sin t − 10(1− sin2 t) sin3 t + sin5 t).

Simple algebraic manipulation leads to the desired result.

3. Division

Proposition. Suppose that

z1 = r1(cos t1 + i sin t1), z2 = r2(cos t2 + i sin t2) �= 0.

Then
z1
z2

=
r1
r2

[cos(t1 − t2) + i sin(t1 − t2)].

Proof. We have
z1
z2

=
r1(cos t1 + i sin t1)

r2(cos t2 + i sin t2)

=
r1(cos t1 + i sin t1)(cos t2 − i sin t2)

r2(cos2 t2 + sin2 t2)

=
r1
r2

[(cos t1 cos t2 + sin t1 sin t2) + i(sin t1 cos t2 − sin t2 cos t1)]

=
r1
r2

(cos(t1 − t2) + i sin(t1 − t2)). �

Remarks.

(a) We have again

∣
∣
∣
∣
z1
z2

∣
∣
∣
∣ =

r1
r2

=
|z1|
|z2|

.

(b) We can write Arg
(

z1
z2

)
= {arg z1 − arg z2 + 2kπ : k ∈ Z}.

(c) For z1 = 1 and z2 = z,

1

z
= z−1 =

1

r
(cos(−t) + i sin(−t)).

(d) De Moivre’s formula also holds for negative integer exponents n, i.e., we
have

zn = rn (cosnt + i sinnt).

Problem. Compute

z =
(1− i)10(

√
3 + i)5

(−1− i
√
3)10

.
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Solution. We can write

z =

(
√
2)10
(
cos

7π

4
+ i sin

7π

4

)10
· 25
(
cos

π

6
+ i sin

π

6

)5

210
(
cos

4π

3
+ i sin

4π

3

)10

=

210
(
cos

35π

2
+ i sin

35π

2

)(
cos

5π

6
+ i sin

5π

6

)

210
(
cos

40π

3
+ i sin

40π

3

)

=
cos

55π

3
+ i sin

55π

3

cos
40π

3
+ i sin

40π

3

= cos 5π + i sin 5π = −1.

2.1.4 Geometric Interpretation of Multiplication

Consider the complex numbers

z1 = r1(cos t
∗
1 + i sin t∗1), z2 = r2(cos t

∗
2 + i sin t∗2),

and their geometric images M1(r1, t∗1), M2(r2, t∗2). Let P1, P2 be the inter-
section points of the circle C(O; 1) with the rays (OM1 and (OM2. Construct
the point P3 ∈ C(O; 1 ) with the polar argument t∗1+ t∗2 and choose the point
M3 ∈ (OP3 such that OM3 = OM1 ·OM2. Let z3 be the complex coordinate
of M3. The point M3(r1r2, t∗1 + t∗2) is the geometric image of the product
z1. z2.

Let A be the geometric image of the complex number 1. Because

OM3

OM1
=

OM2

1
, i.e.,

OM3

OM1
=

OM2

OA

and M̂2OM3 = ÂOM1, it follows that triangles OAM1 and OM2M3 are
similar (see Fig. 2.5).

In order to construct the geometric image of the quotient, note that the

image of
z3
z2

is M1.
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Figure 2.5.

2.1.5 Problems

1. Find the polar coordinates for the following points, given their Cartesian
coordinates:

(a) M1(−3, 3); (b) M2(−4
√
3, −4); (c) M3(0, −5);

(d) M4(−2, −1); (e) M5(4, −2).

2. Find the Cartesian coordinates for the following points, given their polar
coordinates:

(a) P1

(
2,

π

3

)
; (b) P2

(
4, 2π − arcsin

3

5

)
; (c) P3(2, π);

(d) P4(3, −π); (e) P5(1,
π

2
); (f) P6(4,

3π

2
).

3. Express arg(z) and arg(−z) in terms of arg(z).
4. Find the geometric images for the complex numbers z in each of the

following cases:

(a) |z| = 2; (b) |z + i| ≥ 2; (c) |z − i| ≤ 3;

(d) π < arg z <
5π

4
; (e) arg z ≥ 3π

2
; (f) arg z <

π

2
;

(g) arg(−z) ∈
(π
6
,
π

3

)
; (h) |z + 1 + i| < 3 and 0 < arg z <

π

6
.

5. Find polar representations for the following complex numbers:

(a) z1 = 6 + 6i
√
3; (b) z2 = − 1

4 + i
√
3
4 ; (c) z3 = − 1

2 − i
√
3
2 ;

(d) z4 = 9− 9i
√
3; (e) z5 = 3− 2i; (f) z6 = −4i.

6. Find polar representations for the following complex numbers:

(a) z1 = cos a− i sina, a ∈ [0, 2π);
(b) z2 = sin a+ i(1 + cos a), a ∈ [0, 2π);
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(c) z3 = cos a+ sin a+ i(sin a− cos a), a ∈ [0, 2π);
(d) z4 = 1− cos a+ i sina, a ∈ [0, 2π).

7. Compute the following products using the polar representation of a com-
plex number:

(a)

(
1

2
− i

√
3

2

)

(−3 + 3i)(2
√
3 + 2i); (b) (1 + i)(−2− 2i) · i;

(c) −2i · (−4 + 4
√
3i) · (3 + 3i); (d) 3 · (1− i)(−5 + 5i).

Verify your results using the algebraic form.
8. Find |z|, arg z, Argz, arg z, arg(−z) for

(a) z = (1 − i)(6 + 6i); (b) z = (7− 7
√
3i)(−1− i).

9. Find |z| and arg z for

(a) z =
(2
√
3 + 2i)8

(1 − i)6
+

(1 + i)6

(2
√
3− 2i)8

;

(b) z =
(−1 + i)4

(
√
3− i)10

+
1

(2
√
3 + 2i)4

;

(c) z = (1 + i
√
3)n + (1− i

√
3)n.

10. Prove that de Moivre’s formula holds for negative integer exponents.
11. Compute the following:

(a) (1 − cos a+ i sina)n for a ∈ [0, 2π) and n ∈ N;

(b) zn +
1

zn
, if z +

1

z
=

√
3.

12. Given that z is a complex number such that z +
1

z
= 2 cos 3◦, find the

least integer that is greater than z2000 +
1

z2000
.

(2000 AIME II, Problem 9)

13. For how many positive integers n less than or equal to 1000 is

(sin t+ i cos t)n = sinnt+ i cosnt

true for all real t?

(2005 AIME II, Problem 9)

14. Let (1 −
√
3i)n = xn + iyn, where xn, yn are real for n = 1, 2, 3, . . . .

(a) Show that xnyn−1 − xn−1yn = 4n−1
√
3.

(b) Compute xnxn−1 + ynyn−1.
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2.2 The nth Roots of Unity

2.2.1 Defining the nth Roots of a Complex Number

Consider a positive integer n ≥ 2 and a complex number z0 �= 0. As in the
field of real numbers, the equation

Zn − z0 = 0 (1)

is used for defining the nth roots of the number z0. Hence we call any solution
Z of equation (1) an nth root of the complex number z0.

Theorem. Let z0 = r(cos t∗ + i sin t∗) be a complex number with r > 0 and
t∗ ∈ [0, 2π).

The number z0 has n distinct nth roots, given by the formulas

Zk = n
√
r

(
cos

t∗ + 2kπ

n
+ i sin

t∗ + 2kπ

n

)
,

k = 0, 1, . . . , n− 1.

Proof. We use the polar representation of the complex number Z with the
extended argument:

Z = ρ(cosϕ+ i sinϕ).

By definition, we have Zn = z0, or equivalently,

ρn(cosnϕ+ i sinnϕ) = r(cos t∗ + i sin t∗).

We obtain ρn = r and nϕ = t∗ + 2kπ for k ∈ Z; hence ρ = n
√
r and ϕk =

t∗

n
+ k · 2π

n
for k ∈ Z.

So far, the roots of equation (1) are

Zk = n
√
r(cosϕk + i sinϕk) for k ∈ Z.

Now observe that 0 ≤ ϕ0 < ϕ1 < · · · < ϕn−1 < 2π, so the numbers ϕk, k ∈
{0, 1, . . . , n− 1}, are reduced arguments, i.e., ϕ∗

k = ϕk. Until now, we had
n distinct roots of z0:

Z0, Z1, . . . , Zn−1.

Consider some integer k and let r ∈ {0, 1, . . . , n − 1} be the residue of k
modulo n. Then k = nq + r for q ∈ Z, and

ϕk =
t∗

n
+ (nq + r)

2π

n
=

t∗

n
+ r

2π

n
+ 2qπ = ϕr + 2qπ.



2.2 The nth Roots of Unity 45

It is clear that Zk = Zr. Hence

{Zk : k ∈ Z} = {Z0, Z1, . . . , Zn−1}.

In other words, there are exactly n distinct nth roots of z0, as claimed. �

The geometric images of the nth roots of a complex number z0 �= 0 are
the vertices of a regular n-gon inscribed in a circle with center at the origin
and radius n

√
r.

To prove this, denote by M0, M1, . . . , Mn−1 the points with com-
plex coordinates Z0, Z1, . . . , Zn−1. Because OMk = |Zk| = n

√
r for

k ∈ {0, 1, . . . , n−1}, it follows that the pointsMk lie on the circle C(O; n
√
r).

On the other hand, the measure of the arc Mk

�

Mk+1 is equal to

argZk+1 − argZk =
t∗ + 2(k + 1)π − (t∗ + 2kπ)

n
=

2π

n
,

for all k ∈ {0, 1, . . . , n− 2}, and the remaining arc
�

Mn−1M0 is

2π

n
= 2π − (n− 1)

2π

n
.

Because all of the arcs
�

M0M1,
�

M1M2, . . . ,
�

Mn−1M0 are equal, the polygon
M0M1 · · ·Mn−1 is regular.

Example. Let us find the cube roots of the number z = 1+ i and represent
them in the complex plane.

The polar representation of z = 1 + i is

z =
√
2
(
cos

π

4
+ i sin

π

4

)
.

The cube roots of the number z are

Zk =
6
√
2

(
cos

(
π

12
+ k

2π

3

)
+ i sin

(
π

12
+ k

2π

3

))
, k = 0, 1, 2,

or in explicit form,

Z0 =
6
√
2
(
cos

π

12
+ i sin

π

12

)
,

Z1 =
6
√
2

(
cos

3π

4
+ i sin

3π

4

)
,

and

Z2 =
6
√
2

(
cos

17π

12
+ i sin

17π

12

)
.
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In polar coordinates, the geometric images of the numbers Z0, Z1, Z2 are

M0

(
6
√
2,

π

12

)
, M1

(
6
√
2,

3π

4

)
, M2

(
6
√
2,

17π

12

)
.

The resulting equilateral triangle M0M1M2 is shown in Fig. 2.6.

Figure 2.6.

2.2.2 The nth Roots of Unity

The roots of the equation Zn − 1 = 0 are called the nth roots of unity. Since
1 = cos 0 + i sin 0, from the formulas for the nth roots of a complex number,
we derive that the nth roots of unity are

εk = cos
2kπ

n
+ i sin

2kπ

n
, k ∈ {0, 1, 2, . . . , n− 1}.

Explicitly, we have
ε0 = cos 0 + i sin 0 = 1;

ε1 = cos
2π

n
+ i sin

2π

n
= ε;

ε2 = cos
4π

n
+ i sin

4π

n
= ε2;

· · ·

εn−1 = cos
2(n− 1)π

n
+ i sin

2(n− 1)π

n
= εn−1.

The set {1, ε, ε2, . . . , εn−1} is denoted by Un. Observe that the set Un

is generated by the element ε, i.e., the elements of Un are the powers of ε.



2.2 The nth Roots of Unity 47

As stated before, the geometric images of the nth roots of unity are the
vertices of a regular polygon with n sides inscribed in the unit circle with one
of the vertices at 1.

We take a brief look at some particular values of n:

1. For n = 2, the equation Z2 − 1 = 0 has the roots −1 and 1, which are the
square roots of unity.

2. For n = 3, the cube roots of unity, i.e., the roots of equation Z3 − 1 = 0,
are given by

εk = cos
2kπ

3
+ i sin

2kπ

3
for k ∈ {0, 1, 2}.

Hence

ε0 = 1, ε1 = cos
2π

3
+ i sin

2π

3
= −1

2
+ i

√
3

2
= ε

and

ε2 = cos
4π

3
+ i sin

4π

3
= −1

2
− i

√
3

2
= ε2.

They form an equilateral triangle inscribed in the circle C(O; 1) as in
Fig. 2.7.

Figure 2.7.

3. For n = 4, the fourth roots of unity are

εk = cos
2kπ

4
+ i sin

2kπ

4
for k = 0, 1, 2, 3.

In explicit form, we have

ε0 = cos 0 + i sin 0 = 1; ε1 = cos
π

2
+ i sin

π

2
= i;

ε2 = cosπ + i sinπ = −1 and ε3 = cos
3π

2
+ i sin

3π

2
= −i.



48 2 Complex Numbers in Trigonometric Form

Observe that U4 = {1, i, i2, i3} = {1, i, −1, −i}. The geometric images
of the fourth roots of unity are the vertices of a square inscribed in the
circle C(O; 1) (Fig. 2.8).
The root εk ∈ Un is called primitive if for all positive integer, m < n we
have εmk �= 1.

Figure 2.8.

Proposition 1.

(a) If n|q, then every root of Zn − 1 = 0 is a root of Zq − 1 = 0.
(b) The common roots of Zm − 1 = 0 and Zn − 1 = 0 are the roots of

Zd − 1 = 0, where d = gcd(m, n), i.e., Um ∩ Un = Ud.
(c) The primitive roots of Zm − 1 = 0 are εk = cos 2kπ

m + i sin 2kπ
m , where

0 ≤ k ≤ m and gcd(k, m) = 1.

Proof.

(a) If q = pn, then Zq − 1 = (Zn)p − 1 = (Zn − 1)(Z(p−1)n + · · ·+ Zn + 1),
and the conclusion follows.

(b) Consider εp = cos 2pπ
m + i sin 2pπ

m a root of Zm−1 = 0 and ε′q = cos 2qπ
n +

i sin 2qπ
n a root of Zn − 1 = 0. Since |εp| = |ε′q| = 1, we have εp = ε′q if

and only if arg εp = arg ε′q, i.e.,
2pπ
m = 2qπ

n + 2rπ for some integer r. The
last relation is equivalent to p

m − q
n = r, that is, pn–qm = rmn.

On the other hand we have m = m′d and n = n′d, where
gcd(m′, n′) = 1. From the relation pn–qm = rmn, we obtain n′p−m′q =
rm′n′d. Hencem′|n′p, som′|p. That is, p = p′m′ for some positive integer
p′ and

arg εp =
2pπ

m
=

2p′m′π
m′d

=
2p′π
d

and εdp = 1.

Conversely, since d|m and d|n (from property a), every root of Zd−1 = 0
is a root of Zm − 1 = 0 and Zn − 1 = 0.
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(c) First we will find the smallest positive integer p such that εpk = 1. From

the relation εpk = 1, it follows that 2kpπ
m = 2qπ for some positive integer

q. That is, kp
m = q ∈ Z. Consider d = gcd(k, m) and k = k′d, m = m′d,

where gcd(k′, m′) = 1. We obtain k′pd
m′d = k′p

m′ ∈ Z. Since k′ and m′ are
relatively primes, we get m′|p. Therefore, the smallest positive integer p
with εpk = 1 is p = m′. Substituting in the relation m = m′d yields that
p = m

d , where d = gcd(k, m).
If εk is a primitive root of unity, then from relation εpk = 1, p =
m

gcd(k,m) , it follows that p = m, i.e., gcd(k, m) = 1. �

Remark. From Proposition1(b) in Sect. 2.2.2, one obtains that the equa-
tions Zm− 1 = 0 and Zn− 1 = 0 have the unique common root 1 if and only
if gcd(m, n) = 1.

Proposition 2. If ε ∈ Un is a primitive root of unity, then the roots of the
equation zn−1 = 0 are εr, εr+1, . . . , εr+n−1, where r is an arbitrary positive
integer.

Proof. Let r be a positive integer and consider h ∈ {0, 1, . . . , n− 1}. Then
(εr+h)n = (εn)r+h = 1, i.e., εr+h is a root of Zn − 1 = 0.

We need only prove that εr, εr+1, . . . , εr+n−1 are distinct. Assume by way
of contradiction that for r+h1 �= r+h2 and h1 > h2, we have ε

r+h1 = εr+h2 .
Then εr+h2(εh1−h2 − 1) = 0. But εr+h2 �= 0 implies εh1−h2 = 1. Taking into
account that h1 − h2 < n and ε is a primitive root of Zn − 1 = 0, we obtain
a contradiction. �

Proposition 3. Let ε0, ε1, . . . , εn−1 be the nth roots of unity. For every pos-
itive integer k, the following relation holds:

n−1∑

j=0

εkj =

{
n, if n|k,
0, otherwise.

Proof. Consider ε = cos 2π
n + i sin 2π

n . Then ε ∈ Un is a primitive root of
unity, whence εm = 1 if and only if n|m. Assume that n does not divide k.
We have

n−1∑

j=0

εkj =

n−1∑

j=0

(εj)k =

n−1∑

j=0

(εk)j =
1− (εk)n

1− εk
=

1− (εn)k

1− εk
= 0.

If n|k, then k = qn for some positive integer q, and we obtain

n−1∑

j=0

εkj =
n−1∑

j=0

εqnj =
n−1∑

j=0

(εnj )
q =

n−1∑

j=0

1 = n. �
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Proposition 4. Let p be a prime number and let ε = cos 2π
p + i sin 2π

p . If
a0, a1, . . . , ap−1 are nonzero integers, the relation

a0 + a1ε+ · · ·+ ap−1ε
p−1 = 0

holds if and only if a0 = a1 = · · · = ap−1.

Proof. If a0 = a1 = · · · = ap−1, then the above relation is clearly true.
Conversely, define the polynomials f, g ∈ Z[X ] by f = a0 + a1X + · · · +

ap−1X
p−1 and g = 1 +X + · · · + Xp−1. If the polynomials f, g have com-

mon zeros, then gcd(f, g) divides g. But it is well known (for example
by Eisenstein’s irreducibility criterion) that g is irreducible over Z. Hence
gcd(f, g) = g, so g|f , and we obtain g = kf for some nonzero integer k, i.e.,
a0 = a1 = · · · = an−1. �

Problem 1. Find the number of ordered pairs (a, b) of real numbers such
that (a+ bi)2002 = a− bi.

(American Mathematics Contest 12A, 2002, Problem 24)

Solution. Let z = a+ bi , z = a− bi , and |z| =
√
a2 + b2. The given relation

becomes z2002 = z. Note that

|z|2002 = |z2002| = |z| = |z|,

from which it follows that

|z|(|z|2001 − 1) = 0.

Hence |z| = 0 and (a, b) = (0, 0), or |z| = 1. In the case |z| = 1, we have
z2002 = z, which is equivalent to z2003 = z · z = |z|2 = 1. Since the equation
z2003 = 1 has 2003 distinct solutions, there are altogether 1 + 2003 = 2004
ordered pairs that meet the required conditions.

Problem 2. Two regular polygons are inscribed in the same circle. The first
polygon has 1982 sides and the second has 2973 sides. If the polygons have
any common vertices, how many such vertices will there be?

Solution. The number of common vertices is given by the number of com-
mon roots of z1982 − 1 = 0 and z2973 − 1 = 0. Applying Proposition1(b) in
Sect. 2.2.2 yields that the desired number is d = gcd(1982, 2973) = 991.

Problem 3. Let ε ∈ Un be a primitive root of unity and let z be a complex
number such that |z − εk| ≤ 1 for all k = 0, 1, . . . , n− 1. Prove that z = 0.

Solution. From the given condition, it follows that (z − εk)(z − εk) ≤ 1,

yielding |z|2 ≤ z(εk)+z ·εk, k = 0, 1, . . . , n−1. By summing these relations,
we obtain
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n|z|2 ≤ z

(
n−1∑

k=0

εk

)

+ z ·
n−1∑

k=0

εk = 0.

Thus z = 0.

Problem 4. Let P0P1 · · ·Pn−1 be a regular polygon inscribed in a circle of
radius 1. Prove the following:

(a) P0P1 · P0P2 · · ·P0Pn−1 = n;

(b) sin
π

n
sin

2π

n
· · · sin (n− 1)π

n
=

n

2n−1
;

(c) sin
π

2n
sin

3π

2n
· · · sin (2n− 1)π

2n
=

1

2n−1
.

Solution.

(a) Without loss of generality, we may assume that the vertices of the polygon
are the geometric images of the nth roots of unity, and P0 = 1. Consider
the polynomial f = zn − 1 = (z − 1)(z − ε) · · · (z − εn−1), where ε =
cos 2π

n + i sin 2π
n . Then it is clear that

n = f ′(1) = (1 − ε)(1− ε2) · · · (1− εn−1).

Taking the modulus of each side yields the desired result.
(b) We have

1− εk = 1− cos
2kπ

n
− i sin

2kπ

n
= 2 sin2

kπ

n
− 2i sin

kπ

n
cos

kπ

n

= 2 sin
kπ

n

(
sin

kπ

n
− i cos

kπ

n

)
,

whence |1− εk| = 2 sin
kπ

n
, k = 1, 2, . . . , n− 1, and the desired trigono-

metric identity follows from part (a).
(c) Consider the regular polygon Q0Q1 · · ·Q2n−1 inscribed in the same cir-

cle whose vertices are the geometric images of the 2nth roots of unity.
According to (a),

Q0Q1 ·Q0Q2 · · ·Q0Q2n−1 = 2n.

Now taking into account that Q0Q2 · · ·Q2n−2 is also a regular polygon,
we deduce from (a) that

Q0Q2 ·Q0Q4 · · ·Q0Q2n−2 = n.

Combining the last two relations yields

Q0Q1 ·Q0Q3 · · ·Q0Q2n−1 = 2.
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A similar computation to that in (b) leads to

Q0Q2k−1 = 2 sin
(2k − 1)π

2n
, k = 1, 2, . . . , n,

and the desired result follows.

Let n be a positive integer and let εn = cos
2π

n
+ i sin

2π

n
. The nth cyclo-

tomic polynomial is defined by

φn(x) =
∏

1≤k≤n−1
gcd(k,n)=1

(x− εkn).

Clearly, the degree of φn is ϕ(n), where ϕ is the Euler totient function. The
polynomial φn is monic with integer coefficients and is irreducible over Q.
The first sixteen cyclotomic polynomials are given below:

φ(x) = x− 1,

φ2(x) = x+ 1,

φ3(x) = x2 + x+ 1,

φ4(x) = x2 + 1,

φ5(x) = x4 + x3 + x2 + x+ 1,

φ6(x) = x2 − x+ 1,

φ7(x) = x6 + x5 + x4 + x3 + x2 + x+ 1,

φ8(x) = x4 + 1,

φ9(x) = x6 + x3 + 1,

φ10(x) = x4 − x3 + x2 − x+ 1,

φ11(x) = x10 + x9 + x8 + · · ·+ x+ 1,

φ12(x) = x4 − x2 + 1,

φ13(x) = x12 + x11 + x10 + · · ·+ x+ 1,

φ14(x) = x6 − x5 + x4 − x3 + x2 − x+ 1,

φ15(x) = x8 − x7 + x5 − x4 + x3 − x+ 1,

φ16(x) = x8 + 1.

The following properties of cyclotomic polynomials are well known:

(1) If q > 1 is an odd integer, then φ2q(x) = φq(−x).
(2) If n > 1, then

φn(1) =

{
p, when n is a power of a prime p,
1, otherwise.
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The next problem extends the trigonometric identity in Problem4(b) in
Sect. 2.2.2.

Problem 5. The following identities hold:

(a)
∏

1≤k≤n−1
gcd(k, n)=1

sin
kπ

n
=

1

2ϕ(n)
, whenever n is not a power of a prime;

(b)
∏

1≤k≤n−1
gcd(k, n)=1

cos
kπ

n
=

(−1)
ϕ(n)

2

2ϕ(n)
, for all odd positive integers n.

Solution.

(a) As we have seen in Problem4(b) in Sect. 2.2.2,

1− εkn = 2 sin
kπ

n

(
sin

kπ

n
− i cos

kπ

n

)
=

2

i
sin

kπ

n

(
cos

kπ

n
+ i sin

kπ

n

)
.

We have

1 = φn(1) =
∏

1≤k≤n−1
gcd(k, n)=1

(1− εkn) =
∏

1≤k≤n−1
gcd(k, n)=1

2

i
sin

kπ

n

(
cos

kπ

n
+ i sin

kπ

n

)

=
2ϕ(n)

iϕ(n)

⎛

⎜
⎜
⎝
∏

1≤k≤n−1
gcd(k, n)=1

sin
kπ

n

⎞

⎟
⎟
⎠

(
cos

ϕ(n)

2
π + i sin

ϕ(n)

2
π

)

=
2ϕ(n)

(−1)
ϕ(n)

2

⎛

⎜
⎜
⎝
∏

1≤k≤n−1
gcd(k, n)=1

sin
kπ

n

⎞

⎟
⎟
⎠ (−1)

ϕ(n)
2 ,

where we have used the fact that ϕ(n) is even, and also the well-known
relation ∑

1≤k≤n−1
gcd(k, n)=1

k =
1

2
nϕ(n).

The conclusion follows.
(b) We have

1 + εkn = 1 + cos
2kπ

n
+ i sin

2kπ

n
= 2 cos2

kπ

n
+ 2i sin

kπ

n
cos

kπ

n

= 2 cos
kπ

n

(
cos

kπ

n
+ i sin

kπ

n

)
, k = 0, 1, . . . , n− 1.
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Because n is odd, it follows from the relation φ2n(x) = φn(−x) that φn(−1) =
φ2n(1) = 1. Then

1 = φn(−1) =
∏

1≤k≤n−1
gcd(k, n)=1

(1− εkn) = (−1)ϕ(n)
∏

1≤k≤n−1
gcd(k, n)=1

(1 + εkn)

= (−1)ϕ(n)
∏

1≤k≤n−1
gcd(k, n)=1

2 cos
kπ

n

(
cos

kπ

n
+ i sin

kπ

n

)

= (−1)ϕ(n)2ϕ(n)

⎛

⎜
⎜
⎝
∏

1≤k≤n−1
gcd(k, n)=1

cos
kπ

n

⎞

⎟
⎟
⎠

(
cos

ϕ(n)

2
π + i sin

ϕ(n)

2
π

)

= (−1)
ϕ(n)

2 2ϕ(n) ∏

1≤k≤n−1
gcd(k, n)=1

cos
kπ

n
,

yielding the desired identity.

2.2.3 Binomial Equations

A binomial equation is an equation of the form Zn + a = 0, where a ∈ C
∗

and n ≥ 2 is an integer.
Solving for Z means finding the nth roots of the complex number −a. This

is, in fact, a simple polynomial equation of degree n with complex coefficients.
From the well-known fundamental theorem of algebra, it follows that it has
exactly n complex roots, and it is obvious that the roots are distinct.

Example.

(1) Let us find the roots of Z3 + 8 = 0.
We have −8 = 8(cosπ + i sinπ), so the roots are

Zk = 2

(
cos

π + 2kπ

3
+ i sin

π + 2kπ

3

)
, k ∈ {0, 1, 2}.

(2) Let us solve the equation Z6 − Z3(1 + i) + i = 0.
Observe that the equation is equivalent to

(Z3 − 1)(Z3 − i) = 0.

Solving the binomial equations Z3 − 1 = 0 and Z3 − i = 0 for Z, we
obtain the solutions
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εk = cos
2kπ

3
+ i sin

2kπ

3
for k ∈ {0, 1, 2}

and

Zk = cos

π

2
+ 2kπ

3
+ i sin

π

2
+ 2kπ

3
for k ∈ {0, 1, 2}.

2.2.4 Problems

1. Find the square roots of the following complex numbers:

(a) z = 1 + i; (b) z = i; (c) z =
1√
2
+

i√
2
;

(d) z = −2(1 + i
√
3); (e) z = 7− 24i.

2. Find the cube roots of the following complex numbers:

(a) z = −i; (b) z = −27; (c) z = 2 + 2i;

(d) z =
1

2
− i

√
3

2
; (e) z = 18 + 26i.

3. Find the fourth roots of the following complex numbers:

(a) z = 2− i
√
12; (b) z =

√
3 + i; (c) z = i;

(d) z = −2i; (e) z = −7 + 24i.

4. Find the 5th, 6th, 7th, 8th, and 12th roots of the complex numbers given
above.

5. Let Un = {ε0, ε1, ε2, . . . , εn−1}. Prove the following:

(a) εj · εk ∈ Un, for all j, k ∈ {0, 1, . . . , n− 1};
(b) ε−1

j ∈ Un, for all j ∈ {0, 1, . . . , n− 1}.

6. Solve the following equations:

(a) z3 − 125 = 0; (b) z4 + 16 = 0;
(c) z3 + 64i = 0; (d) z3 − 27i = 0.

7. Solve the following equations:

(a) z7 − 2iz4 − iz3 − 2 = 0; (b) z6 + iz3 + i− 1 = 0;
(c) (2− 3i)z6 + 1 + 5i = 0; (d) z10 + (−2 + i)z5 − 2i = 0.

8. Solve the equation

z4 = 5(z − 1)(z2 − z + 1).

9. Let z be a complex number such that zn + zn−1 + . . . + 1 = 0. Prove
that

nzn−1 + . . .+ 2z + 1 =
n+ 1

z2 − z
.
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10. Let z be a complex number such that

(
z +

1

z

)(
z +

1

z
+ 1

)
= 1.

For an arbitrary integer n, evaluate

(
zn +

1

zn

)(
zn +

1

zn
+ 1

)
.

11. Let v and w be distinct randomly chosen roots of the equation

z1997 − 1 = 0.

Let
m

n
be the probability that

√
2 +

√
3 ≤ |v + w|, where m and n are

relatively prime positive integers. Find m+ n.

(1997 AIME, Problem 14)

12. Let z1, z2, z3, z4 be the roots of

(
z − i

2z − i

)4
= 1. Determine the value of

(z21 + 1)(z22 + 1)(z23 + 1)(z24 + 1).

13. The equation x10 + (13x− 1010) = 0 has 10 complex roots r1, r1, r2, r2,
r3, r3, r4, r4, r5, r5, where the bar denotes the complex conjugate. Find
the value of

1

r1r1
+

1

r2r2
+

1

r3r3
+

1

r4r4
+

1

r5r5
.

(1994 AIME, Problem 13)

14. For certain real values of a, b, c, and d, the equation

x4 + ax3 + bx2 + cx+ d = 0

has four nonreal roots. The product of two of these roots is 13 + i, and
the sum of the other two roots is 3 + 4i, where i =

√
−1. Find b.

(1995 AIME, Problem 5)



Chapter 3

Complex Numbers and Geometry

3.1 Some Simple Geometric Notions and Properties

3.1.1 The Distance Between Two Points

Suppose that the complex numbers z1 and z2 have the geometric images M1

and M2. Then the distance between the points M1 and M2 is given by

M1M2 = |z1 − z2|.

The distance function d : C× C → [0, ∞) is defined by

d(z1, z2) = |z1 − z2|,

and it satisfies the following properties:

(a) (positivity and nondegeneracy):

d(z1, z2) ≥ 0 for all z1, z2 ∈ C;

d(z1, z2) = 0 if and only if z1 = z2.

(b) (symmetry):

d(z1, z2) = d(z2, z1) for all z1, z2 ∈ C.

(c) (triangle inequality):

d(z1, z2) ≤ d(z1, z3) + d(z3, z2) for all z1, z2, z3 ∈ C.

To justify (c), let us observe that

|z1 − z2| = |(z1 − z3) + (z3 − z2)| ≤ |z1 − z3|+ |z3 − z2|,

T. Andreescu and D. Andrica, Complex Numbers from A to ... Z,
DOI 10.1007/978-0-8176-8415-0 3, © Springer Science+Business Media New York 2014
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from the modulus property. Equality holds if and only if there is a positive
real number k such that

z3 − z1 = k(z2 − z3).

3.1.2 Segments, Rays, and Lines

Let A and B be two distinct points with complex coordinates a and b. We
say that the point M with complex coordinate z is between the points A and
B if z �= a, z �= b, and the following relation holds:

|a− z|+ |z − b| = |a− b|.

We use the notation A−M −B when the point M is between A and B.
The set (AB) = {M : A−M −B} is called the open segment determined

by the points A and B. The set [AB ] = (AB)∪{A, B} represents the closed
segment defined by the points A and B.

Theorem 1. Suppose A(a) and B(b) are two distinct points. The following
statements are equivalent:

(1) M ∈ (AB).
(2) There is a positive real number k such that z − a = k(b− z).
(3) There is a real number t ∈ (0, 1) such that z = (1− t)a+ tb, where z is

the complex coordinate of M .

Proof. We first prove that (1) and (2) are equivalent. Indeed, we have M ∈
(AB) if and only if |a−z|+|z−b| = |a−b|. That is, d(a, z)+d(z, b) = d(a, b),
or equivalently, there is a real number k > 0 such that z − a = k(b− z).

To prove (2) ⇔ (3), set t = k
k+1 ∈ (0, 1), or k = t

1−t > 0. Then we have

z − a = k(b − z) if and only if z = 1
k+1a + k

k+1 b. That is, z = (1 − t)a + tb,
and we are done. �


The set (AB = {M |A−M −B or A−B−M} is called the open ray with
endpoint A that contains B.

Theorem 2. Suppose A(a) and B(b) are two distinct points. The following
statements are equivalent:

(1) M ∈ (AB.
(2) There is a positive real number t such that z = (1 − t)a + tb, where z is

the complex coordinate of M .
(3) arg(z − a) = arg(b− a).

(4)
z − a

b− a
∈ R

+.

Proof. It suffices to prove that (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (1).
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(1) ⇒ (2). Since M ∈ (AB , we have A −M − B or A − B −M . There are
numbers t, l ∈ (0, 1 ) such that

z = (1− t)a+ tb or b = (1 − l)a+ lz.

In the first case, we are done; for the second case, set t =
1

l
, and

therefore,

z = tb − (t − 1)a = (1 − t)a+ tb,

as claimed.
(2) ⇒ (3). From z = (1− t)a+ tb, t > 0, we obtain

z − a = t (b− a), t > 0.

Hence
arg(z − a) = arg(b− a).

(3) ⇒ (4). The relation

arg
z − a

b− a
= arg(z − a)− arg(b− a) + 2kπ for some k ∈ Z

implies arg
z − a

b − a
= 2kπ, k ∈ Z. Since arg

z − a

b− a
∈ [0, 2π), it

follows that k = 0 and arg
z − a

b− a
= 0. Thus

z − a

b− a
∈ R

+, as

desired.

(4) ⇒ (1). Let t =
z − a

b − a
∈ R

+. Hence

z = a+ t (b − a) = (1− t)a+ tb, t > 0.

If t ∈ (0, 1), then M ∈ (AB) ⊂ (AB .
If t = 1, then z = b and M = B ∈ (AB . Finally, if t > 1, then setting

l =
1

t
∈ (0, 1), we have

b = lz + (1 − l)a.

It follows that A−B −M and M ∈ (AB.
The proof is now complete. �


Theorem 3. Suppose A(a) and B(b) are two distinct points. The following
statements are equivalent:

(1) M(z) lies on the line AB.
(2) z−a

b−a ∈ R.
(3) There is a real number t such that z = (1− t)a+ tb.
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(4) ∣
∣
∣∣
z − a z̄ − ā
b− a b̄− ā

∣
∣
∣∣ = 0.

(5) ∣∣
∣
∣
∣
∣

z z̄ 1
a ā 1
b ā 1

∣∣
∣
∣
∣
∣
= 0.

Proof. To obtain the equivalences (1) ⇔ (2) ⇔ (3), observe that for a point
C such that C − A − B, the line AB is the union (AB ∪ {A} ∪ (AC . Then
apply Theorem 2.

Next we prove the equivalences (2) ⇔ (4) ⇔ (5).

Indeed, we have
z − a

b− a
∈ R if and only if

z − a

b− a
=

(
z − a

b − a

)
.

That is,
z − a

b− a
=

z − a

b− a
, or equivalently,

∣
∣
∣
∣
z − a z − a

b− a b − a

∣
∣
∣
∣ = 0, so we obtain

that (2) is equivalent to (4).
Moreover, we have

∣∣
∣
∣
∣
∣

z z̄ 1
a ā 1
b b̄ 1

∣∣
∣
∣
∣
∣
= 0 if and only if

∣∣
∣
∣
∣
∣

z − a z̄ − ā 0
a ā 1

b− a b̄− ā 0

∣∣
∣
∣
∣
∣
= 0.

The last relation is equivalent to

∣
∣
∣
∣
z − a z − a

b− a b− a

∣
∣
∣
∣ = 0,

so we obtain that (4) is equivalent to (5), and we are done. �

Problem 1. Let z1, z2, z3 be complex numbers such that |z1| = |z2| = |z3| =
R and z2 �= z3. Prove that

min
a∈R

|az2 + (1− a)z3 − z1| =
1

2R
|z1 − z2| · |z1 − z3|.

(Romanian Mathematical Olympiad—Final Round, 1984)

Solution. Let z = az2 + (1 − a)z3, a ∈ R, and consider the points
A1, A2, A3, A with complex coordinates z1, z2, z3, z, respectively. From
the hypothesis, it follows that the circumcenter of triangle A1A2A3 is the
origin of the complex plane. Notice that point A lies on the line A2A3, so
A1A = |z − z1| is greater than or equal to the altitude A1B of the triangle
A1A2A3 (Fig. 3.1).

It suffices to prove that

A1B =
1

2R
|z1 − z2||z1 − z3| =

1

2R
A1A2 · A1A3.
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Figure 3.1.

Indeed, since R is the circumradius of the triangle A1A2A3, we have

A1B =
2area[A1A2A3]

A2A3
=

2
A1A2 ·A2A3 ·A3A1

4R
A2A3

=
A1A2 · A3A1

2R
,

as claimed.

3.1.3 Dividing a Segment into a Given Ratio

Consider two distinct points A(a) and B(b). A point M(z) on the line AB
divides the segment AB into the ratio k ∈ R\{1} if the following vectorial
relation holds: −−→

MA = k · −−→MB.

In terms of complex numbers, this relation can be written as

a− z = k(b− z) or (1− k)z = a− kb.

Hence, we obtain

z =
a− kb

1− k
.

Observe that for k < 0, the point M lies on the line segment joining the
points A and B. If k ∈ (0, 1), then M ∈ (AB\[AB ]. Finally, if k > 1, then
M ∈ (BA\[AB ].

As a consequence, note that for k = −1, we obtain that the coordinate of

the midpoint of segment AB is given by zM =
a+ b

2
.
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Example. Let A(a), B(b), C(c) be noncollinear points in the complex plane.
Then the midpoint M of segment AB has the complex coordinate zM =
a+ b

2
. The centroid G of triangle ABC divides the median CM in the pro-

portion 2 : 1 internally; hence its complex coordinate is given by k = −2, i.e.,

zG =
c+ 2zM
1 + 2

=
a+ b+ c

3
.

3.1.4 Measure of an Angle

Recall that a triangle is oriented if an ordering of its vertices is specified. It is
positively, or directly, oriented if the vertices are oriented counterclockwise.
Otherwise, we say that the triangle is negatively oriented. Consider two dis-
tinct points M1(z1) and M2(z2) other than the origin in the complex plane.

The angle M̂1OM 2 is positively, or directly, oriented if the points M1 and
M2 are ordered counterclockwise (Fig. 3.2).

Proposition. The measure of the directly oriented angle M̂1OM 2 is equal

to arg
z2
z1

.

Proof. In order to simplify the presentation, we will use the same notation
for the measure of an angle as for the angle. We consider the following two
cases.

Figure 3.2.

(a) If the triangle M1OM 2 is negatively oriented (Fig. 3.2), then

M̂1OM 2 = x̂OM 2 − x̂OM 1 = arg(z2)− arg(z1) = arg
z2
z1

.
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Figure 3.3.

(b) If the triangle M1OM 2 is positively oriented (Fig. 3.3), then

M̂1OM 2 = 2π − M̂2OM 1 = 2π − arg
z1
z2

,

since the triangle M2OM 1 is negatively oriented. Thus

M̂1OM 2 = 2π − arg
z1
z2

= 2π −
(
2π − arg

z2
z1

)
= arg

z2
z1

,

as claimed. �


Remark. The result also holds if the points O, M1, M2 are collinear.

Example.

(a) Suppose that z1 = 1 + i and z2 = −1 + i. Then (see Fig. 3.4)

z2
z1

=
−1 + i

1 + i
=

(−1 + i)(1− i)

2
= i,

so

M̂1OM 2 = arg i =
π

2
and M̂2OM 1 = arg(−i) =

3π

2
.

(b) Suppose that z1 = i and z2 = 1. Then
z2
z1

=
1

i
= −i, so (see Fig. 3.5)

M̂1OM2 = arg(−i) =
3π

2
and M̂2OM1 = arg(i) =

π

2
.

Theorem. Consider three distinct points M1(z1), M2(z2), and M3(z3). The

measure of the oriented angle ̂M2M1M3 is arg
z3 − z1
z2 − z1

.
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Proof. Translation by the vector −z1 maps the points M1, M2, M3 into the
points O, M ′

2, M
′
3, with complex coordinates O, z2 − z1, z3 − z1. Moreover,

we have ̂M2M1M3 = M̂ ′
2OM ′

3. By the previous result, we obtain

Figure 3.4.

Figure 3.5.

M̂ ′
2OM ′

3 = arg
z3 − z1
z2 − z1

,

as claimed. �


Example. Suppose that z1 = 4 + 3i, z2 = 4 + 7i, z3 = 8 + 7i. Then

z2 − z1
z3 − z1

=
4i

4 + 4i
=

i(1− i)

2
=

1 + i

2
,

so
̂M3M1M2 = arg

1 + i

2
=

π

4

and

̂M2M1M3 = arg
2

1 + i
= arg(1 − i) =

7π

4
.

Remark. Using polar representation, from the above result we have
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z3 − z1
z2 − z1

=

∣
∣∣
∣
z3 − z1
z2 − z1

∣
∣∣
∣

(
cos

(
arg

z3 − z1
z2 − z1

)
+ i sin

(
arg

z3 − z1
z2 − z1

))

=

∣
∣
∣
∣
z3 − z1
z2 − z1

∣
∣
∣
∣
(
cos ̂M2M1M3 + i sin ̂M2M1M3

)
.

3.1.5 Angle Between Two Lines

Consider four distinct pointsMi(zi), i ∈ {1, 2, 3, 4}. The measure of the angle

determined by the lines M1M3 and M2M4 equals arg
z3 − z1
z4 − z2

or arg
z4 − z2
z3 − z1

.

The proof is obtained following the same ideas as in the previous subsection.

3.1.6 Rotation of a Point

Consider an angle α and the complex number given by

ε = cosα+ i sinα.

Let z = r(cos t + i sin t) be a complex number and M its geometric image.
Form the product zε = r(cos(t+ α) + i sin(t+ α)) and let us observe that

|zε| = r and
arg(zε) = arg z + α.

It follows that the geometric image M ′ of zε is the rotation of M with respect
to the origin through the angle α (Fig. 3.6).

Figure 3.6.

Now we have all the ingredients to establish the following result:

Proposition. Suppose that the point C is the rotation of B with respect to
A through the angle α.



66 3 Complex Numbers and Geometry

If a, b, c are the coordinates of the points A, B, C, respectively, then

c = a+ (b− a)ε, where ε = cosα+ i sinα.

Proof. Translation by the vector −a maps the points A, B, C into the points
O, B′, C′, with complex coordinatesO, b−a, c−a, respectively (see Fig. 3.7).
The point C′ is the image of B′ under rotation about the origin through the
angle α, so c− a = (b − a)ε, or c = a+ (b− a)ε, as desired. �


Figure 3.7.

We will call the formula in the above proposition the rotation formula.

Problem 1. Let ABCD and BNMK be two nonoverlapping squares and let
E be the midpoint of AN . If point F is the foot of the perpendicular from B
to the line CK, prove that points E, F, B are collinear.

Solution. Consider the complex plane with origin at F and the axis CK
and FB, where FB is the imaginary axis (Fig. 3.8).

Let c, k, bi be the complex coordinates of points C, K, B with c, k, b ∈ R.

Rotation with center B through the angle θ =
π

2
maps point C to A, so A

has the complex coordinate a = b(1− i) + ci . Similarly, point N is obtained

by rotating point K around B through the angle θ = −π

2
, and its complex

coordinate is
n = b(1 + i)− ki .

The midpoint E of segment AN has complex coordinate

e =
a+ n

2
= b+

c− k

2
i,

so E lies on the line FB, as desired.
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Figure 3.8.

Problem 2. On the sides AB, BC, CD, DA of quadrilateral ABCD, and
exterior to the quadrilateral, we construct squares of centers O1, O2, O3, O4,
respectively. Prove that

O1O3 ⊥ O2O4 and O1O3 = O2O4.

(Van Aubel)

Solution. Let ABMM ′, BCNN ′, CDPP ′, and DAQQ′ be the constructed
squares with centers O1, O2, O3, O4, respectively (Fig. 3.9).

Figure 3.9.

Denote by the corresponding lowercase letter the coordinate of each of the
points denoted by an uppercase letter, i.e., o1 is the coordinate of O1, etc.

Point M is obtained from point A by a rotation about B through the angle

θ =
π

2
; hence m = b+ (a− b)i. Likewise,
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n = c+ (b − c)i, p = d+ (c− d)i and q = a+ (d− a)i.

It follows that

o1 =
a+m

2
=

a+ b+ (a− b)i

2
, o2 =

b+ c+ (b− c)i

2
,

o3 =
c+ d+ (c− d)i

2
, o4 =

d+ a+ (d− a)i

2
.

Then
o3 − o1
o4 − o2

=
c+ d− a− b+ i(c− d− a+ b)

a+ d− b− c+ i(d− a− b + c)
= −i ∈ iR∗,

so O1O3 ⊥ O2O4. Moreover,

∣
∣
∣
∣
o3 − o1
o4 − o2

∣
∣
∣
∣ = | − i| = 1;

hence O1O3 = O2O4, as desired.

Problem 3. In the exterior of the triangle ABC we construct triangles
ABR, BCP , and CAQ such that

m(P̂BC) = m(ĈAQ) = 45◦,

m(B̂CP ) = m(Q̂CA) = 30◦,

and
m(ÂBR) = m(R̂AB) = 15◦.

Prove that
m(Q̂RP ) = 90◦ and RQ = RP.

Solution. Consider the complex plane with origin at point R and let M be
the foot of the perpendicular from P to the line BC (Fig. 3.10).

Figure 3.10.
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Denote by the corresponding lowercase letter the coordinate of a point

denoted by an uppercase letter. From MP = MB and
MC

MP
=

√
3, it follows

that
p−m

b−m
= i and

c−m

p−m
= i

√
3,

whence

p =
c+

√
3b

1 +
√
3

+
b− c

1 +
√
3
i.

Likewise,

q =
c+

√
3a

1 +
√
3

+
a− c

1 +
√
3
i.

Point B is obtained from point A by a rotation about R through the angle
θ = 150◦, so

b = a

(

−
√
3

2
+

1

2
i

)

.

Simple algebraic manipulations show that
p

q
= i ∈ R

∗, whence QR ⊥ PR.

Moreover, |p| = |iq | = |q|, RP = RQ , and we are done.

Problem 4. The points (0, 0), (a, 11), and (b, 37) are the vertices of an equi-
lateral triangle. Find the value of ab.

(1994 AIME, Problem 8)

Solution. Consider the points as lying in the complex plane. The point
b + 37i is then a rotation of 60◦ of a+ 11i about the origin, so

(a+ 11i)(cos 60◦ + i sin 60◦) = (a+ 11i)

(
1

2
+

√
3i

2

)

= b+ 37i.

Equating the real and imaginary parts, we have

b =
a

2
− 11

√
3

2
,

37 =
11

2
+

a
√
3

2
.

By solving this system, we find that a = 21
√
3, b = 5

√
3. Thus, the answer

is 315.

Remark. There is another solution in which the point b + 37i is a rotation
of a+11i through −60◦. However, this triangle is just a reflection of the first
triangle in the y-axis, and the signs of a and b are reversed. However, the
product ab is unchanged.
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Problem 5. Let ABCD be a convex quadrilateral. Let P be the point outside
ABCD such that angle APB is a right angle and P is equidistant from A
and B. Let points Q, R, and S be given by the same conditions with respect
to the other three edges of ABCD. Let J , K, L, and M be the midpoints of
PQ, QR, RS, and SP , respectively. Prove that JKLM is a square.

(American Mathematical Monthly)

Solution. By Van Aubel’s theorem, the lines PR and QS are perpendicular,
and the segments PR and QS are equal. Let O be the intersection point of the
lines PR and QS. Without loss of generality, assume that |PR| = |QS| = 1.
Consider now the Cartesian coordinate system centered at O with axes PR
and QS. In this case,

Q = (u, 0), S = (u− 1, 0), R = (0, v), P = (0, v − 1),

for some positive real numbers u, v less than 1. Hence

J =

(
u

2
,
v − 1

2

)
, K =

(u
2
,
v

2

)
, L =

(
u− 1

2
,
v

2

)
, M =

(
u− 1

2
,
v − 1

2

)
,

from which we can deduce, by making use of the distance formula combined
with the Pythagorean theorem, that the quadrilateral JKLM is a square.

3.2 Conditions for Collinearity, Orthogonality,
and Concyclicity

In this section, we consider four distinct points Mi(zi), i ∈ {1, 2, 3, 4}.
Proposition 1. The points M1, M2, M3 are collinear if and only if

z3 − z1
z2 − z1

∈ R
∗.

Proof. The collinearity of the points M1,M2,M3 is equivalent to ̂M2M1M3 ∈
{0, π}. It follows that

arg
z3 − z1
z2 − z1

∈ {0, π},

or equivalently,
z3 − z1
z2 − z1

∈ R
∗,

as claimed. �

Proposition 2. The lines M1M2 and M3M4 are orthogonal if and only if

z1 − z2
z3 − z4

∈ iR∗.
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Proof. We have M1M2 ⊥ M3M4 if and only if ( ̂M1M2,M3M4) ∈
{
π
2 ,

3π
2

}
.

This is equivalent to arg z1−z2
z3−z4

∈
{

π
2 ,

3π
2

}
. We obtain z1−z2

z3−z4
∈ iR∗. �


Remark. Suppose that M2 = M4. Then M1M2 ⊥ M3M2 if and only if
z1−z2
z3−z2

∈ iR∗.

Example.

(1) Consider the points M1(2 − i), M2(−1 + 2i), M3(−2 − i), M4(1 + 2i).
Simple algebraic manipulation shows that

z1 − z2
z3 − z4

= i; hence M1M2 ⊥ M3M4.

(2) Consider the points M1(2 − i), M2(−1 + 2i), M3(1 + 2i), M4(−2 − i).
Then we have z1−z2

z3−z4
= −i, and hence M1M2 ⊥ M3M4.

Problem 1. Let z1, z2, z3 be the coordinates of vertices A, B, C of a tri-
angle. If w1 = z1 − z2 and w2 = z3 − z1, prove that Â = 90◦ if and only if
Re(w1 · w2) = 0.

Solution. We have Â = 90◦ if and only if z2−z1
z3−z1

∈ iR, which is equiva-

lent to w1

−w2
∈ iR, i.e., Re

(
w1

−w2

)
= 0. The last relation is equivalent to

Re
(

w1·w2

−|w2|2
)
= 0, i.e., Re(w1 · w2) = 0, as desired.

Proposition 3. The distinct points M1(z1), M2(z2), M3(z3), M4(z4) are
concyclic or collinear if and only if

k =
z3 − z2
z1 − z2

:
z3 − z4
z1 − z4

∈ R
∗.

Proof. Assume that the points are collinear. We can arrange four points on
a circle in (4 − 1)! = 3! = 6 different ways. Consider the case in which
M1, M2, M3, M4 are given in this order. Then M1, M2, M3, M4 are con-
cyclic if and only if

̂M1M2M3 + ̂M3M4M1 ∈ {3π, π}.

That is,

arg
z3 − z2
z1 − z2

+ arg
z1 − z4
z3 − z4

∈ {3π, π}.

Because

arg
1

z
=

{
2π − arg z if z ∈ C

∗ \R+,
0 if z ∈ R

∗
+,
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we obtain

arg
z3 − z2
z1 − z2

− arg
z3 − z4
z1 − z4

∈ {−π, π},

i.e., k < 0.
For all other arrangements of the four points, the proof is similar. Note

that k > 0 in three cases and k < 0 in the other three. �


The number k is called the cross ratio of the four points M1(z1), M2(z2),
M3(z3), and M4(z4).

Remarks.

(1) The points M1, M2, M3, M4 are collinear if and only if

z3 − z2
z1 − z2

∈ R
∗ and

z3 − z4
z1 − z4

∈ R
∗.

(2) The points M1, M2, M3, M4 are concyclic if and only if

k =
z3 − z2
z1 − z2

:
z3 − z4
z1 − z4

∈ R
∗, but

z3 − z2
z1 − z2

�∈ R and
z3 − z4
z1 − z4

�∈ R.

Example.

(1) The geometric images of the complex numbers 1, i,−1,−i are concyclic.
Indeed, we have the cross ratio k = −1−i

1−i : −1+i
1+i = −1 ∈ R

∗, and clearly
−1−i
1−i �∈ R and −1+i

1+i �∈ R.

(2) The points M1(2 − i), M2(3 − 2i), M3(−1 + 2i), and M4(−2 + 3i) are
collinear. Indeed, k = −4+4i

−1+i : 1−i
4−4i = 1 ∈ R

∗ and −4+4i
−1+i = 4 ∈ R

∗.

Problem 2. Find all complex numbers z such that the points with complex
coordinates z, z2, z3, z4, in this order, are the vertices of a cyclic quadrilat-
eral.

Solution. If the points of complex coordinates z, z2, z3, z4, in this order,
are the vertices of a cyclic quadrilateral, then

z3 − z2

z − z2
:
z3 − z4

z − z4
∈ R

∗.

It follows that

−1 + z + z2

z
∈ R

∗, i.e., −1−
(
z +

1

z

)
∈ R

∗.

We obtain z+ 1
z ∈ R, i.e., z+ 1

z = z+ 1
z . Hence (z− z)(|z|2 − 1) = 0, whence

z ∈ R or |z| = 1.
If z ∈ R, then the points with complex coordinates z, z2, z3, z4 are

collinear; hence it is left to consider the case |z| = 1.
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Let t = arg z ∈ [0, 2π). We prove that the points with complex coordinates
z, z2, z3, z4 lie in this order on the unit circle if and only if t ∈

(
0, 2π

3

)
∪(

4π
3 , 2π
)
. Indeed,

(a) If t ∈
(
0, π

2

)
, then 0 < t < 2t < 3t < 4t < 2π or

0 < arg z < arg z2 < arg z3 < arg z4 < 2π.

(b) If t ∈
[
π
2 ,

2π
3

)
, then 0 ≤ 4t− 2π < t < 2t < 3t < 2π or

0 ≤ arg z4 < arg z < arg z2 < arg z3 < 2π.

(c) If t ∈
[
2π
3 , π
)
, then 0 ≤ 3t− 2π < t ≤ 4t− 2π < 2t < 2π or

0 ≤ arg z3 < arg z ≤ arg z4 < arg z2.

In the same manner, we can analyze the case t ∈ [π, 2π).
To conclude, the complex numbers satisfying the desired property are

z = cos t+ i sin t, with t ∈
(
0,

2π

3

)
∪
(
4π

3
, π

)
.

3.3 Similar Triangles

Consider six points A1(a1), A2(a2), A3(a3), B1(b1), B2(b2), B3(b3) in the
complex plane. We say that the triangles A1A2A3 and B1B2B3 are similar if
the angle at Ak is equal to the angle at Bk, k ∈ {1, 2, 3}.

Proposition 1. The triangles A1A2A3 and B1B2B3 are similar, with the
same orientation, if and only if

a2 − a1
a3 − a1

=
b2 − b1
b3 − b1

. (1)

Proof. We have ΔA1A2A3 ∼ ΔB1B2B3 if and only if A1A2

A1A3
= B1B2

B1B3
and

̂A3A1A2 ≡ ̂B3B1B2. This is equivalent to |a2−a1|
|a3−a1| =

|b2−b1|
|b3−b1| and arg a2−a1

a3−a1
=

arg b2−b1
b3−b1

. We obtain
a2 − a1
a3 − a1

=
b2 − b1
b3 − b1

.

�


Remarks.

(1) The condition (1) is equivalent to
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∣
∣∣
∣
∣
∣

1 1 1
a1 a2 a3
b1 b2 b3

∣
∣∣
∣
∣
∣
= 0.

(2) The triangles A1(0), A2(1), A3(2i) and B1(0), B2(−i), B3(−2) are simi-
lar, but oppositely oriented. In this case, the condition (1) is not satisfied.
Indeed,

a2 − a1
a3 − a1

=
1− 0

2i− 0
=

1

2i
�= b2 − b1

b3 − b1
=

−i− 0

−2− 0
=

i

2
.

Proposition 2. The triangles A1A2A3 and B1B2B3 are similar, having
opposite orientations, if and only if

a2 − a1
a3 − a1

=
b2 − b1

b3 − b1
.

Proof. Reflection across the x-axis maps the points B1, B2, B3 into the
points M1(b1), M2(b2), M3(b3). The triangles B1B2B3 and M1M2M3 are
similar and have opposite orientations; hence triangles A1A2A3 andM1M2M3

are similar with the same orientation. The conclusion follows from the previ-
ous proposition. �

Problem 1. On sides AB, BC, CA of a triangle ABC we draw similar tri-
angles ADB, BEC, CFA, having the same orientation. Prove that triangles
ABC and DEF have the same centroid.

Solution. Denote by the corresponding lowercase letter the coordinate of a
point denoted by an uppercase letter.

Triangles ADB, BEC, CFA are similar with the same orientation,
whence

d− a

b− a
=

e− b

c− b
=

f − c

a− c
= z,

and consequently,

d = a+ (b− a)z, e = b+ (c− b)z, f = c+ (a− c)z.

Then
d+ e+ f

3
=

a+ b+ c

3
,

so triangles ABC and DEF have the same centroid.

Problem 2. Let M, N, P be the midpoints of sides AB, BC, CA of triangle
ABC. On the perpendicular bisectors of segments [AB], [BC], [CA], points
C′, A′, B′ are chosen inside the triangle such that

MC′

AB
=

NA′

BC
=

PB′

CA
.

Prove that ABC and A′B′C′ have the same centroid.
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Solution. Note that from

MC′

AB
=

NA′

BC
=

PB′

CA
,

it follows that tan(Ĉ′AB) = tan(Â′BC) = tan(B̂′CA). Hence triangles
AC′B, BA′C, CB′A are similar, and so from Problem 2, it follows that
ABC and A′B′C′ have the same centroid.

Problem 3. Let ABO be an equilateral triangle with center S and let A′B′O
be another equilateral triangle with the same orientation and S �= A′, S �= B′.
Consider M and N the midpoints of the segments A′B and AB′.

Prove that triangles SB′M and SA′N are similar.

(30th IMO-Shortlist)

Solution. Let R be the circumradius of the triangle ABO and let

ε = cos
2π

3
+ i sin

2π

3
.

Consider the complex plane with origin at point S such that point O lies on
the positive real axis. Then the coordinates of pointsO, A, B areR, Rε, Rε2,
respectively (Fig. 3.11).

Figure 3.11.

Let R + z be the coordinate of point B′, so R − zε is the coordinate of
point A′. It follows that the midpoints M, N have the coordinates

zM =
zB + zA′

2
=

Rε2 +R− zε

2
=

R(ε2 + 1)− zε

2

=
−Rε− zε

2
=

−ε(R+ z)

2
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and

zN =
zA + zB′

2
=

Rε+R+ z

2
=

R(ε+ 1) + z

2
=

−Rε2 + z

2

=
z − R

ε
2

=
R− zε

−2ε
.

Now we have
zB′ − zS
zM − zS

=
zA′ − zS
zN − zS

if and only if
R+ z

−ε(R+ z)

2

=
R− zε

R− zε

−2ε

.

The last relation is equivalent to ε · ε̄ = 1, i.e., |ε|2 = 1. Hence the triangles
SB′M and SA′N are similar, with opposite orientations.

3.4 Equilateral Triangles

Proposition 1. Suppose z1, z2, z3 are the coordinates of the vertices of the
triangle A1A2A3. The following statements are equivalent:

(a) A1A2A3 is an equilateral triangle.
(b) |z1 − z2| = |z2 − z3| = |z3 − z1|.
(c) z21 + z22 + z23 = z1z2 + z2z3 + z3z1.

(d)
z2 − z1
z3 − z1

=
z3 − z2
z1 − z2

.

(e)
1

z − z1
+

1

z − z2
+

1

z − z3
= 0, where z =

z1 + z2 + z3
3

.

(f) (z1 + εz2 + ε2z3)(z1 + ε2z2 + εz3) = 0, where ε = cos
2π

3
+ i sin

2π

3
.

(g) ∣∣
∣
∣
∣
∣

1 1 1
z1 z2 z3
z2 z3 z1

∣∣
∣
∣
∣
∣
= 0.

Proof. The triangle A1A2A3 is equilateral if and only if A1A2A3 is similar to
A2A3A1 with the same orientation, or

∣
∣
∣
∣∣
∣

1 1 1
z1 z2 z3
z2 z3 z1

∣
∣
∣
∣∣
∣
= 0;

thus (a) ⇔ (g).
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Computing the determinant, we obtain

0 =

∣
∣
∣
∣
∣∣

1 1 1
z1 z2 z3
z2 z3 z1

∣
∣
∣
∣
∣∣

= z1z2 + z2z3 + z3z1 − (z21 + z22 + z23)

= −(z1 + εz2 + ε2z3)(z1 + ε2z2 + εz3);

hence (g) ⇔ (c) ⇔ (f).
Simple algebraic manipulation shows that (d) ⇔ (c). Since (a) ⇔ (b) is

obvious, we leave for the reader to prove that (a) ⇔ (e). �


The next results bring some refinements to this issue.

Proposition 2. Let z1, z2, z3 be the coordinates of the vertices A1, A2, A3

of a positively oriented triangle. The following statements are equivalent.

(a) A1A2A3 is an equilateral triangle.

(b) z3 − z1 = ε(z2 − z1), where ε = cos
π

3
+ i sin

π

3
.

(c) z2 − z1 = ε(z3 − z1), where ε = cos
5π

3
+ i sin

5π

3
.

(d) z1 + εz2 + ε2z3 = 0, where ε = cos
2π

3
+ i sin

2π

3
.

Proof. A1A2A3 is equilateral and positively oriented if and only if A3 is
obtained from A2 by rotation about A1 through the angle π

3 . That is,

z3 = z1 +
(
cos

π

3
+ i sin

π

3

)
(z2 − z1);

hence (a) ⇔ (b) (Fig. 3.12).

Figure 3.12.
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The rotation about A1 through the angle
5π

3
maps A3 into A2. Similar

considerations show that (a) ⇔ (c).
To prove that (b) ⇔ (d), observe that (b) is equivalent to (b′)

z3 = z1 +

(
1

2
+ i

√
3

2

)

(z2 − z1) =

(
1

2
− i

√
3

2

)

z1 +

(
1

2
+ i

√
3

2

)

z2.

Hence

z1 + εz2 + ε2z3 = z1 +

(

−1

2
+ i

√
3

2

)

z2 +

(

−1

2
− i

√
3

2

)

z3

= z1 +

(

−1

2
+ i

√
3

2

)

z2

+

(

−1

2
− i

√
3

2

)[(
1

2
− i

√
3

2

)

z1 +

(
1

2
+ i

√
3

2

)

z2

]

= z1 +

(

−1

2
+ i

√
3

2

)

z2 − z1 +

(
1

2
− i

√
3

2

)

z2 = 0,

so (b) ⇔ (d). �


Proposition 3. Let z1, z2, z3 be the coordinates of the vertices A1, A2, A3

of a negatively oriented triangle.
The following statements are equivalent:

(a) A1A2A3 is an equilateral triangle.

(b) z3 − z1 = ε(z2 − z1), where ε = cos
5π

3
+ i sin

5π

3
.

(c) z2 − z1 = ε(z3 − z1), where ε = cos
π

3
+ i sin

π

3
.

(d) z1 + ε2z2 + εz3 = 0, where ε = cos
2π

3
+ i sin

2π

3
.

Proof. Equilateral triangle A1A2A3 is negatively oriented if and only if
A1A3A2 is a positively oriented equilateral triangle. The rest follows from
the previous proposition. �


Proposition 4. Let z1, z2, z3 be the coordinates of the vertices of equilateral
triangle A1A2A3. Consider the following statements:

(1) A1A2A3 is an equilateral triangle.
(2) z1 · z̄2 = z2 · z̄3 = z3 · z̄1.
(3) z21 = z2 · z3 and z22 = z1 · z3.

Then (2) ⇒ (1), (3) ⇒ (1), and (2) ⇔ (3).
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Proof. (2) ⇒ (1). Taking the moduli of the terms in the given relation, we
obtain

|z1| · |z2| = |z2| · |z3| = |z3| · |z1|,

or equivalently,
|z1| · |z2| = |z2| · |z3| = |z3| · |z1|.

This implies
r = |z1| = |z2| = |z3|

and

z1 =
r2

z1
, z2 =

r2

z2
, z3 =

r2

z3
.

Returning to the given relation, we have

z1
z2

=
z2
z3

=
z3
z1

,

or

z21 = z2z3, z22 = z3z1, z23 = z1z2.

Summing up these relations yields

z21 + z22 + z23 = z1z2 + z2z3 + z3z1,

so triangle A1A2A3 is equilateral.
Observe that we have also proved that (2) ⇒ (3) and that the arguments

are reversible; hence (2) ⇔ (3). As a consequence, (3) ⇒ (1), and we are
done. �


Problem 1. Let z1, z2, z3 be nonzero complex coordinates of the vertices of
the triangle A1A2A3. If z

2
1 = z2z3 and z22 = z1z3, show that triangle A1A2A3

is equilateral.

Solution. Multiplying the relations z21 = z2z3 and z22 = z1z3 yields z21z
2
2 =

z1z2z
2
3 , and consequently z1z2 = z23 . Thus

z21 + z22 + z23 = z1z2 + z2z3 + z3z1,

so triangle A1A2A3 is equilateral, by Proposition 1 in this section.

Problem 2. Let z1, z2, z3 be the coordinates of the vertices of triangle
A1A2A3. If |z1| = |z2| = |z3| and z1 + z2 + z3 = 0, prove that triangle
A1A2A3 is equilateral.

Solution 1. The following identity holds for all complex numbers z1 and z2
(see Problem 1 in Sect. 1.1.7):

|z1 − z2|2 + |z1 + z2|2 = 2(|z1|2 + |z2|2). (1)
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From z1+z2+z3 = 0, it follows that z1+z2 = −z3, so |z1+z2| = |z3|. Using
the relations |z1| = |z2| = |z3| and (1), we get |z1−z2|2 = 3|z1|2. Analogously,
we obtain the relations |z2 − z3|2 = 3|z1|2 and |z3 − z1|2 = 3|z1|2. Therefore,
|z1 − z2| = |z2 − z3| = |z3 − z1|, i.e., triangle A1A2A3 is equilateral.

Solution 2. If we pass to conjugates, then we obtain
1

z1
+

1

z2
+

1

z3
= 0.

Combining this with the hypothesis yields z21+z22+z23=z1z2+z2z3+z3z1=0,
from which the desired conclusion follows by Proposition 1.

Solution 3. Taking into account the hypotheses |z1| = |z2| = |z3|, it follows
that we can consider the complex plane with its origin at the circumcenter
of triangle A1A2A3. Then the coordinate of the orthocenter H is zH = z1 +
z2 + z3 = 0 = z0. Hence H = O, and triangle A1A2A3 is equilateral.

Problem 3. In the exterior of triangle ABC, three positively oriented equi-
lateral triangles AC′B, BA′C, and CB′A are constructed. Prove that the
centroids of these triangles are the vertices of an equilateral triangle.

(Napoleon’s problem)

Solution. Let a, b, c be the coordinates of vertices A, B, C, respectively
(Fig. 3.13).

Figure 3.13.

Using Proposition 2, we have

a+ c′ε+ bε2 = 0, b+ a′ε+ cε2 = 0, c+ b′ε+ aε2 = 0, (1)

where a′, b′, c′ are the coordinates of points A′, B′, C′.
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The centroids of triangles A′BC, AB′C, ABC′ have the coordinates

a′′ =
1

3
(a′ + b+ c), b′′ =

1

3
(a+ b′ + c), c′′ =

1

3
(a+ b+ c′),

respectively. We have to check that c′′ + a′′ε+ b′′ε2 = 0. Indeed,

3(c′′ + a′′ε+ b′′ε2) = (a+ b+ c′) + (a′ + b+ c)ε+ (a+ b′ + c)ε2

= (b + a′ε+ cε2) + (c+ b′ε+ aε2)ε+ (a+ c′ε+ bε2)ε2 = 0.

Problem 4. On the sides of the triangle ABC, we draw three regular n-gons,
external to the triangle. Find all values of n for which the centers of the n-gons
are the vertices of an equilateral triangle.

(Balkan Mathematical Olympiad 1990—Shortlist)

Solution. Let A0, B0, C0 be the centers of the regular n-gons constructed
externally on the sides B C, CA, A B, respectively (Fig. 3.14).

Figure 3.14.

The angles ÂC0B, B̂A0C, ÂB0C have measure
2π

n
. Let

ε = cos
2π

n
+ i sin

2π

n

and denote by a, b, c, a0, b0, c0 the coordinates of the points A,B,C,
A0, B0, C0, respectively.
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Using the rotation formula, we obtain

a = c0 + (b− c0)ε,

b = a0 + (c− a0)ε,

c = b0 + (a− b0)ε.

Thus

a0 =
b− cε

1− ε
, b0 =

c− aε

1− ε
, c0 =

a− bε

1− ε
.

Triangle A0 B0 C0 is equilateral if and only if

a20 + b20 + c20 = a0b0 + b0c0 + c0a0.

Substituting the above values of a0, b0, c0, we obtain

(b − cε)2 + (c− aε)2 + (a− bε)2

= (b− cε)(c− aε) + (c− aε)(a− bε) + (a− bε)(c− aε).

This is equivalent to

(1 + ε+ ε2)[(a− b)2 + (b− c)2 + (c− a)2] = 0.

It follows that 1 + ε + ε2 = 0, i.e.,
2π

n
=

2π

3
, and we get n = 3. Therefore,

n = 3 is the only value with the desired property.

3.5 Some Analytic Geometry in the Complex Plane

3.5.1 Equation of a Line

Proposition 1. The equation of a line in the complex plane is

α · z + αz + β = 0,

where α ∈ C
∗, β ∈ R and z = x+ iy ∈ C.

Proof. The equation of a line in the Cartesian plane is

Ax + By + C = 0,

where A, B, C ∈ R and A2 + B2 �= 0. If we set z = x+ iy , then x =
z + z

2

and y =
z − z

2i
. Thus
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A
z + z

2
−Bi

z − z

2
+ C = 0,

or equivalently,

z

(
A+Bi

2

)
+ z

A− Bi

2
+ C = 0.

Let α =
A− Bi

2
∈ C

∗ and β = C ∈ R. Then α �= 0, because |α|2 =

A2 +B2

4
�= 0, and

α · z + αz + β = 0,

as claimed. �


If α = α, then B = 0, and we have a vertical line. If α �= α, then we define
the angular coefficient of the line as

m = −A

B
=

α+ α
α− α

i

=
α+ α

α− α
i.

Proposition 2. Consider the lines d1 and d2 with equations

α1 · z + α1 · z + β1 = 0

and
α2 · z + α2 · z + β2 = 0,

respectively.
Then the lines d1 and d2 are:

(1) parallel if and only if
α1

α1
=

α2

α2
;

(2) perpendicular if and only if
α1

α1
+

α2

α2
= 0;

(3) concurrent if and only if
α1

α1
�= α2

α2
.

Proof.

(1) We have d1‖d2 if and only if m1 = m2. Therefore,
α1 + α1

α1 − α1
i =

α2 + α2

α2 − α2
i,

so α2α1 = α1α2, and we get α1
α1 = α2

α2
.

(2) We have d1 ⊥ d2 if and only if m1m2 = −1. That is, α2α1 + α2α2 = 0,

or
α1

α1
+

α2

α2
= 0.

(3) The lines d1 and d2 are concurrent if and only if m1 �= m2. This condition

yields
α1

α1
�= α2

α2
.

The results for angular coefficient correspond to the properties of slope.�
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The ratio md = −α

α
is called the complex angular coefficient of the line d

with equation

α · z + α · z + β = 0.

3.5.2 Equation of a Line Determined by Two Points

Proposition. The equation of a line determined by the points P1(z1) and
P2(z2) is ∣∣

∣
∣
∣
∣

z1 z1 1
z2 z2 1
z z̄ 1

∣∣
∣
∣
∣
∣
= 0.

Proof. The equation of a line determined by the points P1(x1, y1) and
P2(x2, y2) in the Cartesian plane is

∣
∣∣
∣
∣
∣

x1 y1 1
x2 y2 1
x y 1

∣
∣∣
∣
∣
∣
= 0.

Using complex numbers, we have

∣∣
∣
∣
∣
∣∣
∣
∣
∣

z1+z1
2

z1−z1
2i 1

z2+z2
2

z2−z2
2i 1

z+z
2

z−z
2i 1

∣∣
∣
∣
∣
∣∣
∣
∣
∣

= 0

if and only if

1

4i

∣∣
∣
∣
∣
∣

z1 + z1 z1 − z1 1
z2 + z2 z2 − z2 1
z + z z − z 1

∣∣
∣
∣
∣
∣
= 0.

That is, ∣
∣∣
∣
∣
∣

z1 z1 1
z2 z2 1
z z 1

∣
∣∣
∣
∣
∣
= 0,

as desired. �


Remarks.

(1) The points M1(z1), M2(z2), M3(z3) are collinear if and only if

∣
∣∣
∣
∣
∣

z1 z1 1
z2 z2 1
z3 z3 1

∣
∣∣
∣
∣
∣
= 0.
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(2) The complex angular coefficient of a line determined by the points with
coordinates z1 and z2 is

m =
z2 − z1
z2 − z1

.

Indeed, the equation is
∣
∣
∣
∣
∣∣

z1 z1 1
z2 z2 1
z z3 1

∣
∣
∣
∣
∣∣
= 0,

and it is equivalent to

z1z2 + z2z + zz1 − zz2 − z1z − z2z1 = 0.

That is,
z(z2 − z1)− z(z2 − z1) + z1z2 − z2z1 = 0.

Using the definition of the complex angular coefficient, we obtain

m =
z2 − z1
z2 − z1

.

3.5.3 The Area of a Triangle

Theorem. The area of triangle A1A2A3 whose vertices have coordinates
z1, z2, z3 is equal to the absolute value of the number

i

4

∣
∣
∣
∣
∣
∣

z1 z1 1
z2 z2 1
z3 z3 1

∣
∣
∣
∣
∣
∣
. (1)

Proof. Using Cartesian coordinates, the area of a triangle with vertices
(x1, y1), (x2, y2), (x3, y3) is seen to be equal to the absolute value of
the determinant

Δ =
1

2

∣
∣
∣∣
∣
∣

x1 y1 1
x2 y2 1
x3 y3 1

∣
∣
∣∣
∣
∣
.

Since

xk =
zk + zk

2
, yk =

zk − zk
2i

, k = 1, 2, 3,
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we obtain

Δ =
1

8i

∣
∣
∣
∣∣
∣

z1 + z1 z1 − z1 1
z2 + z2 z2 − z2 1
z3 + z3 z3 − z3 1

∣
∣
∣
∣∣
∣
= − 1

4i

∣
∣
∣
∣∣
∣

z1 z1 z3
z2 z2 1
z3 z3 2

∣
∣
∣
∣∣
∣

=
i

4

∣
∣
∣
∣
∣∣

z1 z1 1
z2 z2 1
z3 z3 1

∣
∣
∣
∣
∣∣
,

as claimed. �


It is easy to see that for a positively oriented triangle A1A2A3 with vertices
with coordinates z1, z2, z3, the following inequality holds:

i

4

∣∣
∣
∣
∣
∣

z1 z1 1
z2 z2 1
z3 z3 1

∣∣
∣
∣
∣
∣
> 0.

Corollary. The area of a directly oriented triangle A1A2A3 whose vertices
have coordinates z1, z2, z3 is

area[A1A2A3] =
1

2
Im(z1z2 + z2z3 + z3z1). (2)

Proof. The determinant in the above theorem is

∣∣
∣
∣
∣
∣

z1 z1 1
z2 z2 1
z3 z3 1

∣∣
∣
∣
∣
∣
= (z1z2 + z2z3 + z3z1 − z2z3 − z1z3 − z2z1)

= [(z1z2 + z2z3 + z3z1)− (z1z2 + z2z3 + z3z1)]

= 2i Im(z1z2 + z2z3 + z3z1) = −2i Im(z1z2 + z2z3 + z3z1).

Replacing this value in (1), the desired formula follows. �


We will see that formula (2) can be extended to a convex directly oriented
polygon A1A2 · · ·An (see Sect. 4.3).

Problem 1. Consider the triangle A1A2A3 and the points M1, M2, M3 sit-
uated on lines A2A3, A1A3, A1A2, respectively. Assume that M1, M2, M3

divide segments [A2A3], [A3A1], [A1A2] into ratios λ1, λ2, λ3, respectively.
Then

area[M1M2M3]

area[A1A2A3]
=

1− λ1λ2λ3

(1 − λ1)(1 − λ2)(1 − λ3)
. (3)

Solution. The coordinates of the points M1, M2, M3 are

m1 =
a2 − λ1a3
1− λ1

, m2 =
a3 − λ2a1
1− λ2

, m3 =
a1 − λ3a2
1− λ3

.
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Applying formula (2), we find that

area[M1M2M3] =
1

2
Im(m1m2 +m2m3 +m3m1)

=
1

2
Im

[
(a2 − λ1a3)(a3 − λ2a1)

(1 − λ1)(1 − λ2)
+

(a3 − λ2a1)(a1 − λ3a2)

(1− λ2)(1− λ3)

+
(a1 − λ3a2)(a2 − λ1a3)

(1− λ3)(1 − λ1)

]

=
1

2
Im

[
1− λ1λ2λ3

(1 − λ1)(1 − λ2)(1− λ3)
(a1a2 + a2a3 + a3a1)

]

=
1− λ1λ2λ3

(1 − λ1)(1 − λ2)(1 − λ3)
area[A1A2A3].

Remark. From formula (3), we derive the well-known theorem of Menelaus:
The points M1, M2, M3 are collinear if and only if λ1λ2λ3 = 1, i.e.,

M1A2

M1A3
· M2A3

M2A1
· M3A1

M3A2
= 1.

Problem 2. Let a, b, c be the coordinates of the vertices A, B, C of a
triangle. It is known that |a| = |b| = |c| = 1 and that there exists α ∈

(
0, π

2

)

such that a+ b cosα+ c sinα = 0. Prove that

1 < area[ABC] ≤ 1 +
√
2

2
.

(Romanian Mathematical Olympiad—Final Round, 2003)

Solution. Observe that

1 = |a|2 = |b cosα+ c sinα|2

= (b cosα+ c sinα)(b cosα+ c sinα)

= |b|2 cos2 α+ |c|2 sin2 α+ (bc+ bc) sinα cosα

= 1 +
b2 + c2

bc
cosα sinα.

It follows that b2 + c2 = 0; hence b = ±ic. Applying formula (2), we obtain

area[ABC] =
1

2
|Im(ab+ bc+ ca)|

=
1

2
|Im[(−b cosα− c sinα)b + bc− c(b cosα+ c sinα)]|

=
1

2
|Im(− cosα− sinα− bc sinα− bc cosα+ bc)|
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=
1

2
|Im[bc− (sinα+ cosα)bc]| = 1

2
|Im[(1 + sinα+ cosα)bc]|

=
1

2
(1 + sinα+ cosα)|Im(bc)| = 1

2
(1 + sinα+ cosα)|Im(±icc)|

=
1

2
(1 + sinα+ cosα)|Im(±i)| = 1

2
(1 + sinα+ cosα)

=
1

2

[

1 +
√
2

(√
2

2
sinα+

√
2

2
cosα

)]

=
1

2

(
1 +

√
2 sin
(
α+

π

4

))
.

Taking into account that
π

4
<α+

π

4
<
3π

4
, we get that

√
2

2
< sin
(
α+

π

4

)
≤1,

and the conclusion follows.

3.5.4 Equation of a Line Determined by a Point
and a Direction

Proposition 1. Let d : αz+α · z+β = 0 be a line and let P0(z0) be a point.
The equation of the line parallel to d and passing through point P0 is

z − z0 = −α

α
(z − z0).

Proof. In Cartesian coordinates, the line parallel to d and passing through
point P0(x0, y0) has the equation

y − y0 = i
α+ α

α− α
(x− x0).

Using complex numbers, the equation takes the form

z − z

2i
− z0 − z0

2i
= i

α+ α

α− α

(
z + z

2
− z0 + z0

2

)
.

This is equivalent to (α−α)(z − z0 − z+ z0) = −(α+α)(z + z − z0 − z0),

or α(z − z0) = −α(z − z0). We obtain z − z0 = −α

α
(z − z0). �


Proposition 2. Let d : αz+α · z+β = 0 be a line and let P0(z0) be a point.
The line passing through point P0 and perpendicular to d has the equation

z − z0 =
α

α
(z − z0).

Proof. In Cartesian coordinates, the line passing through point P0 and per-
pendicular to d has the equation
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y − y0 = −1

i
· α− α

α+ α
(x− x0).

Then we obtain

z − z

2i
− z0 − z0

2i
= i · α− α

α+ α

(
z + z

2
− z0 + z0

2

)
.

That is, (α+ α)(z − z0 − z + z0) = −(α− α)(z − z0 + z − z0), or

(z − z0)(α + α+ α− α) = (z − z0)(−α+ α+ α+ α).

We obtain
α(z − z0) = α(z − z0)

and therefore

z − z0 =
α

α
(z − z0).

�


3.5.5 The Foot of a Perpendicular from a Point
to a Line

Proposition. Let P0(z0) be a point and let d : αz + αz + β = 0 be a line.
The foot of the perpendicular from P0 to d has the coordinate

z =
αz0 − αz0 − β

2α
.

Proof. The point z is the solution of the system

{
α · z + α · z + β = 0,

α(z − z0) = α(z − z0).

The first equation gives

z =
−αz − β

α
.

Substituting in the second equation yields

αz − αz0 = −αz − β − α · z0.

Hence

z =
αz0 − αz0 − β

2α
,

as claimed. �
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3.5.6 Distance from a Point to a Line

Proposition. The distance from a point P0(z0) to a line d : α·z+α·z+β=0,
α ∈ C

∗, is equal to

D =
|αz0 + α · z0 + β|

2
√
α · α

.

Proof. Using the previous result, we can write

D =

∣
∣
∣
∣
αz0 − α · z0 − β

2α
− z0

∣
∣
∣
∣ =
∣
∣
∣
∣
−αz0 − αz0 − β

2α

∣
∣
∣
∣

=
|α · z0 + αz0 + β|

2|α| =
|αz0 + αz0 + β|

2
√
αα

.

�


3.6 The Circle

3.6.1 Equation of a Circle

Proposition. The equation of a circle in the complex plane is

z · z + α · z + α · z + β = 0,

where α ∈ C and β ∈ R, β < |α|2.

Proof. The equation of a circle in the Cartesian plane is

x2 + y2 +mx + ny + p = 0,

m, n, p ∈ R, p <
m2 + n2

4
.

Setting x =
z + z

2
and y =

z − z

2i
, we obtain

|z|2 +m
z + z

2
+ n

z − z

2i
+ p = 0,

or

z · z + z
m− ni

2
+ z

m+ ni

2
+ p = 0.

Take α =
m− ni

2
∈ C and β = p ∈ R in the above equation, and the claim

is proved. �
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Note that the radius of the circle is equal to

r =

√
m2

4
+

n2

4
− p =

√
αα− β.

Then the equation is equivalent to

(z + α)(z + α) = r2.

Setting

γ = −α = −m

2
− n

2
i

shows that the equation of the circle with center at γ and radius r is

(z − γ)(z − γ) = r2.

Problem. Let z1, z2, z3 be the coordinates of the vertices of triangle A1A2A3.
The coordinate z0 of the circumcenter of triangle A1A2A3 is

z0 =

∣∣
∣
∣
∣
∣

1 1 1
z1 z2 z3

|z1|2 |z2|2 |z3|2

∣∣
∣
∣
∣
∣

∣
∣∣
∣
∣
∣

1 1 1
z1 z2 z3
z1 z2 z3

∣
∣∣
∣
∣
∣

. (1)

Solution. The equation of the line passing through P (z0) that is perpendic-
ular to the line A1A2 can be written in the form

z(z1 − z2) + z(z1 − z2) = z0(z1 − z2) + z0(z1 − z2). (2)

Applying this formula to the midpoints of the sides [A2A3], [A1A3] and the
lines A2A3, A1A3, we obtain the equations

z(z2 − z3) + z(z2 − z3) = |z2|2 − |z3|2,
z(z3 − z1) + z(z3 − z1) = |z3|2 − |z1|2.

By eliminating z from these two equations, we see that that

z[(z2 − z3)(z1 − z3) + (z3 − z1)(z2 − z3)]

= (z1 − z3)(|z2|2 − |z3|2) + (z2 − z3)(|z3|2 − |z1|2),

whence

z

∣
∣
∣
∣
∣
∣

1 1 1
z1 z2 z3
z1 z2 z3

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

1 1 1
z1 z2 z3

|z1|2 |z2|2 |z3|2

∣
∣
∣
∣
∣
∣
,
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and the desired formula follows.

Remark. We can write this formula in the following equivalent form:

z0 =
z1z1(z2 − z3) + z2z2(z3 − z1) + z3z3(z1 − z2)∣

∣
∣
∣
∣
∣

1 1 1
z1 z2 z3
z1 z2 z3

∣
∣
∣
∣
∣
∣

. (3)

3.6.2 The Power of a Point with Respect to a Circle

Proposition. Consider a point P0(z0) and a circle with equation

z z + α · z + α · z + β = 0,

for α ∈ C and β ∈ R.
The power of P0 with respect to the circle is

ρ(z0) = z0 z0 + αz0 + α · z0 + β.

Proof. Let O(−α) be the center of the circle. The power of P0 with respect to
the circle of radius r is defined by ρ(z0) = OP 2

0 − r2. In this case, we obtain

ρ(z0) = OP 2
0 − r2 = |z0 + α|2 − r2 = z0z0 + αz0 + αz0 + αα− αα+ β

= z·0z0 + αz0 + α · z0 + β,

as claimed. �

Given two circles with equations

z · z + α1 · z + α1 · z + β1 = 0 and zz + α2 · z + α2 · z + β2 = 0,

where α1, α2 ∈ C, β1, β2 ∈ R, their radical axis is the locus of points having
equal powers with respect to the circles. If P (z) is a point of this locus, then

z · z + α1z + α1 · z + β1 = z · z + α2z + α2 · z + β2,

or equivalently, (α1 −α2)z+ (α1 −α2)z+ β1 − β2 = 0, which is the equation
of a line.

3.6.3 Angle Between Two Circles

The angle between two intersecting circles with equations

z · z + α1 · z + α1 · z + β1 = 0
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and

z · z + α2 · z + α2 · z + β2 = 0, α1, α2 ∈ C, β1, β2 ∈ R,

is the angle θ determined by the tangents to the circles at a common point.

Proposition. The following formula holds (Fig. 3.15):

cos θ =

∣
∣
∣∣
β1 + β2 − (α1α2 + α1α2)

2r1r2

∣
∣
∣∣ .

Proof. Let T be a common point and let O1(−α1), O2(−α2) be the centers
of the circles.

The angle θ is equal to Ô1TO2 or π − Ô1TO2; hence

cos θ = | cos Ô1TO2| =
|r21 + r22 −O1O

2
2 |

2r1r2

=
|α1α1 − β1 + α2α2 − β2 − |α1 − α2|2|

2r1r2

=
|α1α1 + α2α2 − β1 − β2 − α1α1 − α2α2 + α1α2 + α1α2|

2r1r2

=
|β1 + β2 − (α1α2 + α1α2)|

2r1r2
,

as claimed. �


Figure 3.15.
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Note that the circles are orthogonal if and only if

β1 + β2 = α1α2 + α1α2.

Problem. Let a, b be real numbers such that |b| ≤ 2a2. Prove that the set of
points with coordinates z such that

|z2 − a2| = |2az + b|

is the union of two orthogonal circles.

Solution. The relation

|z2 − a2| = |2az + b|

is equivalent to
|z2 − a2|2 = |2az + b|2,

i.e.,
(z2 − a2)(z2 − a2) = (2az + b)(2az + b).

We can rewrite the last relation as

|z|4 − a2(z2 + z2) + a4 = 4a2|z|2 + 2ab(z + z) + b2,

i.e.,
|z|4 − a2[(z + z)2 − 2|z|2] + a4 = 4a2|z|2 + 2ab(z + z) + b2.

Hence
|z|4 − 2a2|z|2 + a4 = a2(z + z)2 + 2ab(z + z) + b2,

i.e.,
(|z|2 − a2)2 = (a(z + z) + b)2.

It follows that

z · z − a2 = a(z + z) + b orz · z − a2 = −a(z + z)− b.

This is equivalent to

(z − a)(z − a) = 2a2 + b or (z + a)(z + a) = 2a2 − b.

Finally,
|z − a|2 = 2a2 + b or|z + a|2 = 2a2 − b. (1)

Since |b| ≤ 2a2, it follows that 2a2+b ≥ 0 and 2a2−b ≥ 0. Hence the relations
(1) are equivalent to

|z − a| =
√
2a2 + b or|z + a| =

√
2a2 − b.
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Therefore, the points with coordinates z that satisfy |z2 − a2| = |2az + b|
lie on two circles with centers C1 and C2 whose coordinates are a and −a,
and with radii R1 =

√
2a2 + b and R2 =

√
2a2 − b. Furthermore, using the

Pythagorean theorem, we have

C1C
2
2 = 4a2 = (

√
2a2 + b)2 + (

√
2a2 − b)2 = R2

1 +R2
2.

Hence the circles are orthogonal, as claimed.



Chapter 4

More on Complex Numbers
and Geometry

4.1 The Real Product of Two Complex Numbers

The concept of the scalar product of two vectors is well known. In what
follows, we will introduce this concept for complex numbers. We will see that
the use of this product simplifies the solution to many problems considerably.

Let a and b be two complex numbers.

Definition. Given complex numbers a and b, we call the number given by

a · b = 1

2
(ab+ ab)

the real product of the two numbers. It is easy to see that

a · b = 1

2
(ab+ ab) = a · b;

hence a · b is a real number, which justifies the name of this product.

Let A(a), B(b) be points in the complex plane, and let θ = (
−̂→
OA,

−−→
OB) be

the angle between the vectors
−→
OA,

−−→
OB. The following formula holds:

a · b = |a||b| cos θ =
−→
OA · −−→OB.

Indeed, considering the polar form of a and b, we have

a = |a|(cos t1 + i sin t1), b = |b|(cos t2 + i sin t2),

and

a·b = 1

2
(ab+ab) =

1

2
|a||b|[cos(t1−t2)−i sin(t1−t2)+cos(t1−t2)+i sin(t1−t2)]

= |a||b| cos(t1 − t2) = |a||b| cos θ =
−→
OA · −−→OB.

The following properties are easy to verify.

T. Andreescu and D. Andrica, Complex Numbers from A to ... Z,
DOI 10.1007/978-0-8176-8415-0 4, © Springer Science+Business Media New York 2014
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Proposition 1. For all complex numbers a, b, c, z, the following
relations hold:

(1) a · a = |a|2.
(2) a · b = b · a (the real product is commutative).
(3) a · (b + c) = a · b + a · c (the real product is distributive with respect to

addition).
(4) (αa) · b = α(a · b) = a · (αb) for all α ∈ R.
(5) a · b = 0 if and only if OA ⊥ OB, where A has coordinate a and B has

coordinate b.
(6) (az) · (bz) = |z|2(a · b).

Remark. Suppose that A and B are points with coordinates a and b. Then
the real product a · b is equal to the power of the origin with respect to the
circle of diameter AB.

Indeed, let M

(
a+ b

2

)
be the midpoint of [AB], hence the center of this

circle, and let r =
1

2
AB =

1

2
|a− b| be the radius of this circle. The power of

the origin with respect to the circle is

OM2 − r2 =

∣∣
∣
∣
a+ b

2

∣∣
∣
∣

2

−
∣∣
∣
∣
a− b

2

∣∣
∣
∣

2

=
(a+ b)(a+ b)

4
− (a− b)(a− b)

4
=

ab+ ba

2
= a · b,

as claimed.

Proposition 2. Suppose that A(a), B(b), C(c), and D(d) are four distinct
points. The following statements are equivalent:

(1) AB ⊥ CD;
(2) (b− a) · (d− c) = 0;

(3)
b− a

d− c
∈ iR∗ (or equivalently, Re

(
b− a

d− c

)
= 0).

Proof. Take points M(b − a) and N(d − c) such that OABM and OCDN
are parallelograms. Then we have AB ⊥ CD if and only if OM ⊥ ON . That
is, m · n = (b − a) · (d− c) = 0, using property (5) of the real product.

The equivalence (2) ⇔ (3) follows immediately from the definition of the
real product. �


Proposition 3. The circumcenter of triangle ABC is at the origin of the
complex plane. If a, b, c are the coordinates of vertices A, B, C, then the
orthocenter H has the coordinate h = a+ b+ c.

Proof. Using the real product of the complex numbers, the equations of the
altitudes AA′, BB′, CC′ of the triangle are



4.1 The Real Product of Two Complex Numbers 99

AA′ : (z−a)·(b−c) = 0, BB′ : (z−b)·(c−a) = 0, CC ′ : (z−c)·(a−b) = 0.

We will show that the point with coordinate h = a+ b+ c lies on all three
altitudes. Indeed, we have (h−a) ·(b−c) = 0 if and only if (b+c) ·(b−c) = 0.
The last relation is equivalent to b · b − c · c = 0, or |b|2 = |c|2. Similarly,
H ∈ BB′ and H ∈ CC′, and we are done. �


Remark. If the numbers a, b, c, o, h are the coordinates of the vertices
of triangle ABC, the circumcenter O, and the orthocenter H of the triangle,
then h = a+ b + c− 2o.

Indeed, if we take A′ diametrically opposite A in the circumcircle of tri-
angle ABC, then the quadrilateral HBA′C is a parallelogram. If {M} =
HA′ ∩BC, then

zM =
b + c

2
=

zH + zA′

2
=

zH + 2o− a

2
, i.e., zH = a+ b+ c− 2o.

Problem 1. Let ABCD be a convex quadrilateral. Prove that

AB2 + CD2 = AD2 +BC2

if and only if AC ⊥ BD.

Solution. Using the properties of the real product of complex numbers, we
have

AB2 + CD2 = BC2 +DA2

if and only if

(b− a) · (b − a) + (d− c) · (d− c) = (c− b) · (c− b) + (a− d) · (a− d).

That is,
a · b+ c · d = b · c+ d · a,

and finally,
(c− a) · (d− b) = 0,

or equivalently, AC ⊥ BD, as required.

Problem 2. Let M,N,P,Q,R, S be the midpoints of the sides AB, BC, CD,
DE, EF , FA of a hexagon. Prove that

RN2 = MQ2 + PS2

if and only if MQ ⊥ PS.

(Romanian Mathematical Olympiad—Final Round, 1994)
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Solution. Let a, b, c, d, e, f be the coordinates of the vertices of the
hexagon (Fig. 4.1). The points M, N, P, Q, R, S have coordinates

m =
a+ b

2
, n =

b+ c

2
, p =

c+ d

2
,

q =
d+ e

2
, r =

e+ f

2
, s =

f + a

2
,

respectively.

Figure 4.1.

Using the properties of the real product of complex numbers, we have

RN2 = MQ2 + PS2

if and only if

(e+f−b−c)·(e+f−b−c)=(d+e−a−b)·(d+e−a−b)+(f+a−c−d)·(f+a−c−d).

That is,

(d+ e− a− b) · (f + a− c− d) = 0;

hence M Q ⊥ PS, as claimed.

Problem 3. Let A1A2 · · ·An be a regular polygon inscribed in a circle with
center O and radius R. Prove that for all points M in the plane, the following
relation holds:

n∑

k=1

MA2
k = n(OM2 +R2).

Solution. Consider the complex plane with the origin at point O, with the
x-axis containing the point A1, and let Rεk be the coordinate of vertex Ak,
where εk are the nth-roots of unity, k = 1, . . . , n. Let m be the coordinate
of M .
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Using the properties of the real product of the complex numbers, we have

n∑

k=1

MA2
k =

n∑

k=1

(m−Rεk) · (m−Rεk)

=

n∑

k=1

(m ·m− 2Rεk ·m+R2εk · εk)

= n|m|2 − 2R

(
n∑

k=1

εk

)

· m+R2
n∑

k=1

|εk|2

= n · OM2 + nR2 = n(OM2 +R2),

since
n∑

k=1

εk = 0.

Remark. If M lies on the circumcircle of the polygon, then

n∑

k=1

MA2
k = 2nR2.

Problem 4. Let O be the circumcenter of the triangle ABC, let D be the
midpoint of the segment AB, and let E is the centroid of triangle ACD.
Prove that lines CD and OE are perpendicular if and only if AB = AC.

(Balkan Mathematical Olympiad, 1985)

Solution. Let O be the origin of the complex plane and let a, b, c, d, e be
the coordinates of points A, B, C, D, E, respectively. Then

d =
a+ b

2
and e =

a+ c+ d

3
=

3a+ b + 2c

6

Using the real product of complex numbers, if R is the circumradius of tri-
angle ABC, then

a · a = b · b = c · c = R2.

Lines CD and OE are perpendicular if and only if (d− c) · e = 0, that is,

(a+ b− 2c) · (3a+ b+ 2c) = 0.

The last relation is equivalent to

3a · a+ a · b+ 2a · c+ 3a · b+ b · b+ 2b · c− 6a · c− 2b · c− 4c · c = 0,

that is,

a · b = a · c. (1)
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On the other hand, AB = AC is equivalent to

|b− a|2 = |c− a|2.

That is,

(b− a) · (b− a) = (c− a) · (c− a),

or

b · b− 2a · b+ a · a = c · c− 2a · c+ a · a,

whence

a · b = a · c. (2)

The relations (1) and (2) show that CD ⊥ OE if and only if AB = AC.

Problem 5. Let a, b, c be distinct complex numbers such that |a| = |b| = |c|
and |b+ c− a| = |a|. Prove that b+ c = 0.

Solution. Let A, B, C be the geometric images of the complex numbers
a, b, c, respectively. Choose the circumcenter of triangle ABC as the origin
of the complex plane and denote by R the circumradius of triangle ABC.
Then

aa = bb = cc = R2,

and using the real product of the complex numbers, we have

|b+ c− a| = |a| if and only if |b + c− a|2 = |a|2.

That is,
(b+ c− a) · (b+ c− a) = |a|2,

i.e.,
|a|2 + |b|2 + |c|2 + 2b · c− 2a · c− 2a · b = |a|2.

We obtain
2(R2 + b · c− a · c− a · b) = 0,

i.e.,
a · a+ b · c− a · c− a · b = 0.

It follows that (a − b) · (a − c) = 0, and hence AB ⊥ AC, i.e., B̂AC = 90◦.
Therefore, [BC] is the diameter of the circumcircle of triangle ABC, so
b + c = 0.

Problem 6. Let E, F, G, H be the midpoints of sides AB, BC, CD, DA
of the convex quadrilateral ABCD. Prove that lines AB and CD are perpen-
dicular if and only if

BC2 +AD2 = 2(EG2 + FH2).
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Solution. Denote by the corresponding lowercase letter the coordinate of a
point denoted by an uppercase letter. Then

e =
a+ b

2
, f =

b+ c

2
, g =

c+ d

2
, h =

d+ a

2
.

Using the real product of the complex numbers, the relation

BC2 +AD2 = 2(EG2 + FH2)

becomes

(c− b) · (c− b) + (d− a) · (d− a) =
1

2
(c+ d− a− b) · (c+ d− a− b)

+
1

2
(a+ d− b − c) · (a+ d− b− c).

This is equivalent to

c · c+ b · b+ d · d+ a · a− 2b · c− 2a · d

= a · a+ b · b+ c · c+ d · d− 2a · c− 2b · d,
or

a · d+ b · c = a · c+ b · d.

The last relation shows that (a− b) · (d− c) = 0 if and only if AB ⊥ CD, as
desired.

Problem 7. Let G be the centroid of triangle ABC and let A1, B1, C1 be
the midpoints of sides BC, CA, AB, respectively. Prove that

MA2 +MB2 +MC2 + 9MG2 = 4(MA2
1 +MB2

1 +MC2
1 )

for all points M in the plane.

Solution. Denote by the corresponding lowercase letter the coordinate of a
point denoted by an uppercase letter. Then

g =
a+ b+ c

3
, a1 =

b+ c

2
, b1 =

c+ a

2
, c1 =

a+ b

2
.

Using the real product of the complex numbers, we have

MA2 +MB2 +MC2 + 9MG2

= (m− a) · (m− a) + (m− b) · (m− b) + (m− c) · (m− c)

+9

(
m− a+ b+ c

3

)
·
(
m− a+ b+ c

3

)

= 12|m|2 − 8(a+ b+ c) ·m+ 2(|a|2 + |b|2 + |c|2) + 2a · b+ 2b · c+ 2c · a.
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On the other hand,

4(MA2
1 +MB2

1 +MC2
1 )

= 4

[(
m− b+ c

2

)
·
(
m− b+ c

2

)
+

(
m− c+ a

2

)

·
(
m− c+ a

2

)
+

(
m− a+ b

2

)
·
(
m− a+ b

2

)]

= 12|m|2 − 8(a+ b+ c) ·m+ 2(|a|2 + |b|2 + |c|2) + 2a · b+ 2b · c+ 2c · a,
so we are done.

Remark. The following generalization can be proved similarly.
Let A1A2 · · ·An be a polygon with centroid G and let Aij be the midpoint

of the segment [AiAj ], i < j, i, j ∈ {1, 2, . . . , n}.
Then

(n− 2)

n∑

k=1

MA2
k + n2MG2 = 4

∑

i<j

MA2
ij ,

for all points M in the plane. A nice generalization is given in Theorem 3 in
Sect. 4.11.

4.2 The Complex Product of Two Complex Numbers

The cross product of two vectors is a central concept in vector algebra, with
numerous applications in various branches of mathematics and science. In
what follows, we adapt this product to complex numbers. The reader will
see that this new interpretation has multiple advantages in solving problems
involving area or collinearity.

Let a and b be two complex numbers.

Definition. The complex number

a× b =
1

2
(ab− ab)

is called the complex product of the numbers a and b.
Note that

a× b+ a× b =
1

2
(ab− ab) +

1

2
(ab− ab) = 0,

so Re(a× b) = 0, which justifies the definition of this product.

Let A(a), B(b) be points in the complex plane, and let θ = (
−̂→
OA,

−−→
OB) be

the angle between the vectors
−→
OA,

−−→
OB. The following formula holds:

a× b = εi|a||b| sin θ,
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where

ε =

{
−1, if triangle OAB is positively oriented;
+1, if triangle OAB is negatively oriented.

Indeed, if a = |a|(cos t1 + i sin t1) and b = |b|(cos t2 + i sin t2), then

a× b = i|a||b| sin(−t1 + t2) = εi|a||b| sin θ.

The connection between the real product and the complex product is given
by the following Lagrange-type formula:

|a · b|2 + |a× b|2 = |a|2|b|2.

The following properties are easy to verify:

Proposition 1. Suppose that a, b, c are complex numbers. Then:

(1) a × b = 0 if and only if a = 0 or b = 0 or a = λb, where λ is a real
number.

(2) a× b = −b× a (the complex product is anticommutative).
(3) a× (b+ c) = a× b+ a× c (the complex product is distributive with respect

to addition).
(4) α(a× b) = (αa)× b = a× (αb), for all real numbers α.
(5) If A(a) and B(b) are distinct points other than the origin, then a× b = 0

if and only if O, A, B are collinear.

Remarks.

(a) Suppose A(a) and B(b) are distinct points in the complex plane different
from the origin (Fig. 4.2).
The complex product of the numbers a and b has the following useful
geometric interpretation:

a× b =

{
2i. area [AOB], if triangle OAB is positively oriented;
−2i. area [AOB], if triangle OAB is negatively oriented.

Figure 4.2.
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Indeed, if triangle OAB is positively (directly) oriented, then

2i · area [OAB] = i ·OA ·OB · sin(ÂOB)

= i|a| · |b| · sin
(
arg

b

a

)
= i · |a| · |b| · Im

(
b

a

)
· |a||b|

=
1

2
|a|2
(
b

a
− b

a

)
=

1

2
(ab− ab) = a× b.

In the other case, note that triangle OBA is positively oriented; hence

2i · area[OBA] = b× a = −a× b.

(b) Suppose A(a), B(b), C(c) are three points in the complex plane.
The complex product allows us to obtain the following useful formula for
the area of the triangle ABC:

area [ABC] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1

2i
(a× b+ b× c+ c× a)

if triangle ABC is positively oriened;

− 1

2i
(a× b+ b× c+ c× a)

if triangle ABC is negatively oriented.

Moreover, simple algebraic manipulation shows that

area [ABC] =
1

2
Im(ab + bc+ ca)

if triangle ABC is directly (positively) oriented.
To prove the above formula, translate points A, B, C by the vector −c.

The images of A, B, C are the points A′, B′, O with coordinates a− c, b−
c, 0, respectively. Triangles ABC and A′B′O are congruent with the same
orientation. If ABC is positively oriented, then

area [ABC] = area [OA′B′] =
1

2i
((a− c)× (b − c))

=
1

2i
((a− c)× b− (a− c)× c) =

1

2i
(c× (a− c)− b× (a− c))

=
1

2i
(c× a− c× c− b× a+ b× c) =

1

2i
(a× b+ b× c+ c× a),

as claimed.
The other situation can be handled similarly.
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Proposition 2. Suppose A(a), B(b), and C(c) are distinct points. The
following statements are equivalent:

(1) Points A, B, C are collinear.
(2) (b− a)× (c− a) = 0.
(3) a× b+ b × c+ c× a = 0.

Proof. Points A, B, C are collinear if and only if area [ABC] = 0, i.e.,
a×b+b×c+c×a = 0. The last equation can be written in the form (b− a)×
(c− a) = 0. �

Proposition 3. Let A(a), B(b), C(c), D(d) be four points, no three of which
are collinear. Then AB‖CD if and only if (b− a)× (d− c) = 0.

Proof. Choose the points M(m) and N(n) such that OABM and OCDN
are parallelograms; then m = b− a and n = d− c.

Lines AB and CD are parallel if and only if points O, M, N are collinear.
Using property 5, this is equivalent to 0 = m× n = (b− a)× (d− c). �

Problem 1. Points D and E lie on sides AB and AC of the triangle ABC
such that

AD

AB
=

AE

AC
=

3

4
.

Consider points E′ and D′ on the rays (BE and (CD such that EE′ = 3BE
and DD′ = 3CD. Prove the following:

(1) points D′, A, E′ are collinear.
(2) AD′ = AE′.

Solution. The points D, E, D′, E′ have coordinates: d =
a+ 3b

4
,

e =
a+ 3c

4
,

e′ = 4e− 3b = a+ 3c− 3b, and d′ = 4d− 3c = a+ 3b− 3c,

respectively.

Figure 4.3.
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(1) Since

(a− d′)× (e′ − d′) = (3c− 3b)× (6c− 6b) = 18(c− b)× (c− b) = 0,

it follows from Proposition 2 in Sect. 4.2 that the points D′, A, E′ are
collinear (Fig. 4.3).

(2) Note that

AD′

D′E′ =
∣
∣
∣
∣
a− d′

e′ − d′

∣
∣
∣
∣ =

1

2
,

so A is the midpoint of segment D′E′.

Problem 2. Let ABCDE be a convex pentagon and let M, N, P, Q, X, Y
be the midpoints of the segments BC, CD, DE, EA, MP, NQ, respectively.

Prove that XY ‖AB.

Solution. Let a, b, c, d, e be the coordinates of vertices A, B, C, D, E,
respectively (Fig. 4.4).

E
P

D

N

CMB

A

Q
Y

X

Figure 4.4.

Points M, N, P, Q, X, Y have coordinates

m =
b+ c

2
, n =

c+ d

2
, p =

d+ e

2
,

q =
e + a

2
, x =

b+ c+ d+ e

4
, y =

c+ d+ e+ a

4
,

respectively. Then

y − x

b− a
=

a− b

4
b− a

= −1

4
∈ R,

whence

(y − x) × (b− a) = −1

4
(b− a)× (b− a) = 0.

From Proposition 3 in Sect. 4.2, it follows that XY ‖AB.
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4.3 The Area of a Convex Polygon

We say that the convex polygon A1A2 · · ·An is directly (or positively) oriented
if for every point M situated in the interior of the polygon, the triangles
MAkAk+1, k = 1, 2, . . . , n, are directly oriented, where An+1 = A1.

Theorem. Consider a directly oriented convex polygon A1A2 · · ·An with
vertices with coordinates a1, a2, . . . , an. Then

area [A1A2 · · ·An] =
1

2
Im(a1a2 + a2a3 + · · ·+ an−1an + ana1).

Proof. We use induction on n. The base case n = 3 was proved above using
the complex product. Suppose that the claim holds for n = k, and note that

area [A1A2 · · ·AkAk+1] = area [A1A2 · · ·Ak] + area [AkAk+1A1]

=
1

2
Im(a1a2 + a2a3 + · · ·+ ak−1ak + ak1a) +

1

2
Im(akak+1 + ak+1a1 + a1ak)

=
1

2
Im(a1a2 + a2a3 + · · ·+ ak−1ak + akak+1 + ak+1a1)

+
1

2
Im(aka1 + a1ak) =

1

2
Im(a1a2 + a2a3 + · · ·+ akak+1 + ak+1a1),

since
Im(aka1 + a1ak) = 0.

Alternative proof. Choose a point M in the interior of the polygon. Applying
the formula (2) in Sect. 3.5.3, we have

area [A1A2 · · ·An] =

n∑

k=1

area [MAkAk+1]

=
1

2

n∑

k=1

Im(zak + akak+1 + ak+1z)

=
1

2

n∑

k=1

Im(akak+1) +
1

2

n∑

k=1

Im(zak + ak+1z)

=
1

2
Im

(
n∑

k=1

akak+1

)

+
1

2
Im

⎛

⎝z
n∑

k=1

ak + z

n∑

j=1

aj

⎞

⎠ =
1

2
Im

(
n∑

k=1

akak+1

)

,

since for any complex numbers z, w the relation Im(zw+ zw) = 0 holds. �

Remark. From the above formula, it follows that the points A1(a1),
A2(a2), . . ., An(an) as in the theorem are collinear if and only if

Im(a1a2 + a2a3 + · · ·+ an−1an + ana1) = 0.
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For this result, the hypotheses in the theorem are essential, as we can see
from the following counterexample.

Counterexample The points with respective complex coordinates
a1 = 0, a2 = 1, a3 = i, a4 = 1 + i are not collinear, but we have
Im(a1a2 + a2a3 + a3a4 + a4a1) = Im(−1) = 0.

Problem 1. Let P0P1 · · ·Pn−1 be the polygon whose vertices have coordinates
1, ε, . . . , εn−1, and let Q0Q1 · · ·Qn−1 be the polygon whose vertices have

coordinates 1, 1+ ε, . . . , 1+ ε+ · · ·+ εn−1, where ε = cos
2π

n
+ i sin

2π

n
. Find

the ratio of the areas of these polygons.

Solution. Consider ak = 1+ ε+ · · ·+ εk, k = 0, 1, . . . , n− 1, and observe
that

area [Q0Q1 · · ·Qn−1] =
1

2
Im

(
n−1∑

k=0

akak+1

)

=
1

2
Im

(
n−1∑

k=0

(ε)k+1 − 1

ε− 1
· ε

k+2 − 1

ε− 1

)

=
1

2|ε− 1|2 Im
[
n−1∑

k=0

(ε− (ε)k+1 − εk+2 + 1)

]

=
1

2|ε− 1|2 Im(nε+ n) =
1

2|ε− 1|2n sin
2π

n

=
n

8 sin2 π
n

2 sin
π

n
cos

π

n
=

n

4
cotan

π

n
,

since
n−1∑

k=0

εk+1 = 0 and
n−1∑

k=0

εk+2 = 0.

On the other hand, it is clear that

area [P0P1 · · ·Pn−1] = n area [P0OP1] =
n

2
sin

2π

n
= n sin

π

n
cos

π

n
.

We obtain

area[P0P1 · · ·Pn−1]

area[Q0Q1 · · ·Qn−1]
=

n sin
π

n
cos

π

n
n

4
cotan

π

n

= 4 sin2
π

n
. (1)

Remark. We have QkQk+1 = |ak+1 − ak| = |εk+1| = 1 and PkPk+1 =

|εk+1 − εk| = |εk(ε− 1)| = |εk||1 − ε| = |1 − ε| = 2 sin
π

n
, k = 0, 1, . . . , n− 1.

It follows that
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PkPk+1

QkQk+1
= 2 sin

π

n
, k = 0, 1, . . . , n− 1.

That is, the polygons P0P1 · · ·Pn−1 and Q0Q1 · · ·Qn−1 are similar, and
the result in (1) follows.

Problem 2. Let A1A2 · · ·An(n ≥ 5) be a convex polygon and let Bk be the
midpoint of the segment [AkAk+1], k = 1, 2, . . . , n, where An+1 = A1. Then
the following inequality holds:

area [B1B2 · · ·Bn] ≥
1

2
area [A1A2 · · ·An].

Solution. Let ak and bk be the coordinates of points Ak and Bk, k =
1, 2, . . . , n. It is clear that the polygon B1B2 · · ·Bn is convex, and if we
assume that A1A2 · · ·An is positively oriented, then B1B2 · · ·Bn also has
this property. Choose as the origin O of the complex plane a point situated
in the interior of polygon A1A2 · · ·An.

We have bk = 1
2 (ak + ak+1), k = 1, 2, . . . , n, and

area [B1B2 · · ·Bn] =
1

2
Im(

n∑

k=1

bkbk+1) =
1

8
Im

n∑

k=1

(ak + ak+1)(ak+1 + ak+2)

=
1

8
Im

(
n∑

k=1

akak+1

)

+
1

8
Im

(
n∑

k=1

ak+1ak+2

)

+
1

8
Im

(
n∑

k=1

akak+2

)

=
1

2
area [A1A2 · · ·An] +

1

8
Im

(
n∑

k=1

akak+2

)

=
1

2
area [A1A2 · · ·An] +

1

8

n∑

k=1

Im(akak+2)

=
1

2
area [A1A2 · · ·An] +

1

8

n∑

k=1

OAk ·OAk+2 sinAkÔAk+2

≥ 1

2
area [A1A2 · · ·An],

where we have used the relations

Im

(
n∑

k=1

akak+1

)

= Im

(
n∑

k=1

ak+1ak+2

)

= 2 area [A1A2 · · ·An]

and sinAkÔAk+2 ≥ 0, k = 1, 2, . . . , n, where An+2 = A2.
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4.4 Intersecting Cevians and Some Important Points
in a Triangle

Proposition. Consider the points A′, B′, C′ on the sides BC, CA, AB of
the triangle ABC such that AA′, BB′, CC′ intersect at point Q and let

BA′

A′C
=

p

n
,
CB′

B′A
=

m

p
,
AC′

C′B
=

n

m
.

If a, b, c are the coordinates of points A, B, C, respectively, then the coor-
dinate of point Q is

q =
ma+ nb+ pc

m+ n+ p
.

Proof. The coordinates of A′, B′, C′ are a′ =
nb+ pc

n+ p
, b′ =

ma+ pc

m+ p
,

and c′ =
ma+ nb

m+ n
, respectively. Let Q be the point with coordinate q =

ma+nb+pc
m+n+p . We prove that AA′, BB′, CC′ meet at Q.

The points A, Q, A′ are collinear if and only if (q−a)× (a′−a) = 0. This
is equivalent to

(
ma+ nb+ pc

m+ n+ p
− a

)
×
(
nb+ pc

n+ p
− a

)
= 0,

or (nb+ pc− (n+ p)a)× (nb+ pc− (n+ p)a) = 0, which is clear by definition
of the complex product.

Likewise, Q lies on lines BB′ and CC′, so the proof is complete. �


Some Important Points in a Triangle

(1) If Q = G, the centroid of the triangle ABC, we have m = n = p. Then
we obtain again that the coordinate of G is

zG =
a+ b+ c

3
.

(2) Suppose that the lengths of the sides of triangleABC are BC = α, CA =
β, AB = γ. If Q = I, the incenter of triangle ABC, then using a known
result concerning the angle bisector, it follows thatm = α, n = β, p = γ.
Therefore, the coordinate of I is

zI =
αa+ βb+ γc

α+ β + γ
=

1

2s
[(αa+ βb+ γc)],

where s = 1
2 (α+ β + γ).
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(3) If Q = H , the orthocenter of the triangle ABC, we easily obtain the
relations

BA′

A′C
=

tanC

tanB
,
CB′

B′A
=

tanA

tanC
,
AC′

C′B
=

tanB

tanA
.

It follows that m = tanA, n = tanB, p = tanC, and the coordinate of
H is given by

zH =
(tanA)a+ (tanB)b+ (tanC)c

tanA+ tanB + tanC
.

Remark. The above formula can also be extended to the limiting case in

which the triangle ABC is a right triangle. Indeed, assume that A → π

2
.

Then tanA → ±∞ and
(tanB)b + (tanC)c

tanA
→ 0,

tanB + tanC

tanA
→ 0. In

this case, zH = a, i.e., the orthocenter of triangle ABC is the vertex A.

(4) The Gergonne1 point J is the intersection of the cevians AA′, BB′, CC′,
where A′, B′, C′ are the points of tangency of the incircle to the sides
BC, CA, AB, respectively. Then

BA′

A′C
=

1

s− γ
1

s− β

,
CB′

B′A
=

1

s− α
1

s− γ

,
AC′

C′B
=

1

s− β
1

s− α

,

and the coordinate zJ is obtained from the same proposition, where

zJ =
rαa+ rβb+ rγc

rα + rβ + rγ
.

Here rα, rβ , rγ denote the radii of the three excircles of triangle. It is
not difficult to show that the following formulas hold:

rα =
K

s− α
, rβ =

K

s− β
, rγ =

K

s− γ
,

where K = area [ABC] and s = 1
2 (α+ β + γ).

(5) The Lemoine2 point K is the intersection of the symmedians of the tri-
angle (the symmedian is the reflection of the bisector across the median).
Using the notation from the proposition, we obtain

BA′

A′C
=

γ2

β2
,
CB′

B′A
=

α2

γ2
,
AC′

C′B
=

β2

α2
.

1 Joseph Diaz Gergonne (1771–1859), French mathematician, founded the journal Annales
de Mathématiques Pures et Appliquées in 1810.
2 Émile Michel Hyacinthe Lemoine (1840–1912), French mathematician, made important
contributions to geometry.
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It follows that

zK =
α2a+ β2b + γ2C

α2 + β2 + γ2
.

(6) The Nagel3 point N is the intersection of the cevian AA′, BB′, CC′,
where A′, B′, C′ are the points of tangency of the excircles with respec-
tive sides BC, CA, AB. Then

BA′

A′C
=

s− γ

s− β
,
CB′

B′A
=

s− α

s− γ
,
AC′

C′B
=

s− β

s− α
,

and the proposition mentioned above gives the coordinate zN of the Nagel
point N :

zN =
(s− α)a+ (s− β)b + (s− γ)c

(s− α) + (s− β) + (s− γ)
=

1

s
[(s− α)a+ (s− β)b+ (s− γ)c]

=
(
1− α

s

)
a+

(
1− β

s

)
b+
(
1− γ

s

)
c.

Problem. Let α, β, γ be the lengths of sides BC, CA, AB of triangle ABC
and suppose α < β < γ. If points O, I, H are the circumcenter, the incenter,
and the orthocenter of triangle ABC, respectively, prove that

area [OIH ] =
1

8r
(α− β)(β − γ)(γ − α),

where r is the inradius of ABC.

Solution. Consider triangle ABC, directly oriented in the complex plane
centered at point O.

Using the complex product and the coordinates of I and H , we have

area [OIH ] =
1

2i
(zI × zH) =

1

2i

[
αa+ βb+ γc

α+ β + γ
× (a+ b+ c)

]

=
1

4si
[(α− β)a× b+ (β − γ)b× c+ (γ − α)c× a]

=
1

2s
[(α− β) · area [OAB] + (β − γ) · area [OBC] + (γ − α) · area [OCA]]

=
1

2s

[
(α− β)

R2 sin 2C

2
+ (β − γ)

R2 sin 2A

2
+ (γ − α)

R2 sin 2B

2

]

3 Christian Heinrich von Nagel (1803–1882), German mathematician. His contributions
to triangle geometry were included in the book The Development of Modern Triangle
Geometry [21].
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=
R2

4s
[(α− β) sin 2C + (β − γ) sin 2A+ (γ − α) sin 2B]

=
1

8r
(α− β)(β − γ)(γ − α),

as desired.

4.5 The Nine-Point Circle of Euler

Given a triangle ABC, choose its circumcenter O to be the origin of the
complex plane and let a, b, c be the coordinates of the vertices A, B, C. We
have seen in Sect. 4.1, Proposition 3, that the coordinate of the orthocenter
H is zH = a+ b+ c.

Let us denote by A1, B1, C1 the midpoints of sides BC, CA, AB; by
A′, B′, C′ the feet of the altitudes; and by A′′, B′′, C′′ the midpoints of
segments AH, BH, CH , respectively (Fig. 4.5).

Figure 4.5.

It is clear that for the points A1, B1, C1, A′′, B′′, C′′, we have the
following coordinates:

zA1 =
1

2
(b + c), zB1 =

1

2
(c+ a), zC1 =

1

2
(a+ b),

zA′′ = a+
1

2
(b+ c), zB′′ = b+

1

2
(c+ a), zC′′ = c+

1

2
(a+ b).

It is not so easy to find the coordinates of A′, B′, C′.

Proposition. Consider the point X(x) on the circumcircle of triangle ABC.
Let P be the projection of X onto line BC. Then the coordinate of P is
given by
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p =
1

2

(
x− bc

R2
x+ b+ c

)
,

where R is the circumradius of triangle ABC.

Proof. Using the complex product and the real product, we can write the
equations of lines BC and XP as follows:

BC : (z − b)× (c− b) = 0,

XP : (z − x) · (c− b) = 0.

The coordinate p of P satisfies both equations; hence we have

(p− b)× (c− b) = 0 and (p− x) · (c− b) = 0.

These equations are equivalent to

(p− b)(c− b)− (p− b)(c− b) = 0

and

(p− x)(c− b) + (p− x)(c− b) = 0.

Adding the above relations, we obtain

(2p− b− x)(c− b) + (b− x)(c− b) = 0.

It follows that

p =
1

2

[
b+ x+

c− b

c− b
(x− b)

]
=

1

2

⎡

⎢
⎣b+ x+

c− b

R2

c
− R2

b

(x− b)

⎤

⎥
⎦

=
1

2

[
b + x− bc

R2
(x− b)

]
=

1

2

(
x− bc

R2
x+ b+ c

)
. �


From the above proposition, we see that the coordinates of A′, B′, C′ are

zA′ =
1

2

(
a+ b+ c− bca

R2

)
,

zB′ =
1

2

(
a+ b+ c− cab

R2

)
,

zC′ =
1

2

(
a+ b+ c− abc

R2

)
.

Theorem 1 (The nine-point circle). In every triangle ABC, the points
A1, B1, C1, A′, B′, C′, A′′, B′′, C′′ are all on the same circle, whose
center is at the midpoint of the segment OH and whose radius is one-half the
circumradius.
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Proof. Denote by O9 the midpoint of the segment OH . Using our
initial assumption, it follows that zo9 = 1

2 (a + b + c). Also, we have
|a| = |b| = |c| = R, where R is the circumradius of triangle ABC.

Observe that O9A1 = |zA1 − zO9 | =
1

2
|a| =

1

2
R, and also

O9B1 = O9C1 =
1

2
R.

We can write O9A
′′ = |zA′′ − zO9 | =

1

2
|a| =

1

2
R, and also

O9B
′′ = O9C

′′ =
1

2
R.

The distance O9A
′ is also not difficult to compute:

O9A
′ = |zA′ − zO9 | =

∣
∣∣
∣
1

2

(
a+ b+ c− bca

R2

)
− 1

2
(a+ b+ c)

∣
∣∣
∣

=
1

2R2
|bca| = 1

2R2
|a||b||c| = R3

2R2
=

1

2
R.

Similarly, we get O9B
′ = O9C

′ =
1

2
R. Therefore, O9A1 = O9B1 = O9C1 =

O9A
′ = O9B

′ = O9C
′ = O9A

′′ = O9B
′′ = O9C

′′ =
1

2
R, and the desired

property follows. �

Theorem 2.

(1) (Euler4 line of a triangle.) In any triangle ABC the points O, G, H are
collinear.

(2) (Nagel line of a triangle.) In any triangle ABC the points I, G, N are
collinear.

Proof.

(1) If the circumcenter O is the origin of the complex plane, we have zO = 0,

zG =
1

3
(a + b + c), zH = a + b + c. Hence these points are collinear by

Proposition 2 in Sect. 3.2 or 4.2.

(2) We have zI =
α

2s
a+

β

2s
b+

γ

2s
c, zG =

1

3
(a+b+c), and zN =

(
1− α

s

)
a+

(
1− β

s

)
b+
(
1− γ

s

)
c, and we can write zN = 3zG − 2zI .

Applying the result mentioned above and properties of the complex prod-
uct, we obtain (zG − zI)× (zN − zI) = (zG − zI)× [3(zG − zI)] = 0; hence
the points I, G, N are collinear. �

4 Leonhard Euler (1707–1783), one of the most important mathematicians of all time,
created much of modern calculus and contributed significantly to almost every existing
branch of pure mathematics, adding proofs and arranging the whole in a consistent form.
Euler wrote an immense number of memoirs on a great variety of mathematical subjects.
We recommend William Dunham’s book Euler: The Master of Us All [33] for more details
concerning Euler’s contributions to mathematics.
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Remark. Note that NG = 2GI, and hence the triangles OGI and HGN
are similar. It follows that the lines OI and NH are parallel, and we have
the basic configuration of triangle ABC shown in Fig. 4.6.

Figure 4.6.

If Gs is the midpoint of segment [IN ], then its coordinate is

zGs =
1

2
(zI + zN) =

(β + γ)

4s
a+

(γ + α)

4s
b+

(α + β)

4s
c.

The point Gs is called the Spiecker point of triangle ABC, and it is easy to
verify that it is the incenter of the medial triangle A1B1C1.

Problem 1. Consider a point M on the circumcircle of triangle ABC. Prove
that the nine-point centers of triangles MBC, MCA, MAB are the vertices
of a triangle similar to triangle ABC.

Solution. Let A′, B′, C′ be the nine-point centers of the triangles
MBC, MCD, MAB, respectively. Take the origin of the complex plane
to be at the circumcenter of triangle ABC. Denote by the corresponding
lowercase letter the coordinate of the point denoted by an uppercase letter.
Then

a′ =
m+ b+ c

2
, b′ =

m+ c+ a

2
, c′ =

m+ a+ b

2
,

since M lies on the circumcircle of triangle ABC. Then

b′ − a′

c′ − a′
=

a− b

a− c
=

b− a

c− a
,

and hence triangles A′B′C′ and ABC are similar.
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Problem 2. Show that triangle ABC is a right triangle if and only if its
circumcircle and its nine-point circle are tangent.

Solution. Take the origin of the complex plane to be at the circumcenter O
of triangle ABC, and denote by a, b, c the coordinates of vertices A, B, C,
respectively. Then the circumcircle of triangle ABC is tangent to the nine-

point circle of triangle ABC if and only if OO9 =
R

2
. This is equivalent to

OO2
9 =

R2

4
, that is, |a+ b+ c|2 = R2.

Using properties of the real product, we have

|a+ b+ c|2 = (a+ b+ c) · (a+ b+ c) = |a|2 + |b|2 + |c|2 +2(a · b+ b · c+ c · a)

= 3R2 + 2(a · b+ b · c+ c · a) = 3R2 + (2R2 − α2 + 2R2 − β2 + 2R2 − γ2)

= 9R2 − (α2 + β2 + γ2),

where α, β, γ are the lengths of the sides of triangle ABC. We have used

the formulas a · b = R2 − γ2

2
, b · c = R2 − α2

2
, c · a = R2 − β2

2
, which can

be easily derived from the definition of the real product of complex numbers
(see also the lemma in Sect. 4.6.2).

Therefore, α2 + β2 + γ2 = 8R2, which is the same as sin2 A + sin2 B +
sin2 C = 2. We can write the last relation as 1 − cos 2A + 1 − cos 2B + 1 −
cos 2C = 4. This is equivalent to 2 cos(A+B) cos(A−B) + 2 cos2 C = 0, i.e.,
4 cosA cosB cosC = 0, and the desired conclusion follows.

Problem 3. Let ABCD be a cyclic quadrilateral and let Ea, Eb, Ec, Ed be
the nine-point centers of triangles BCD, CDA, DAB, ABC, respectively.
Prove that the lines AEa, BEb, CEc, DEd are concurrent.

Solution. Take the origin of the complex plane to be the center O of the
circumcircle of ABCD. Then the coordinates of the nine-point centers are

ea =
1

2
(b + c+ d), eb =

1

2
(c+ d+ a), ec =

1

2
(d+ a+ b), ed =

1

2
(a+ b+ c).

We have AEa : z = ka + (1 − k)ea, k ∈ R, and the analogous equations
for the lines BEb, CEc, DEd. Observe that the point with coordinate 1

3 (a+

b + c+ d) lies on all four lines

(
k =

1

3

)
, and we are done.
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4.6 Some Important Distances in a Triangle

4.6.1 Fundamental Invariants of a Triangle

Consider the triangle ABC with sides α, β, γ; semiperimeter

s =
1

2
(α + β + γ);

inradius r; and circumradius R. The numbers s, r, R are called the funda-
mental invariants of triangle ABC.

Theorem. The sides α, β, γ are the roots of the cubic equation

t3 − 2st2 + (s2 + r2 + 4Rr)t − 4sRr = 0.

Proof. Let us prove that α satisfies the equation. We have

α = 2R sinA = 4R sin
A

2
cos

A

2
and s− α = rcotan

A

2
= r

cos
A

2

sin
A

2

,

whence

cos2
A

2
=

α(s− α)

4Rr
and sin2

A

2
=

αr

4R(s− α)
.

From the formula cos2
A

2
+ sin2

A

2
= 1, it follows that

α(s− α)

4Rr
+

αr

4R(s− α)
= 1.

That is, α3−2sα2+(s2+r2+4Rr)α−4sRr = 0. We can show analogously
that β and γ are roots of the above equation. �


From the above theorem, using the relations between the roots and the
coefficients, it follows that

α+ β + γ = 2s,

αβ + βγ + γα = s2 + r2 + 4Rr,

αβγ = 4sRr.

Corollary. The following formulas hold in every triangle ABC:

α2 + β2 + γ2 = 2(s2 − r2 − 4Rr),

α3 + β3 + γ3 = 2s(s2 − 3r2 − 6Rr).
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Proof. We have

α2 + β2 + γ2 = (α + β + γ)2 − 2(αβ + βγ + γα) = 4s2 − 2(s2 + r2 + 4Rr)

= 2s2 − 2r2 − 8Rr = 2(s2 − r2 − 4Rr).

In order to prove the second identity, we can write

α3 + β3 + γ3 = (α+ β + γ)(α2 + β2 + γ2 − αβ − βγ − γα) + 3αβγ

= 2s(2s2 − 2r2 − 8Rr − s2 − r2 − 4Rr) + 12sRr = 2s(s2 − 3r2 − 6Rr). �


4.6.2 The Distance OI

Assume that the circumcenter O of the triangle ABC is the origin of the
complex plane, and let a, b, c be the coordinates of the vertices A, B, C,
respectively.

Lemma. The real products a · b, b · c, c · a are given by

a · b = R2 − γ2

2
, b · c = R2 − α2

2
, c · a = R2 − β2

2
.

Proof. Using the properties of the real product, we have

γ2 = |a−b|2 = (a−b)·(a−b) = a·a−2a·b+b·b = |a|2−2a·b+|b|2 = 2R2−2a·b,

and the first formula follows. �


In order to simplify the formulas, we will use the symbol
∑

cyc, called the
cyclic sum:

∑

cyc

f(x1, x2, x3) = f(x1, x2, x3) + f(x2, x3, x1) + f(x3, x1, x2),

where the sum is taken over all cyclic permutations of the variables.

Theorem (Euler). The following formula holds:

OI2 = R2 − 2Rr.

Proof. The coordinate of the incenter is given by

zI =
α

2s
a+

β

2s
b+

γ

2s
c,
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so we can write

OI2 = |zI |2 =

(
α

2s
a+

β

2s
b+

γ

2s
c

)
·
(

α

2s
a+

β

2s
b+

γ

2s
c

)

=
1

4s2
(α2 + β2 + γ2)R2 + 2

1

4s2

∑

cyc

(αβ)a · b.

Using the above lemma, we find that

OI2 =
1

4s2
(α2 + β2 + γ2)R2 +

2

4s2

∑

cyc

αβ

(
R2 − γ2

2

)

=
1

4s2
(α + β + γ)2R2 − 1

4s2

∑

cyc

αβγ2 = R2 − 1

4s2
αβγ(α + β + γ)

= R2 − 1

2s
αβγ = R2 − 2

αβγ

4K
· K
s

= R2 − 2Rr,

where the well-known formulas

R =
αβγ

4K
, r =

K

s
,

are used. Here K is the area of triangle ABC. �


Corollary (Euler’s inequality). In every triangle ABC, the following
inequality holds:

R ≥ 2r.

We have equality if and only if triangle ABC is equilateral.

Proof. From the above theorem. we haveOI2 = R(R−2r) ≥ 0, hence R ≥ 2r.
The equality R− 2r = 0 holds if and only if OI2 = 0, i.e., O = I. Therefore,
triangle ABC is equilateral. �


4.6.3 The Distance ON

Theorem 1. If N is the Nagel point of triangle ABC, then

ON = R− 2r.

Proof. The coordinate of the Nagel point of the triangle is given by

zN =
(
1− α

s

)
a+

(
1− β

s

)
b+
(
1− γ

s

)
c.
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Therefore,

ON2 = |zN |2 = zN · zN = R2
∑

cyc

(
1− α

s

)2
+ 2
∑

cyc

(
1− α

s

)(
1− β

s

)
a · b

= R2
∑

cyc

(
1− α

s

)2
+ 2
∑

cyc

(
1− α

s

)(
1− β

s

)(
R2 − γ2

2

)

= R2

(
3− α+ β + γ

s

)2
−
∑

cyc

(
1− α

s

)(
1− β

s

)
γ2

= R2 −
∑

cyc

(
1− α

s

)(
1− β

s

)
γ2 = R2 − E.

To calculate E, we note that

E =
∑

cyc

(
1− α+ β

s
+

αβ

s2

)
γ2 =
∑

cyc

γ2 − 1

s

∑

cyc

(α+ β)γ2 +
1

s2

∑

cyc

αβγ2

=
∑

cyc

γ2 − 1

s

∑

cyc

(2s− γ)γ2 +
2αβγ

s
= −
∑

cyc

α2 +
1

s

∑

cyc

α3 + 8
αβγ

4K
· K
s

= −
∑

cyc

α2 +
1

s

∑

cyc

α3 + 8Rr.

Applying the formula in the corollary of Sect. 4.6.1, we conclude that

E = −2(s2 − r2 − 4Rr) + 2(s2 − 3r2 − 6Rr) + 8Rr = −4r2 + 4Rr.

Hence ON2 = R2 − E = R2 − 4Rr + 4r2 = (R − 2r)2, and the desired
formula is proved by Euler’s inequality. �


Theorem 2 (Feuerbach5). In any triangle the incircle and the nine-point
circle of Euler are tangent.

Proof. Using the configuration in Sect. 4.5 we observe that

1

2
=

GI

GN
=

GO9

GO
.

Therefore, triangles GIO9 and GNO are similar. It follows that the lines

IO9 and ON are parallel and IO9 =
1

2
ON . Applying Theorem 1 in Sect.

4.6.3, we get IO9 =
1

2
(R − 2r) =

R

2
− r = R9 − r, and hence the incircle is

tangent to the nine-point circle. �

5 Karl Wilhelm Feuerbach (1800–1834), German geometer, published the result of
Theorem 2 in 1822.



124 4 More on Complex Numbers and Geometry

Figure 4.7.

The point of tangency of these two circles is denoted by ϕ and is called
the Feuerbach point of the triangle (Fig. 4.7).

4.6.4 The Distance OH

Theorem. If H is the orthocenter of triangle ABC, then

OH2 = 9R2 + 2r2 + 8Rr − 2s2.

Proof. Assuming that the circumcenter O is the origin of the complex plane,
the coordinate of H is

zH = a+ b+ c.

Using the real product, we can write

OH2 = |zH |2 = zH · zH = (a+ b+ c) · (a+ b+ c)

=
∑

cyc

|a|2 + 2
∑

a · b = 3R2 + 2
∑

cyc

a · b.

Applying the formulas in the lemma and then the first formula in Corol-
lary 4.6.1, we obtain

OH2 = 3R2 + 2
∑

cyc

(
R2 − γ2

2

)
= 9R2 − (α2 + β2 + γ2)

= 9R2 − 2(s2 − r2 − 4Rr) = 9R2 + 2r2 + 8Rr − 2s2. �
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Corollary 1. The following formulas hold:

(1) OG2 = R2 +
2

9
r2 +

8

9
Rr − 2

9
s2;

(2) OO2
9 =

9

4
R2 +

1

2
r2 + 2Rr − 1

2
s2.

Corollary 2. In every triangle ABC, the inequality

α2 + β2 + γ2 ≤ 9R2

is valid. Equality holds if and only if the triangle is equilateral.

4.6.5 Blundon’s Inequalities

Given a triangle ABC, denote by O its circumcenter, I the incenter, G the
centroid, N the Nagel point, s the semiperimeter, R the circumradius, and r
the inradius. In what follows, we present a geometric proof to the so-called
fundamental triangle inequality. This relation contains, in fact, two inequal-
ities, and it was first proved by E. Rouché in 1851, answering a question of
Ramus concerning necessary and sufficient conditions for three positive real
numbers s,R, r to be the semiperimeter, circumradius, and inradius of a tri-
angle. The standard simple proof was first given by W.J. Blundon, and it is
based on the following algebraic property of the roots of a cubic equation:
The roots x1, x2, x3 of the equation

x3 + a1x
2 + a2x+ a3 = 0

are the side lengths of a (nondegenerate) triangle if and only if the following
three conditions are satisfied:

(i) 18a1a2a3 + a21a
2
2 − 27a23 − 4a32 − 4a31a3 > 0;

(ii) −a1 > 0, a2 > 0, −a3 > 0;
(iii) a31 − 4a1a4 + 8a3 > 0.

The following result contains a simple geometric proof of the fundamental
inequality of a triangle, as presented in the article [15].

Theorem 1. Assume that the triangle ABC is not equilateral. The following
relation holds:

cos ÎON =
2R2 + 10Rr− r2 − s2

2(R− 2r)
√
R2 − 2Rr

.

Proof. It is known (see Theorem 2 in Sect. 4.5) that the pointsN ,G, and I are
collinear on a line called Nagel’s line of the triangle, and we have NI = 3GI.
If we use Stewart’s theorem in the triangle ION , then we get

ON2 ·GI +OI2 ·NG−OG2 ·NI = GI ·GN ·NI,
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and it follows that

ON2 ·GI +OI2 · 2GI −OG2 − 3GI = 6GI3.

This relation is equivalent to

ON2 + 2OI2 − 3OG2 = 6GI2.

Now, using formulas for ON , OI, and OG, we obtain

GI2=
1

6

(
a2 + b2 + c2

3
− 8Rr + 4r2

)
=

1

6

(
2(s2 − r2 − 4Rr)

3
− 8Rr + 4r2

)
.

So we get

NI2 = 9GI2 = 5r2 + s2 − 16Rr.

We use the law of cosines in the triangle ION to obtain

cos ÎON =
ON2 +OI2 −NI2

2ON · OI

=
(R − 2r)2 + (R2 − 2Rr)− (5r2 + s2 − 16Rr)

2(R− 2r)
√
R2 − 2Rr

=
2R2 + 10Rr− r2 − s2

2(R− 2r)
√
R2 − 2Rr

,

and we are done.
If the triangle ABC is equilateral, then the points I, O, N coincide, i.e.,

triangle ION degenerates to a single point. In this case, we extend the formula

by cos ÎON = 1. �


Theorem 2 (Blundon’s inequalities). A necessary and sufficient condi-
tion for the existence of a triangle with elements s, R, and r is

2R2 + 10Rr − r2 − 2(R− 2r)
√

R2 − 2Rr

≤ s2 ≤ 2R2 + 10Rr − r2 + 2(R2 − 2r)
√

R2 − 2Rr.

Proof. If we have R = 2r, then the triangle must be equilateral, and we are
done. If we assume that R − 2r �= 0, then the desired inequalities are direct

consequences of the fact that −1 ≤ cos ÎON ≤ 1. �


Equilateral triangles give the trivial situation in which we have equality.
Suppose that we are not working with equilateral triangles, i.e., we have
R − 2r �= 0. Denote by T (R, r) the family of all triangles with circumradius
R and inradius r. Blundon’s inequalities give, in terms of R and r, the exact
interval for the semiperimeter s of triangles in the family T (R, r). We have

s2min = 2R2 + 10Rr− r2 − 2(R− 2r)
√

R2 − 2Rr
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and

s2max = 2R2 + 10Rr − r2 + 2(R− 2r)
√
R2 − 2Rr.

If we fix the circumcenter O and the incenter I such that OI =
√
R2 − 2Rr,

then the triangle in the family T (R, r) with minimal semiperimeter corre-

sponds to the case cos ÎON = 1 of equality, i.e., points I, O,N are collinear,
and I and N belong to the same ray with the origin O. Taking into account
the well-known property that points O,G,H belong to Euler’s line of the tri-
angle, we see that O, I,G must be collinear, and hence in this case, triangle
ABC is isosceles. In Fig. 4.8, this triangle is denoted by AminBminCmin. Also,
the triangle in the family T (R, r) with maximal semiperimeter corresponds

to the case of equality cos ÎON = −1, i.e., points I, O,N are collinear, and
O is situated between I and N . Using again the Euler line of the triangle,
we see that triangle ABC is isosceles. In Fig. 4.8, this triangle is denoted by
AmaxBmaxCmax.

Note that we have BminCmin > BmaxCmax. The triangles in the family
T (R, r) are “between” these two extremal triangles (see Fig. 4.8). According
to Poncelet’s closure theorem, they are inscribed in the circle C(O;R), and
their sides are externally tangent to the circle C(I; r).

Bmax

Cmax

Amax

Amin

Cmin

A

I

O

C

B

Bmin

Nmin

Nmax

Figure 4.8.
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4.7 Distance Between Two Points in the Plane
of a Triangle

4.7.1 Barycentric Coordinates

Consider a triangleABC and let α, β, γ be the lengths of sidesBC, CA, AB,
respectively.

Proposition. Let a, b, c be the coordinates of vertices A, B, C and let P
be a point in the plane of the triangle. If zP is the coordinate of P , then there
exist unique real numbers μa, μb, μc such that

zP = μaa+ μbb+ μcc and μa + μb + μc = 1.

Proof. Assume that P is in the interior of triangle ABC and consider the

point A′ such that AP ∩BC = {A′}. Let k1 =
PA

PA′ , k2 =
A′B
A′C

, and observe

that

zP =
a+ k1zA′

1 + k1
, zA′ =

b+ k2c

1 + k2
.

Hence in this case, we can write

zP =
1

1 + k1
a+

k1
(1 + k1)(1 + k2)

b+
k1k2

(1 + k1)(1 + k2)
c.

Moreover, if we consider

μa =
1

1 + k1
, μb =

k1
(1 + k1)(1 + k2)

, μc =
k1k2

(1 + k1)(1 + k2)
,

we have

μa + μb + μc =
1

1 + k1
+

k1
(1 + k1)(1 + k2)

+
k1k2

(1 + k1)(1 + k2)

=
1 + k1 + k2 + k1k2
(1 + k1)(1 + k2)

= 1.

We proceed in an analogous way when the point P is situated in the
exterior of triangle ABC.

If the point P is situated on the support line of a side of triangle ABC
(i.e., the line determined by two vertices), then

zP =
1

1 + k
b+

k

1 + k
c = 0 · a+ 1

1 + k
b+

k

1 + k
c,

where k =
PB

PC
. �
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The real numbers μa, μb, μc are called the absolute barycentric coordinates
of P with respect to triangle ABC.

The signs of the numbers μa, μb, μc depend on the regions of the plane in
which the point P is situated. Triangle ABC determines seven such regions
(Fig. 4.9).

Figure 4.9.

In the following table, we give the signs of μa, μb, μc:

I II III IV V VI VII

μa − + + + − − +

μb + − + − + − +

μc + + − − − + +

4.7.2 Distance Between Two Points in Barycentric
Coordinates

In what follows, in order to simplify the formulas, we will use again the
cyclic sum symbol defined above,

∑

cyc
f(x1, x2, . . . , xn). The most important

example for our purposes is

∑

cyc

f(x1, x2, x3) = f(x1, x2, x3) + f(x2, x3, x1) + f(x3, x1, x2).

Theorem 1. In the plane of triangle ABC, consider the points P1 and P2

with coordinates zP1 and zP2 , respectively. If zPk
= αka + βkb + γkc, where

αk, βk, γk are real numbers such that αk + βk + γk = 1, k = 1, 2, then

P1P
2
2 = −

∑

cyc

(α2 − α1)(β2 − β1)γ
2.
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Proof. Choose the origin of the complex plane to be located at the
circumcenter O of the triangle ABC. Using properties of the real product,
we have

P1P
2
2 = |zP2 − zP1 |2 = |(α2 − α1)a+ (β2 − β1)b+ (γ2 − γ1)c|2

=
∑

cyc

(α2 − α1)
2a · a+ 2

∑

cyc

(α2 − α1)(β2 − β1)a · b

=
∑

cyc

(α2 − α1)
2R2 + 2

∑

cyc

(α2 − α1)(β2 − β1)

(
R2 − γ2

2

)

= R2(α2 + β2 + γ2 − α1 − β1 − γ1)
2 −
∑

cyc

(α2 − α1)(β2 − β1)γ
2

= −
∑

cyc

(α2 − α1)(β2 − β1)γ
2,

since α1 + β1 + γ1 = α2 + β2 + γ2 = 1. �


Theorem 2. The points A1, A2, B1, B2, C1, C2 are situated on the sides
BC, CA, AB of triangle ABC such that lines AA1, BB1, CC1 meet at
point P1, and lines AA2, BB2, CC2 meet at point P2. If

BAk

AkC
=

pk
nk

,
CBk

BkA
=

mk

pk
,
ACk

CkB
=

nk

mk
, k = 1, 2,

where mk, nk, pk are nonzero real numbers, k = 1, 2, and
Sk = mk + nk + pk, k = 1, 2, then

P1P
2
2 =

1

S2
1S

2
2

[

S1S2

∑

cyc

(n1P2 + p1n2)α
2 − S2

1

∑

cyc

n2p2α
2 − S2

2

∑

cyc

n1p1α
2

]

.

Proof. The coordinates of points P1 and P2 are

zPk
=

mka+ nkb+ pkC

mk + nk + pk
, k = 1, 2.

It follows that in this case, the absolute barycentric coordinates of points
P1 and P2 are given by

αk =
mk

mk + nk + pk
=

mk

Sk
, βk =

nk

mk + nk + pk
=

nk

Sk
,

γk =
pk

mk + nk + pk
=

pk
Sk

, k = 1, 2.

Substituting in the formula in Theorem 1 in Sect. 4.7.2, we obtain
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P1P
2
2 = −

∑

cyc

(
n2

S2
− n1

S1

)(
p2
S2

− p1
S1

)
α2

= − 1

S2
1S

2
2

∑

cyc

(S1n2 − S2n1)(S1p2 − S2p1)α
2

= − 1

S2
1S

2
2

∑

cyc

[
S2
1n2p2 + S2

2n1p1 − S1S2(n1p2 + n2p1)
]
α2

=
1

S2
1S

2
2

[

S1S2

∑

cyc

(n1p2 + n2p1)α
2 − S2

1

∑

cyc

n2p2α
2 − S2

2

∑

cyc

n1p1α
2

]

,

and the desired formula follows. �


Corollary 1. For real numbers αk, βk, γk with αk + βk + γk = 1, k = 1, 2,
the following inequality holds:

∑

cyc

(α2 − α1)(β2 − β1)γ
2 ≤ 0,

with equality if and only if α1 = α2, β1 = β2, γ1 = γ2.

Corollary 2. For nonzero real numbers mk, nk, pk, k = 1, 2, with Sk =
mk + nk + pk, k = 1, 2, the lengths of sides α, β, γ of triangle ABC satisfy
the inequality

∑

cyc

(n1p2 + p1n2)
2 ≥ S1

S2

∑

cyc

n2p2α
2 +

S2

S1

∑

cyc

n1p1α
2,

with equality if and only if
p1
n1

=
p2
n2

,
m1

p1
=

m2

p2
,
n1

m1
=

n2

m2
.

Applications

(1) Let us use the formula in Theorem 2 in Sect. 4.7.2 to compute the distance
GI, used in Sect. 4.6.5, where G is the centroid and I is the incenter of
the triangle.

We have m1 = n1 = p1 = 1 and m2 = α, n2 = β, p2 = γ; hence

S1 =
∑

cyc

m1 = 3; S2 =
∑

cyc

m2 = α+ β + γ = 2s;

∑

cyc

(n1p2 + n2p1)α
2 = (β + γ)α2 + (γ + α)β2 + (α + β)γ2

= (α+ β + γ)(αβ + βγ + γα)− 3αβγ = 2s(s2 + r2 + 4rR)− 12sRr

= 2s3 + 2sr2 − 4sRr.
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On the other hand,

∑

cyc

n2p2α
2 = α2βγ + β2γα+ γ2αβ = αβγ(α + β + γ) = 8s2Rr

and ∑

cyc

n1p1α
2 = α2 + β2 + γ2 = 2s2 − 2r2 − 8Rr.

Then

GI2 =
1

9
(s2 + 5r2 − 16Rr).

(2) Let us prove that in every triangle ABC with sides α, β, γ, the following
inequality holds:

∑

cyc

(2α− β − γ)(2β − α− γ)γ2 ≤ 0.

In the inequality in Corollary 1 in Sect. 4.7.2, we consider the points

P1 = G and P2 = I. Then α1 = β1 = γ1 =
1

3
and α2 =

α

2s
, β2 =

β

2s
,

γ2 =
γ

2s
, and the above inequality follows. We have equality if and only if

P1 = P2, that is, G = I, so the triangle is equilateral.

4.8 The Area of a Triangle in Barycentric Coordinates

Consider the triangle ABC with a, b, c the respective coordinates of its
vertices. Let α, β, γ be the lengths of sides BC, CA, and AB.

Theorem. Let Pj(zpj ), j = 1, 2, 3, be three points in the plane of triangle
ABC with zPj = αja+ βjb+ γjc, where αj , βj , γj are the barycentric coor-
dinates of Pj. If the triangles ABC and P1P2P3 have the same orientation,
then

area[P1P2P3]

area[ABC]
=

∣
∣∣
∣
∣
∣

α1 β1 γ1
α2 β2 γ2
α3 β3 γ3

∣
∣∣
∣
∣
∣
.

Proof. Suppose that the triangles ABC and P1P2P3 are positively oriented.
If O denotes the origin of the complex plane, then using the complex product,
we can write

2i area[P1OP2] = zP1 × zP2 = (α1a+ β1b+ γ1c)× (α2a+ β2b+ γ2c)

= (α1β2 − α2β1)a× b+ (β1γ2 − β2γ1)b× c+ (γ1α1 − γ2α1)c× a
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=

∣
∣∣
∣
∣
∣

a× b b× c c× a
γ1 γ1 β1

γ2 α2 β2

∣
∣∣
∣
∣
∣
=

∣
∣∣
∣
∣
∣

a× b b× c 2i area [ABC]
γ1 α1 1
γ2 α2 1

∣
∣∣
∣
∣
∣
.

Analogously, we obtain

2i area [P2OP3] =

∣
∣
∣∣
∣
∣

a× b b× c 2i area [ABC]
γ2 α2 1
γ3 α3 1

∣
∣
∣∣
∣
∣
,

2i area [P3OP1] =

∣
∣
∣
∣
∣∣

a× b b× c 2i area [ABC]
γ3 α3 1
γ1 α1 1

∣
∣
∣
∣
∣∣
.

Assuming that the origin O is situated in the interior of triangle P1P2P3,
it follows that

area[P1P2P3] = area [P1OP2] + area [P2OP3] + area [P3OP1]

=
1

2i
(α1 −α2+α2 −α3+α3−α1)a× b− 1

2i
(γ1 − γ2+ γ2− γ3+ γ3− γ1)b× c

+(γ1α2 − γ2α1 + γ2α3 − γ3α2 + γ3α1 − γ1α3)area [ABC]

= (γ1α2 − γ2α1 + γ2α3 − γ3α2 + γ3α1 − γ1α3) area [ABC]

= area [ABC]

∣∣
∣
∣
∣
∣

1 γ1 α1

1 γ2 α2

1 γ3 α3

∣∣
∣
∣
∣
∣
= area[ABC]

∣∣
∣
∣
∣
∣

α1 β1 γ1
α2 β2 γ2
α3 β3 γ3

∣∣
∣
∣
∣
∣
,

and the desired formula is obtained. �


Corollary 1. Consider the triangle ABC and the points A1, B1, C1 situated
on the respective lines BC, CA, AB (Fig. 4.10) such that

A1B

A1C
= k1,

B1C

B1A
= k2,

C1A

C1B
= k3.

If AA1 ∩BB1 = {P1}, BB1 ∩ CC1 = {P2}, and CC1 ∩ AA1 = {P3}, then

area[P1P2P3]

area[ABC]
=

(1− k1k2k3)
2

(1 + k1 + k1k2)(1 + k2 + k2k3)(1 + k3 + k3k1)
.

Proof. Applying the well-known Menelaus’s theorem to triangle AA1B, we
find that

C1A

C1B
· CB

CA1
· P3A1

P3A
= 1.

Hence
P3A

P3A1
=

C1A

C1B
· CB

CA1
= k3(1 + k1).
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Figure 4.10.

The coordinate of P3 is given by

zP3 =
a+ k3(1 + k1)zA1

1 + k3(1 + k1)
=

a+ k3(1 + k1)
b + k1c

1 + k1
1 + k3 + k3k1

=
a+ k3b+ k3k1c

1 + k3 + k3k1
.

In an analogous way, we find that

zP1 =
k1k2a+ b+ k1c

1 + k1 + k1k2
and zP2 =

k2a+ k2k3b+ c

1 + k2 + k2k3
.

The triangles ABC and P1P2P3 have the same orientation; hence by applying
the formula in the above theorem, we find that

area[P1P2P3]

area[ABC]
=

1

(1+k1+k1k2)(1+k2+k2k3)(1+k3+k3k1)

∣
∣
∣
∣
∣∣

k1k2 1 k1
k2 k2k3 1
1 k3 k3k1

∣
∣
∣
∣
∣∣

=
(1− k1k2k3)

2

(1 + k1 + k1k2)(1 + k2 + k2k3)(1 + k3 + k3k1)
. �


Remark. When k1 = k2 = k3 = k, from Corollary 1 in Sect. 4.8, we obtain
Problem 3 in Sect. 4.9.2 from the 23rd Putnam Mathematical Competition.

Let Aj , Bj , Cj be points on the lines BC, CA, AB, respectively, such that

BAj

AjC
=

pj
nj

,
CBj

BjA
=

mj

pj
,
ACj

CjB
=

nj

mj
, j = 1, 2, 3.

Corollary 2. If Pj is the intersection point of lines AAj , BBj , CCj , j =
1, 2, 3, and the triangles ABC, P1P2P3 have the same orientation, then

area[P1P2P3]

area[ABC]
=

1

S1S2S3

∣∣
∣
∣
∣
∣

m1 n1 p1
m2 n2 p2
m3 n3 p3

∣∣
∣
∣
∣
∣
,

where Sj = mj + nj + pj , j = 1, 2, 3.
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Proof. In terms of the coordinates of the triangle, the coordinates of the
points Pj are

zPj =
mja+ njb + pjC

mj + nj + pj
=

1

Sj
(mja+ njb+ pjc), j = 1, 2, 3.

The formula above follows directly from the above theorem. �


Corollary 3. In triangle ABC, let us consider the cevians AA′, BB′, and
CC′ such that

A′B
AC

= m,
B′C
B′A

= n,
C′A
C′B

= p.

Then the following formula holds:

area[A′B′C′]
area[ABC]

=
1 +mnp

(1 +m)(1 + n)(1 + p)
.

Proof. Observe that the coordinates of A′, B′, C′ are given by

zA′ =
1

1 +m
b+

m

1 +m
c, zB′ =

1

1 + n
c+

n

1 + n
a, zC′ =

1

1 + p
a+

p

1 + p
b.

Applying the formula in Corollary 2 in Sect. 4.8, we obtain

area[A′B′C′]
area[ABC]

=
1

(1 +m)(1 + n)(1 + p)

∣
∣
∣
∣
∣
∣

0 1 m
n 0 1
1 p 0

∣
∣
∣
∣
∣
∣

=
1 +mnp

(1 +m)(1 + n)(1 + p)
. �


Applications

(1) (Steinhaus)6 Let Aj , Bj , Cj be points on lines BC, CA, AB, respec-
tively, j = 1, 2, 3. Assume that

BA1

A1C
=

2

4
,
CB1

B1A
=

1

2
,
AC1

C1B
=

4

1
;

BA2

A2C
=

4

1
,
CB2

B2A
=

2

4
,
AC2

C2B
=

1

2
;

BA3

A3C
=

1

2
,
CB3

B3A
=

4

1
,
AC3

C3B
=

2

4
.

If Pj is the intersection point of lines AAj , BBj , CCj , j = 1, 2, 3, and
trianglesABC, P1P2P3 are of the same orientation, then from Corollary 3
above, we obtain

6 Hugo Dyonizy Steinhaus (1887–1972), Polish mathematician, made important contribu-
tions to functional analysis and other branches of modern mathematics.
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area[P1P2P3]

area[ABC]
=

1

7 · 7 · 7

∣
∣∣
∣
∣
∣

1 4 2
2 1 4
4 2 1

∣
∣∣
∣
∣
∣
=

49

73
=

1

7
.

(2) If the cevians AA′, BB′, CC′ are concurrent at point P , let us denote
by KP the area of triangle A′B′C′. We can use the formula in Corollary 3
above to compute the areas of some triangles determined by the feet of
the cevians of some notable points in a triangle.

(i) If I is the incenter of triangle ABC, we have

KI =

1 +
γ

β
· β
α
· α
γ(

1 +
γ

β

)(
1 +

β

α

)(
1 +

α

γ

)area[ABC]

=
2αβγ

(α+ β)(β + γ)(γ + α)
area[ABC] =

2αβγsr

(α+ β)(β + γ)(γ + α)
.

(ii) For the orthocenter H of the acute triangle ABC, we obtain

KH =
1 +

tanC

tanB
· tanB
tanA

· tanA
tanC(

1 +
tanC

tanB

)(
1 +

tanB

tanA

)(
1 +

tanA

tanC

)area[ABC]

= (2 cosA cosB cosC)area[ABC] = (2 cosA cosB cosC)sr.

(iii) For the Nagel point of triangle ABC, we can write

KN =

1 +
s− γ

s− β
· s− α

s− γ
· s− β

s− α(
1 +

s− γ

s− β

)(
1 +

s− α

s− γ

)(
1 +

s− β

s− α

)area[ABC]

=
2(s− α)(s− β)(s − γ)

αβγ
area[ABC] =

4area2[ABC]

2sαβγ
area[ABC]

=
r

2R
area[ABC] =

sr2

2R
.

If we proceed in the same way for the Gergonne point J , we obtain the
relation

KJ =
r

2R
area[ABC] =

sr2

2R
.

Remark. Two cevians AA′ and AA′′ are isotomic if the points A′ and A′′

are symmetric with respect to the midpoint of the segment BC. Assuming
that
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A′B
A′C

= m,
B′C
B′A

= n,
C′A
C′B

= p,

then for the corresponding isotomic cevians, we have

A′′B
A′′C

=
1

m
,
B′′C
B′′A

=
1

n
,
C′′A
C′′B

=
1

p
.

Applying the formula in Corollary 3 above yields that

area[A′B′C′]
area[ABC]

=
1 +mnp

(1 +m)(1 + n)(1 + p)

=

1 +
1

mnp(
1 +

1

m

)(
1 +

1

n

)(
1 +

1

p

) =
area[A′′B′′C′′]
area[ABC]

.

Therefore, area [A′B′C′] = area[A′′B′′C′′]. A special case of this relation
is KN = KJ , since the points N and J are isotomic (i.e., these points are
intersections of isotomic cevians).

(3) Consider the excenters Iα, Iβ , Iγ of triangle ABC. It is not difficult to
see that the coordinates of these points are

zIα = − α

2(s− α)
a+

β

2(s− β)
b+

γ

2(s− γ)
c,

zIβ =
α

2(s− α)
a− β

2(s− β)
b+

γ

2(s− γ)
c,

zIγ =
α

2(s− α)
a+

β

2(s− β)
b− γ

2(s− γ)
c.

From the formula in the theorem above, it follows that

area[IαIβIγ ] =

∣
∣
∣
∣∣
∣
∣

− α
2(s−α)

β
2(s−β)

γ
2(s−γ)

α
2(s−α) − β

2(s−β)
γ

2(s−γ)
α

2(s−α)
β

2(s−β) − γ
2(s−γ)

∣
∣
∣
∣∣
∣
∣
area[ABC]

=
αβγ

8(s− α)(s− β)(s− γ)

∣
∣∣
∣
∣
∣

-1 1 1
1 -1 1
1 1 -1

∣
∣∣
∣
∣
∣
area[ABC]

=
sαβγarea[ABC]

2s(s− α)(s− β)(s − γ)
=

sαβγarea[ABC]

2area2[ABC]
=

2sαβγ

4area[ABC]
= 2sR.

(4) (Nagel line) Using the formula in the theorem above, we give a different
proof for the so-called Nagel line: the points I,G,N are collinear. We
have seen that the coordinates of these points are



138 4 More on Complex Numbers and Geometry

zI =
α

2s
a+

β

2s
b+

γ

2s
c,

zG =
1

3
a+

1

3
b+

1

3
c,

zN =
(
1− α

s

)
a+

(
1− β

s

)
b+
(
1− γ

s

)
c.

Then

area[IGN ] =

∣
∣
∣∣
∣
∣

α
2s

β
2s

γ
2s

1
3

1
3

1
3

1− α
s 1− β

s 1− γ
s

∣
∣
∣∣
∣
∣
. area[ABC] = 0,

and hence the points I, G, N are collinear.

4.9 Orthopolar Triangles

4.9.1 The Simson–Wallace Line and the Pedal
Triangle

Consider the triangle ABC, and let M be a point situated in the plane of
the triangle. Let P, Q, R be the projections of M onto lines BC, CA, AB,
respectively.

Theorem 1 (The Simson line7). The points P, Q, R are collinear if and
only if M is on the circumcircle of triangle ABC.

Proof. We will give a standard geometric argument.
Suppose that M lies on the circumcircle of triangle ABC. Without loss

of generality, we may assume that M is on the arc
�

BC. In order to prove

the collinearity of R, P, Q, it suffices to show that the angles B̂PR and

ĈPQ are congruent. The quadrilaterals PRBM and PCQM are cyclic (since

B̂RM ≡ B̂PM and M̂PC + M̂QC = 180◦); hence we have B̂PR ≡ B̂MR

and ĈPQ ≡ ĈMQ. But B̂MR = 90◦ − ÂBM = 90◦ − M̂CQ, since the

quadrilateral ABMC is cyclic, too. Finally, we obtain B̂MR = 90◦−M̂CQ =

ĈMQ, so the angles B̂PR and ĈPQ are congruent (Fig. 4.11).
To prove the converse, we note that if the points P, Q, R are collinear,

then the angles B̂PR and ĈPQ are congruent; hence ÂBM + ÂCM = 180◦,
i.e., the quadrilateral ABMC is cyclic. Therefore, the point M is situated on
the circumcircle of triangles ABC. �

7 Robert Simson (1687–1768), Scottish mathematician. This line was attributed to Simson
by Poncelet, but it is now generally known as the Simson–Wallace line, since it does not
actually appear in any work of Simson. William Wallace (1768–1843) was also a Scottish
mathematician, who possibly published the theorem above concerning the Simson line in
1799.
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Figure 4.11.

When M lies on the circumcircle of triangle ABC, the line in the above
theorem is called the Simson–Wallace line of M with respect to triangle
ABC.

We continue with a nice generalization of the property contained in Theo-
rem 1 above. For an arbitrary point X in the plane of triangle ABC, consider
its projections P, Q, and R on the lines BC, CA and AB, respectively.

The triangle PQR is called the pedal triangle of point X with respect to
the triangle ABC. Let us choose the circumcenter O of triangle ABC as the
origin of the complex plane.

Theorem 2. The area of the pedal triangle of X with respect to the triangle
ABC is given by

area[PQR] =
area[ABC]

4R2

∣
∣|x|2 −R2

∣
∣, (1)

where R is the circumradius of triangle ABC.

Figure 4.12.
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Proof. Applying the formula in the proposition of Sect. 4.5, we obtain the
coordinates p, q, r of the points P, Q, R, respectively (Fig. 4.12):

p =
1

2

(
x− bc

R2
x+ b+ c

)
,

q =
1

2

(
x− ca

R2
x+ c+ a

)
,

r =
1

2

(
x− ab

R2
x+ a+ b

)
.

Taking into account the formula in Sect. 3.5.3, we have

area[PQR] = | i
4

∣
∣
∣
∣∣
∣

p p 1
q q 1
r r 1

∣
∣
∣
∣∣
∣
| = | i

4

∣
∣
∣∣
q − p q − p
r − p r − p

∣
∣
∣∣ |.

For the coordinates p, q, r, we obtain

p =
1

2

(
x− bc

R2
x+ b+ c

)
,

q =
1

2

(
x− c a

R2
x+ c+ a

)
,

r =
1

2

(
x− ab

R2
x+ a+ b

)
.

It follows that

q − p =
1

2
(a− b)

(
1− cx

R2

)
and r − p =

1

2
(a− c)

(
1− bx

R2

)
, (2)

q − p =
1

2abc
(a− b)(x− c)R2 and r − p =

1

2abc
(a− c)(x− b)R2.

Therefore,

area[PQR] = | i
4

∣
∣
∣
∣
q − p q − p
r − p r − p

∣
∣
∣
∣ | = | i(a− b)(a− c)

16abc

∣
∣
∣
∣
1− cx

R2 (x− c)R2

1− bx
R2 (x− b)R2

∣
∣
∣
∣ |

= | i(a− b)(a− c)

16abc

∣
∣
∣∣
R2 − cx x− c
R2 − bx x− b

∣
∣
∣∣ | = | i(a− b)(a− c)

16abc

∣
∣
∣∣
(b − c)x b− c
R2 − bx x− b

∣
∣
∣∣ |

= | i(a− b)(b− c)(a− c)

16abc

∣
∣
∣
∣

x 1
R2 − bx x− b

∣
∣
∣
∣ |= | i(a− b)(b − c)(a− c)

16abc
(xx−R2)|.
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We find that

area[PQR] =
|a− b||b− c||c− a|

16|a||b||c|
∣
∣|x|2 −R2

∣
∣ =

αβγ

16R3

∣
∣|x|2 −R2

∣
∣

=
area[ABC]

4R2

∣
∣|x|2 −R2

∣
∣,

where α, β, γ are the side lengths of triangle ABC. �


Remarks.

(1) The formula in Theorem 2 above contains the Simson–Wallace line
property. Indeed, points P, Q, R are collinear if and only if area
[PQR] = 0, that is, |xx−R2| = 0, i.e., xx = R2. It follows that |x| = R,
so X lies on the circumcircle of triangle ABC.

(2) If X lies on a circle of radius R1 and center O (the circumcenter of
triangle ABC), then xx = R2

1, and from Theorem 2 above, we obtain

area[PQR] =
area[ABC]

4R2
|R2

1 −R2|.

It follows that the area of triangle PQR does not depend on the point X .

The converse is also true. The locus of all points X in the plane of triangle
ABC such that area [PQR] = k (constant) is defined by

∣
∣|x|2 −R2

∣
∣ =

4R2k

area[ABC]
.

This is equivalent to

|x|2 = R2 ± 4R2k

area[ABC]
= R2

(
1± 4k

area[ABC]

)
.

If k >
1

4
area[ABC], then the locus is a circle with center O and radius

R1 = R

√

1 +
4k

area[ABC]
.

If k ≤ 1

4
area[ABC], then the locus consists with two circles of

center O and radii R

√
1± 4k

area[ABC]
, one of which degenerates to O when

k =
1

4
area[ABC].

Theorem 3. For every point X in the plane of triangle ABC, we can con-
struct a triangle with sides AX · BC, BX · CA, CX · AB. This triangle is
then similar to the pedal triangle of point X with respect to the triangle ABC.
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Proof. Let PQR be the pedal triangle of X with respect to triangle ABC.
From formula (2), we obtain

q − p =
1

2
(a− b)(x− c)

R2 − cx

R2(x− c)
. (3)

Taking moduli in (3), we obtain

|q − p| = 1

2R2
|a− b||x− c|

∣
∣
∣∣
R2 − cx

x− c

∣
∣
∣∣ . (4)

On the other hand,

∣
∣
∣∣
R2 − cx

x− c

∣
∣
∣∣

2

=
R2 − cx

x− c
· R

2 − cx

x− c
=

R2 − cx

x− c
· R

2 − cx

x− R2

c

=
R2 − cx

x− c
· R

2(c− x)

cx−R2
= R2,

whence from (4), we derive the relation

|q − p| = 1

2R
|a− b||x− c|. (5)

Therefore,

PQ

CX · AB =
QR

AX · BC
=

RP

BX · CA
=

1

2R
, (6)

and the conclusion follows. �


Corollary 1. In the plane of triangle ABC, consider the point X and denote
by A′B′C′ the triangle with sides AX · BC, BX · CA, CX. AB. Then

area[A′B′C′] = area[ABC]
∣
∣|x|2 −R2

∣
∣. (7)

Proof. From formula (6), it follows that area [A′B′C′] = 4R2 area [PQR],
where PQR is the pedal triangle of X with respect to triangle ABC. Replac-
ing this result in (1), we obtain the desired formula. �


Corollary 2 (Ptolemy’s inequality). The following inequality holds for
every quadrilateral ABCD:

AC · BD ≤ AB · CD +BC ·AD. (8)

Corollary 3 (Ptolemy’s theorem). The convex quadrilateral ABCD is
cyclic if and only if

AC · BD = AB · CD +BC ·AD. (9)
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Proof. If the relation (9) holds, then triangle A′B′C′ in Corollary 1 above is
degenerate; i.e., area [A′B′C] = 0. From formula (7), it follows that d·d = R2,
where d is the coordinate of D and R is the circumradius of triangle ABC.
Hence the point D lies on the circumcircle of triangle ABC.

If quadrilateral ABCD is cyclic, then the pedal triangle of point D
with respect to triangle ABC is degenerate. From (6), we obtain the
relation (9). �


Corollary 4 (Pompeiu’s theorem8). For every point X in the plane of
the equilateral triangle ABC, three segments with lengths XA, XB, XC can
be taken as the sides of a triangle.

Proof. In Theorem 3 above, we have BC = CA = AB, and the desired
conclusion follows. �


The triangle in Corollary 4 above is called the Pompeiu triangle of X
with respect to the equilateral triangle ABC. This triangle is degenerate if
and only if X lies on the circumcircle of ABC. Using the second part of
Theorem 3, we find that Pompeiu’s triangle of the point X is similar to the
pedal triangle of X with respect to triangle ABC and

CX

PQ
=

AX

QR
=

BX

RP
=

2R

α
=

2
√
3

3
. (10)

Problem 1. Let A, B, and C be equidistant points on the circumference of
a circle of unit radius centered at O, and let X be any point in the circle’s
interior. Let dA, dB , dC be the distances from X to A, B, C, respectively.
Show that there is a triangle with sides dA, dB, dC , and that the area of this
triangle depends only on the distance from X to O.

(2003 Putnam Mathematical Competition)

Solution. The first assertion is just the property contained in Corollary 4
above. Taking into account the relations (10), we see that the area of Pom-

peiu’s triangle of point X is
4

3
area[PQR]. From Theorem 2 above, we get

that area [PQR] depends only on the distance from X to O, as desired.

Problem 2. Let X be a point in the plane of the equilateral triangle ABC
such that X does not lie on the circumcircle of triangleABC, and let
XA = u, XB = v, XC = w. Express the side length α of triangle ABC in
terms of real numbers u, v, w.

(1978 GDR Mathematical Olympiad)

8 Dimitrie Pompeiu (1873–1954), Romanian mathematician, made important contribu-
tions in the fields of mathematical analysis, functions of a complex variable, and rational
mechanics. He was a Ph.D student of Henri Poincaré.
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Solution. The segments [XA], [XB], [XC] are the sides of Pompeiu’s
triangle of point X with respect to equilateral triangle ABC. Denote this
triangle by A′B′C′. From relations (10) and from Theorem 2 in Sect. 4.9.1 it
follows that

area[A′B′C′] =

(
2
√
3

3

)2

area[PQR] =
1

3R2
area[ABC]|x · x−R2|

=
1

3R2
· α

2
√
3

4

∣
∣|x|2 −R2

∣
∣ =

√
3

4
|XO2 −R2|. (1)

On the other hand, using the well-known formula of Heron, we obtain,
after a few simple computations,

area[A′B′C′] =
1

4

√
(u2 + v2 + w2)2 − 2(u4 + v4 + w4).

Substituting in (1), we obtain

|XO2 −R2| = 1√
3

√
(u2 + v2 + w2)2 − 2(u4 + v4 + w4). (11)

Now we consider the following two cases:

Case 1. If X lies in the interior of the circumcircle of triangle ABC, then
XO2 < R2. Using the relation (see also formula (4) in Sect. 4.11)

XO2 =
1

3
(u2 + v2 + w2 − 3R2),

from (11) we find that

2R2 =
1

3
(u2 + v2 + w2) +

1√
3

√
(u2 + v2 + w2)2 − 2(u4 + v4 + w4),

and hence

α2 =
1

2
(u2 + v2 + w2) +

√
3

2

√
(u2 + v2 + w2)2 − 2(u4 + v4 + w4).

Case 2. If X lies in the exterior of the circumcircle of triangle ABC, then
XO2 > R2, and after some similar computations we obtain

α2 =
1

2
(u2 + v2 + w2)−

√
3

2

√
(u2 + v2 + w2)2 − 2(u4 + v4 + w4).
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4.9.2 Necessary and Sufficient Conditions
for Orthopolarity

Consider a triangle ABC and points X, Y, Z situated on its circumcircle.
Triangles ABC and XY Z are called orthopolar triangles (or S-triangles)9 if
the Simson–Wallace line of point X with respect to triangle ABC is perpen-
dicular (orthogonal) to line Y Z.

Let us choose the circumcenter O of triangle ABC to lie at the origin of the
complex plane. Points A, B, C, X, Y, Z have the coordinates a, b, c, x, y, z
with

|a| = |b| = |c| = |x| = |y| = |z| = R,

where R is the circumradius of the triangle ABC.

Theorem. Triangles ABC and XY Z are orthopolar triangles if and only if
abc = xyz.

Proof. Let P, Q, R be the feet of the orthogonal lines from the point X to
the lines BC, CA, AB, respectively.

Points P, Q, R are on the same line, namely the Simson–Wallace line of
point X with respect to triangle ABC.

The coordinates of P, Q, R are denoted by p, q, r, respectively. Using
the formula in Proposition of Sect. 4.5, we have

p =
1

2

(
x− bc

R2
x+ b+ c

)
,

q =
1

2

(
x− ca

R2
x+ c+ a

)
,

r =
1

2

(
x− ab

R2
x+ a+ b

)
.

We study two cases.

Case 1. Point X is not a vertex of triangle ABC.
Then P Q is orthogonal to Y Z if and only if (p− q) · (y− z) = 0. That is,

[
(b− a)

(
1− cx

R2

)]
· (y − z) = 0,

or

(b− a)(R2 − cx)(y − z) + (b − a)(R2 − cx)(y − z) = 0.

We obtain
(
R2

b
− R2

a

)(
R2 − R2

c
x

)
(y−z)+(b−a)

(
R2 − c

R2

x

)(
R2

y
− R2

z

)
= 0;

9 This definition was given in 1915 by the Romanian mathematician Traian Lalescu (1882–
1929). He is famous for his book La géometrie du triangle [43].
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hence

1

abc
(a− b)(c− x)(y − z)− 1

xyz
(a− b)(c− x)(y − z) = 0.

The last relation is equivalent to

(abc− xyz) (a− b)(c− x)(y − z) = 0,

and finally, we get abc = xyz, as desired.
Case 2. Point X is a vertex of triangle ABC. Without loss of generality,

assume that X = B.
Then the Simson–Wallace line of point X = B is the orthogonal line from
B to AC. It follows that BQ is orthogonal to Y Z if and only if lines AC
and Y Z are parallel. This is equivalent to ac = yz. Because b = x, we
obtain abc = xyz, as desired.

�


Remark. Due to the symmetry of the relation abc = xyz, we observe that
the Simson–Wallace line of every vertex of triangle XY Z with respect to
ABC is orthogonal to the opposite side of the triangle XY Z. Moreover, the
same property holds for the vertices of triangle ABC.

Hence ABC and XY Z are orthopolar triangles if and only if XY Z and
ABC are orthopolar triangles. Therefore the orthopolarity relation is sym-
metric.

Problem 1. The median and the orthic triangles of a triangle ABC are or-
thopolar in the nine-point circle.

Solution. Consider the origin of the complex plane at the circumcenter O
of triangle ABC. Let M, N, P be the midpoints of AB, BC, CA and let
A′, B′, C′ be the feet of the altitudes of triangles ABC from A, B, C,
respectively.

If m, n, p, a′, b′, c′ are coordinates of M, N, P, A′, B′, C′, then we
have

m =
1

2
(a+ b), n =

1

2
(b+ c), p =

1

2
(c+ a)

and

a′ =
1

2

(
a+ b+ c− bc

R2
a

)
=

1

2
(a+ b+ c− bc

a
),

b′ =
1

2

(
a+ b+ c− ca

b

)
, c′ =

1

2

(
a+ b+ c− ab

2

)
.

The nine-point center O9 is the midpoint of the segment OH , whereH(a+b+

c) is the orthocenter of triangle ABC. The coordinate ofO9 is ω =
1

2
(a+b+c).
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Now observe that

(a′ − ω)(b′ − ω)(c′ − ω) = (m− ω)(n− ω)(p− ω) = −1

8
abc,

and the claim is proved.

Problem 2. The altitudes of triangle ABC meet its circumcircle at points
A1, B1, C1, respectively. If A

′
1, B

′
1, C

′
1 are the antipodal points of A1, B1, C1

on the circumcircle ABC, then ABC and A′
1B

′
1C

′
1 are orthopolar triangles.

Solution. The coordinates of A1, B1, C1 are −bc

a
, −ca

b
, −ab

c
, respectively.

Indeed, the equation of line AH in terms of the real product is

AH : (z − a) · (b− c) = 0.

It suffices to show that the point with coordinate −bc

a
lies both on AH and

on the circumcircle of triangle ABC. First, let us note that
∣
∣
∣
∣−

bc

a

∣
∣
∣
∣ =

|b||c|
|a| =

R · R
R

= R;

hence this point is situated on the circumcircle of triangle ABC. Now we

shall show that the complex number −bc

a
satisfies the equation of the line

AH . This is equivalent to
(
bc

a
+ a

)
· (b − c) = 0.

Using the definition of the real product, this reduces to

(
bc

a
+ a

)
(b − c) +

(
bc

a
+ a

)
(b − c) = 0,

or (
abc

R2
+ a

)
(b − c) +

(
bc

a
+ a

)(
R2

b
− R2

c

)
= 0.

Finally, this comes down to

(b − c)

(
abc

R2
+ a− R2

a
− aR2

bc

)
= 0,

a relation that is clearly true.

It follows that A′
1, B′

1, C′
1 have coordinates

bc

a
,

ca

b
,

ab

c
, respectively.

Because

bc

a
· ca
c

· ab
c

= abc,

we obtain that the triangles ABC and A′
1B

′
1C

′
1 are orthopolar (Fig. 4.13).
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A

C1

A1

B1

B1

B C

A1

C1

H

Figure 4.13.

Problem 3. Let P and P ′ be distinct points on the circumcircle of triangle
ABC such that lines AP and AP ′ are symmetric with respect to the bisector

of angle B̂AC. Then triangles ABC and APP ′ are orthopolar (Fig. 4.14).

Figure 4.14.

Solution. Let us consider p and p′ the coordinates of points P and P ′,
respectively. It is clear that the lines PP ′ and BC are parallel. Using the
complex product, it follows that (p − p′) × (b − c) = 0. This relation is
equivalent to

(p− p′)(b − c)− (p− p′)(b − c) = 0.

Considering the origin of the complex plane at the circumcenter O of triangle
ABC, we have
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(p− p′)
(
R2

b
− R2

c

)
−
(
R2

p
− R2

p

)
(b − c) = 0,

so

R2(p− p′)(b− c)

(
1

bc
− 1

pp′

)
= 0.

Therefore, bc = pp′, i.e., abc = app′. From the theorem at the beginning of
this subsection, it follows that ABC and APP ′ are orthopolar triangles.

4.10 Area of the Antipedal Triangle

Consider a triangle ABC and a point M . The perpendicular lines from
A, B, C to MA, MB, MC, respectively, determine a triangle; we call this
triangle the antipedal triangle of M with respect to ABC (Fig. 4.15).

Recall that M ′ is the isogonal point of M if the pairs of lines AM , AM ′;
BM , BM ′; CM , CM ′ are isogonal, i.e., the following relations hold:

M̂AC ≡ M̂ ′AB, M̂BC ≡ M̂ ′BA, M̂CA ≡ M̂ ′CB.

Figure 4.15.

Theorem. Consider M a point in the plane of triangle ABC, M ′ the isog-
onal point of M , and A′′B′′C′′ the antipedal triangle of M with respect to
ABC. Then

area[ABC]

area[A′′B′′C′′]
=

|R2 −OM ′2|
4R2

=
|ρ(M ′)|
4R2

,

where ρ(M ′) is the power of M ′ with respect to the circumcircle of triangle
ABC.
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Proof. Consider point O the origin of the complex plane and let m, a, b, c
be the coordinates of M, A, B, C. Then

R2 = aa = bb = cc and ρ(M) = R2 −mm. (1)

Let O1, O2, O3 be the circumcenters of triangles BMC, CMA, AMB,
respectively. It is easy to verify that O1, O2, O3 are the midpoints of segments
MA′′, MB′′, MC′′, respectively, and so

area[O1O2O3]

area[A′′B′′C′′]
=

1

4
. (2)

The coordinate of the circumcenter of the triangle with vertices with coo-
rdinates z1, z2, z3 is given by the following formula (see formula (1) in
Sect. 3.6.1):

zO =
z1z1(z2 − z3) + z2z2(z3 − z1) + z3z3(z1 − z2)∣

∣
∣
∣∣
∣

z1 z1 1
z2 z2 1
z3 z3 1

∣
∣
∣
∣∣
∣

.

The bisector line of the segment [z1, z2] has the following equation in

terms of the real product:

[
z − 1

2
(z1 + z2)

]
· (z1 − z2) = 0. It is sufficient to

check that zo satisfies this equation, since that implies, by symmetry, that z0
belongs to the perpendicular bisectors of segments [z2, z3] and [z3, z1].

The coordinate of O1 is

zO1 =
mm(b− c) + bb(c−m) + cc(m− b)

∣∣
∣
∣
∣
∣

m m 1

b b 1
c c 1

∣∣
∣
∣
∣
∣

=
(R2 −mm)(c− b)
∣
∣∣
∣
∣
∣

m m 1

b b 1
c c 1

∣
∣∣
∣
∣
∣

=
ρ(M)(c− b)
∣
∣∣
∣
∣
∣

m m 1

b b 1
c c 1

∣
∣∣
∣
∣
∣

.

Let

Δ =

∣
∣
∣∣
∣
∣

a a 1

b b 1
c c 1

∣
∣
∣∣
∣
∣

and consider

α =
1

Δ

∣∣
∣
∣
∣
∣

m m 1

b b 1
c c 1

∣∣
∣
∣
∣
∣
, β =

1

Δ

∣∣
∣
∣
∣
∣

m m 1
c c 1
a a 1

∣∣
∣
∣
∣
∣
,
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and

γ =
1

Δ

∣
∣
∣∣
∣
∣

m m 1
a a 1

b b 1

∣
∣
∣∣
∣
∣
.

With this notation we obtain

(αa+ βb+ γc) ·Δ =
∑

cyc

m(ab− ac)−
∑

cyc

m(ab− ac) +
∑

cyc

a(bc− bc)

= mΔ−m · 0 +
∑

cyc

a

(
b
R2

c
− R2

c
a

)
= mΔ+R2

∑

cyc

(
ab

c
− ac

b

)
= mΔ,

and consequently,
αa+ βb + γc = m,

since it is clear that Δ �= 0.
We note that α, β, γ are real numbers and α+ β + γ = 1, so α, β, γ are

the barycentric coordinates of point M .
Since

zO1 =
(c− b) · ρ(M)

α ·Δ , zO2 =
(c− a) · ρ(M)

βΔ
, zO3 =

(a− b) · ρ(M)

γ ·Δ ,

we have

area[O1O2O3]

area[ABC]
=

∣
∣
∣
∣
∣∣
∣
∣
∣
∣
∣∣

i

4

∣
∣∣
∣
∣
∣

zO1 zO1 1
zO2 zO2 1
zO3 zO3 1

∣
∣∣
∣
∣
∣

i

4
Δ

∣
∣
∣
∣
∣∣
∣
∣
∣
∣
∣∣

=

∣
∣∣
∣
∣
∣

1

Δ
· ρ

2(M)

Δ2
· 1

αβγ

∣
∣∣
∣
∣
∣

b− c b− c α
c− a c− a β

a− b a− b γ

∣
∣∣
∣
∣
∣

∣
∣∣
∣
∣
∣

=

∣
∣∣
∣
ρ2(M)

Δ3
· 1

αβγ
·
∣
∣∣
∣
c− a c− a

a− b a− b

∣
∣∣
∣

∣
∣∣
∣

=

∣
∣
∣∣
ρ2(M)

Δ3
· 1

αβγ
·Δ
∣
∣
∣∣ =
∣
∣
∣∣
ρ2(M)

Δ2
· 1

αβγ

∣
∣
∣∣ . (3)

Relations (2) and (3) imply that

area[ABC]

area[A′′B′′C′′]
=

|Δ2αβγ|
4ρ2(M)

. (4)

Because α, β, γ are the barycentric coordinates of M , it follows that

zM = αzA + βzB + γzC .
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Using the real product, we find that

OM2 = zM · zM = (αzA + βzB + γzC) · (αzA + βzB + γzC)

= (α2 + β2 + γ2)R2 + 2
∑

cyc

αβzA · zB

= (α2 + β2 + γ2)R2 + 2
∑

cyc

αβ

(
R2 − AB2

2

)

= (α+ β + γ)2R2 −
∑

cyc

αβAB2 = R2 −
∑

cyc

αβAB2.

Therefore, the power of M ′ with respect to the circumcircle of triangle ABC
can be expressed in the form

ρ(M) = R2 −OM2 =
∑

cyc

αβAB2.

On the other hand, if α, β, γ are the barycentric coordinates of the point
M , then its isogonal point M ′ has barycentric coordinates given by

α′ =
βγBC2

βγBC2 + αγCA2 + αβAB2
, β′ =

γαCA2

βγBC2 + αγCA2 + αβAB2
,

γ′ =
αβAB2

βγBC2 + αγCA2 + αβAB2
.

Therefore,

ρ(M ′) =
∑

cyc

α′β′AB2

=
αβγAB2 · BC2 · CA2

(βγBC2 + αγCA2 + αβAB2)2
=

αβγAB2 · BC2 · CA2

ρ2(M)
. (5)

On the other hand, we have

Δ2 =

∣∣
∣
∣
∣

(
4

i
· i
4
Δ

)2∣∣
∣
∣
∣
=

∣∣
∣
∣
4

i
· area[ABC]

∣∣
∣
∣

2

=
AB2 ·BC2 · CA2

R2
. (6)

The desired conclusion follows from the relations (4), (5), and (6). �


Applications

(1) If M is the orthocenter H , then M ′ is the circumcenter O, and

area[ABC]

area[A′′B′′C′′]
=

R2

4R2
=

1

4
.
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(2) If M is the circumcenter O, then M ′ is the orthocenter H , and we obtain

area[ABC]

area[A′′B′′C′′]
=

|R2 −OH2|
4R2

.

Using the formula in the theorem of Sect. 4.6.4, it follows that

area[ABC]

area[A′′B′′C′′]
=

|(2R+ r)2 − s2|
2R2

.

(3) If M is the Lemoine point K, then M ′ is the centroid G, and

area[ABC]

area[A′′B′′C′′]
=

|R2 −OG2|
4R2

.

Applying the formula in Corollary 1 in Sect. 4.6.4, then the first formula
in Corollary of Sect. 4.6.1, it follows that

area[ABC]

area[A′′B′′C′′]
=

2(s2 − r2 − 4Rr)

36R2
=

α2 + β2 + γ2

36R2
,

where α, β, γ are the sides of triangle ABC.
From the inequality α2 + β2 + γ2 ≤ 9R2 (Corollary 2 in Sect. 4.6.4), we
obtain

area[ABC]

area[A′′B′′C′′]
≤ 1

4
.

(4) If M is the incenter I of triangle ABC, then M ′ = I, and using Euler’s
formula OI2 = R2 − 2Rr (see the theorem of Sect. 4.6.2), we find that

area[ABC]

area[A′′B′′C′′]
=

|R2 −OI2|
4R2

=
2Rr

4R2
=

r

4R
.

Applying Euler’s inequality R ≥ 2r (corollary of Sect. 4.6.2), it follows
that

area[ABC]

area[A′′B′′C′′]
≤ 1

4
.

4.11 Lagrange’s Theorem and Applications

Consider the distinct points A1(z1), . . . , An(zn) in the complex plane. Let
m1, . . . , mn be nonzero real numbers such that m1 + · · · + mn �= 0. Let
m = m1 + · · ·+mn.
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The point G with coordinate

zG =
1

m
(m1z1 + · · ·+mnzn)

is called the barycenter of the set {A1, . . . , An} with respect to the weights
m1, . . . , mn.

In the case m1 = · · · = mn = 1, the point G is the centroid of the set
{A1, . . . , An}.

When n = 3 and the points A1, A2, A3 are not collinear, we obtain the
absolute barycentric coordinates of G with respect to the triangle A1A2A3

(see Sect. 4.7.1):

μz1 =
m1

m
, μz2 =

m2

m
, μz3 =

m3

m
.

Theorem 1 (Lagrange10). Consider the points A1, . . . , An and the
nonzero real numbers m1, . . . , mn such that m = m1 + · · · +mn �= 0. If G
denotes the barycenter of the set {A1, . . . , An} with respect to the weights
m1, . . . , mn, then for every point M in the plane, the following relation
holds:

n∑

j=1

mjMA2
j = mMG2 +

n∑

j=1

mjGA2
j . (1)

Proof. Without loss of generality, we can assume that the barycenter G is
the origin of the complex plane; that is, zG = 0.

Using properties of the real product, we obtain for all j = 1, . . . , n, the
relations

MA2
j = |zM − zj |2 = (zM − zj) · (zM − zj)

= |zM |2 − 2zM · zj + |z|2,

i.e.,

MA2
j = |zM |2 − 2zM · zj + |zj |2.

Multiplying by mj and adding the relations obtained for j = 1, . . . , n
yields

n∑

j=1

mjMA2
j =

n∑

j=1

mj(|zM |2 − 2zM · zj + |zj |2)

= m|zM |2 − 2zM ·

⎛

⎝
n∑

j=1

mjzj

⎞

⎠+

n∑

j=1

mj|zj |2

10 Joseph Louis Lagrange (1736–1813), French mathematician, one of the greatest math-
ematicians of the eighteenth century. He made important contributions in all branches of
mathematics, and his results have greatly influenced modern science.
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= m|zM |2 − 2zM · (mzG) +

n∑

j=1

mj |zj |2

= m|zM |2 +
n∑

j=1

mj |zj |2 = m|zM − zG|2 +
n∑

j=1

mj |zj − zG|2

= mMG2 +
n∑

j=1

mjGA2
j . �


Corollary 1. Consider the distinct points A1, . . . , An and the nonzero real
numbers m1, . . . , mn such that m1 + · · ·+mn �= 0. The following inequality
holds for every point M in the plane:

n∑

j=1

mjMA2
j ≥

n∑

j=1

mjGA2
j , (2)

with equality if and only if M = G, the barycenter of set {A1, . . . , An} with
respect to the weights m1, . . . , mn.

Proof. The inequality (2) follows directly from Lagrange’s relation (1). �


If m1 = · · · = mn = 1, then from Theorem 1 above, one obtains the
following corollary.

Corollary 2 (Leibniz11). Consider the distinct points A1, . . . , An and the
centroid G of the se t {A1, . . . , An}. The following relation holds for every
point M in the plane:

n∑

j=1

MA2
j = nMG2 +

n∑

j=1

GA2
j . (3)

Remark. The relation (3) is equivalent to the following identity: For all
complex numbers z, z1, . . . , zn, we have

n∑

j=1

|z − zj |2 = n

∣∣
∣
∣z −

z1 + · · ·+ zn
n

∣∣
∣
∣

2

+

n∑

j=1

∣∣
∣
∣zj −

z1 + · · ·+ zn
n

∣∣
∣
∣

2

.

Applications. We will use formula (3) in determining some important
distances in a triangle. Let us consider the triangle ABC and let us take
n = 3 in the formula (3). We find that the following formula holds for every
point M in the plane of triangle ABC:

MA2 +MB2 +MC2 = 3MG2 +GA2 +GB2 +GC2, (4)

11 Gottfried Wilhelm Leibniz (1646–1716) was a German philosopher, mathematician,
and logician who is probably best known for having invented the differential and integral
calculus independently of Sir Isaac Newton.
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where G is the centroid of triangle ABC. Assume that the circumcenter O
of the triangle ABC is the origin of the complex plane.

(1) In the relation (4) we choose M = O, and we get

3R2 = 3OG2 +GA2 +GB2 +GC2.

Applying the well-known median formula yields

GA2 +GB2 +GC2 =
4

9
(m2

α +m2
β +m2

γ)

=
4

9

∑

cyc

1

4
[2(β2 + γ2)− α2] =

1

3
(α2 + β2 + γ2),

where α, β, γ are the sides of triangle ABC. We obtain

OG2 = R2 − 1

9
(α2 + β2 + γ2). (5)

An equivalent form of the distance OG is given in terms of the basic
invariants of a triangle in Corollary 1, Sect. 4.6.4.

(2) Using the collinearity of points O, G, H and the relation OH = 3OG
(see Theorem 1 in Sect. 3.1), it follows that

OH2 = 9OG2 = 9R2 − (α2 + β2 + γ2). (6)

An equivalent form for the distance OH was obtained in terms of the
fundamental invariants of the triangle in the theorem of Sect. 4.6.4.

(3) In (4), consider M = I, the incenter of triangle ABC (Fig. 4.16).
We obtain

IA2 + IB2 + IC2 = 3IG2 +
1

3
(α2 + β2 + γ2).

On the other hand, we have the following relations:

IA =
r

sin
A

2

, IB =
r

sin
B

2

, IC =
r

sin
C

2

,

where r is the inradius of triangle ABC. It follows that

IG2 =
1

3

⎡

⎢
⎣r2

⎛

⎜
⎝

1

sin2
A

2

+
1

sin2
B

2

+
1

sin2
C

2

⎞

⎟
⎠− 1

3
(α2 + β2 + γ2)

⎤

⎥
⎦ .

Taking into account the well-known formula

sin2
A

2
=

(s− β)(s− γ)

βγ
,
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Figure 4.16.

we obtain

∑

cyc

1

sin2 A
2

=
∑

cyc

βγ

(s− β)(s − γ)
=
∑

cyc

βγ(s− α)

(s− α)(s− β)(s− γ)

=
s

K2

∑

cyc

βγ(s− α) =
s

K2

[
s
∑

βγ − 3αβγ
]

=
s

K2
[s(s2 + r2 + 4Rr)− 12sRr] =

1

r2
(s2 + r2 − 8Rr),

where we have used the formulas in Sect. 4.6.1. Therefore,

IG2 =
1

3

[
s2 + r2 − 8Rr − 1

3
(α2 + β2 + γ2)

]

=
1

3

[
s2 + r2 − 8Rr − 2

3
(s2 − r2 − 4Rr)

]
=

1

9
(s2 + 5r2 − 16Rr),

where the first formula in Corollary 1 in this section was used. That is,

IG2 =
1

9
(s2 + 5r2 − 16Rr), (7)

and hence we obtain again the formula in Application 1 of Sect. 4.7.2.

Problem. Let z1, z2, z3 be distinct complex numbers having modulus R.
Prove that

9R2 − |z1 + z2 + z3|2
|z1 − z2| · |z2 − z3| · |z3 − z1|

≥
√
3

R
.

Solution. Let A, B, C be the geometric images of the complex numbers
z1, z2, z3 and let G be the centroid of the triangle ABC.

The coordinate ofG is equal to
z1 + z2 + z3

3
, and |z1−z2| = γ, |z2−z3| = α,

|z3 − z1| = β.
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The inequality becomes

9R2 − 9OG2

αβγ
≥

√
3

R
. (1)

Using the formula

OG2 = R2 − 1

9
(α2 + β2 + γ2),

we see that (1) is equivalent to

α2 + β2 + γ2 ≥ αβγ
√
3

R
=

4RK

R

√
3 = 4K

√
3.

Here is a proof of this famous inequality using Heron’s formula and the
arithmetic–geometric mean (AM-GM) inequality:

K =
√
s(s− α)(s− β)(s− γ) ≤

√

s
(s− α+ s− β + s− γ)3

27
=

√

s
s3

27

=
s2

3
√
3
=

(α+ β + γ)2

12
√
3

≤ 3(α2 + β2 + γ2)

12
√
3

=
α2 + β2 + γ2

4
√
3

.

We now extend Leibniz’s relation in Corollary 2 above. First, we need the
following result.

Theorem 2. Let n ≥ 2 be a positive integer. Consider the distinct points
A1, . . . , An, and let G be the centroid of the set {A1, . . . , An}. Then the
following formula holds for every point in the plane:

n2MG2 = n

n∑

j=1

MA2
j −

∑

1≤i<k≤n

AiA
2
k. (8)

Proof. We assume that the barycenter G is the origin of the complex plane.
Using properties of the real product, we have

MA2
j = |zM − zj|2 = (zM − zj) · (zM − zj) = |zM |2 − 2zM · zj + |zj|2

and

AiA
2
k = |zi − zk|2 = |zi|2 − 2zi · zk + |zk|2,

where the complex number zj is the coordinate of the point Aj , j =
1, 2, . . . , n.

The relation (8) is equivalent to

n2|zM |2 = n

n∑

j=1

(|zM |2 − 2zM · zj + |zj |2)−
∑

1≤i<k≤n

|(|zi|2 − 2zi · zk + |zk|2).
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That is,

n

n∑

j=1

|zj |2 = 2n

n∑

j=1

zM · zj +
∑

1≤i<k≤n

(|zi|2 − 2zizk + |zk|2).

Taking into account the hypothesis that G is the origin of the complex plane,
we have

n∑

j=1

zM · zj = zM ·

⎛

⎝
n∑

j=1

zj

⎞

⎠ = n(zM · zG) = n(zM · 0) = 0.

Hence, the relation (8) is equivalent to

n∑

j=1

|zj |2 = −2
∑

1≤i<k≤n

zi · zk.

The last relation can be obtained as follows:

0 = |zG|2 = zG · zG =
1

n2

(
n∑

i=1

zi

)

·
(

n∑

k=1

zk

)

=
1

n2
·

⎛

⎝
n∑

j=1

|zj |2 + 2
∑

1≤i<k≤n

zi · zk

⎞

⎠ .

Therefore the relation (8) is proved. �


Remark. The formula (8) is equivalent to the following identity: for all
complex numbers z, z1, . . . , zn, we have

1

n

n∑

j=1

|z − zj |2 −
∣
∣
∣
∣z −

z1 + · · ·+ zn
n

∣
∣
∣
∣

2

=
1

n

∑

1≤i<k≤n

|zi − zk|2.

Applications

(1) If A1, . . . , An are points on the circle with center O and radius R, then
if we take M = O in (8), it follows that

∑

1≤i<k≤n

AiA
2
k = n2(R2 −OG2).

If n = 3, we obtain the formula (5).
(2) The following inequality holds for every point M in the plane:

n∑

j=1

MA2
j ≥ 1

n

∑

1≤i<k≤n

AiA
2
k,

with equality if and only if M = G, the centroid of the set {A1, . . . , An}.
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Let n ≥ 2 be a positive integer, and let k be an integer such that 2 ≤ k ≤ n.
Consider the distinct points A1, . . . , An and let G be the centroid of the
set {A1, . . . , An}. For indices i1 < · · · < ik, let us denote by Gi1,...,ik the
centroid of the set {Ai1 , . . . , Aik}. We have the following result:

Theorem 3. For every point M in the plane,

(n− k)

(
n
k

) n∑

j=1

MA2
j + n2(k − 1)

(
n
k

)
MG2

= kn(n− 1)
∑

1≤i1<···<ik≤n

MG2
i1···ik . (9)

Proof. It is not difficult to see that the barycenter of the set {Gi1···ik : 1 ≤
i1 < · · · < ik ≤ n} is G. Applying Leibniz’s relation, one obtains

n∑

j=1

MA2
j = nMG2 +

n∑

j=1

GA2
j , (10)

∑

1≤i1<···<ik≤n

MG2
i1···ik =

(
n
k

)
MG2 +

∑

1≤i1<···<ik≤n

GG2
i1···ik , (11)

k∑

s=1

MA2
is = kMG2

i1···ik +
k∑

s=1

Gi1···ikA
2
is . (12)

Considering in (12) M = G and adding all these relations yields

∑

1≤i1<···<ik≤n

k∑

s=1

GA2
is = k

∑

1≤i1<···<ik≤n

GG2
i1···ik

+
∑

1≤i1<···<ik≤n

k∑

s=1

Gi1···ikA
2
is . (13)

Applying formula (8) in Theorem 3 above to the sets {A1, . . . , An} and
{Ai1 , . . . , Aik}, respectively, we get

n2MG2 = n
n∑

j=1

MA2
j −

∑

1≤i<k≤n

AiA
2
k, (14)

k2MG2
i1···ik = k

k∑

s=1

MA2
is −

∑

1≤p<q≤k

AipA
2
iq . (15)

Taking M = Gi1···ik in (15) yields

k∑

s=1

Gi1···ikA
2
is =

1

k

∑

1≤p<q≤k

AipA
2
iq . (16)
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From (16) and (13), we obtain

∑

1≤i1<···<ik≤n

k∑

s=1

GA2
is = k

∑

1≤i1<···<ik≤n

GG2
i1···ik

+
1

k

∑

1≤i1<···<ik≤n

∑

1≤p<q≤n

AipA
2
iq . (17)

If we rearrange the terms in formula (17), we get

(
k
1

)(
n
k

)

(
n
1

)
n∑

j=1

GA2
j = k

∑

1≤i1<···<ik≤n

GG2
i1···ik+

1

k

(
k
2

)(
n
k

)

(
n
2

)
∑

1≤i<k≤n

AiA
2
j .

(18)

From relations (10), (11), (14), and (18), we readily derive formula (9). �


Remark. The relation (9) is equivalent to the following identity: for all
complex numbers z, z1, . . . , zn, we have

(n− k)

(
n
k

) n∑

j=1

|z − zj|2 + n2(k − 1)

(
n
k

) ∣∣
∣
∣z −

z1 + · · ·+ zn
n

∣
∣
∣
∣

2

= kn(n− 1)
∑

1≤i1<···<ik≤n

∣
∣
∣
∣z −

zi1 + · · ·+ zik
k

∣
∣
∣
∣

2

.

Applications

(1) In the case k = 2, from (9) we obtain that the following relation holds
for every point M in the plane:

(n− 2)

n∑

j=1

MA2
j + n2MG2 = 4

∑

1≤i1<i2≤n

MG2
i1i2 .

In this case, Gi1i2 is the midpoint of the segment [Ai1Ai2 ].
(2) If k = 3, from (9) we get that the relation

(n− 3)(n− 2)
n∑

j=1

MA2
j + 2n2(n− 2)MG2 = 18

∑

1≤i1<i2<i3≤n

MG2
i1i2i3

holds for every pointM in the plane. Here the point Gi1i2i3 is the centroid
of triangle Ai1Ai2Ai3 .
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4.12 Euler’s Center of an Inscribed Polygon

Consider a polygon A1A2 · · ·An inscribed in a circle centered at the origin of
the complex plane and let a1, a2, . . . , an be the coordinates of its vertices.

By definition, the point E with coordinate

zE =
a1 + a2 + · · ·+ an

2

is called Euler’s center of the polygon A1A2 · · ·An. In the case n = 3, it is
clear that E is equal to O9, the center of Euler’s nine-point circle.

Remarks.

(a) Let G(zG) and H(zH) be the centroid and orthocenter of the inscribed
polygon A1A2 · · ·An. Then

zE =
nzG
2

=
zH
2

and OE =
nOG

2
=

OH

2
.

Recall that the orthocenter of the polygon A1A2 · · ·An is the point H
with coordinate zH = a1 + a2 + · · ·+ an.

(b) For n = 4, point E is also called Mathot’s point of the inscribed quadri-
lateral A1A2A3A4.

Proposition. In the above notation, the following relation holds:

n∑

i=1

EA2
i = nR2 + (n− 4)EO2. (1)

Proof. Using the identity (8) in Theorem 4, Sect. 2.17 for M = E and
M = O, namely

n2 ·MG2 = n

n∑

i=1

MA2
i −

∑

1≤i<j≤n

AiA
2
j ,

we obtain

n2 ·EG2 = n

n∑

i=1

EA2
i −

∑

1≤i<j≤n

AiA
2
j (2)

and
n2 ·OG2 = nR2 −

∑

1≤i<j≤n

AiA
2
j . (3)

Setting s =
n∑

i=1

ai, we have

EG = |zE − zG| =
∣
∣∣
s

2
− s

n

∣
∣∣ =
∣
∣∣
s

2

∣
∣∣ ·

n− 2

n
=

n− 2

n
· OE. (4)
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From the relations (2), (3), and (4), we derive that

n

n∑

i=1

EA2
i = n2 ·EG2 − n2 ·OG2 + n2R2

= (n− 2)2OE2 − 4OE2 + n2R2 = n(n− 4) · EO2 + n2R2,

or equivalently,
n∑

i=1

EA2
i = nR2 + (n− 4)EO2,

as desired. �


Applications

(1) For n = 3, from relation (1), we obtain

O9A
2
1 +O9A

2
2 +O9A

2
3 = 3R2 −OO2

9 . (5)

Using the formula in Corollary 1 in Sect. 4.6.4, we can express the
right-hand side in (5) in terms of the fundamental invariants of trian-
gle A1A2A3:

O9A
2
1 +O9A

2
2 +O9A

2
3 =

3

4
R2 − 1

2
r2 − 2Rr +

1

2
s2. (6)

From formula (5), it follows that the following inequality holds for every
triangle A1A2A3:

O9A
2
1 +O9A

2
2 +O9A

2
3 ≤ 3R2, (7)

with equality if and only if the triangle is equilateral.
(2) For n = 4, we obtain the interesting relation

4∑

i=1

EA2
i = 4R2. (8)

The point E is the unique point in the plane of the quadrilateral
A1A2A3A4 satisfying relation (8).

(3) For n > 4, from relation (1), the inequality

n∑

i=1

EA2
i ≥ nR2 (9)

follows. Equality holds only in the polygon A1A2 · · ·An with the property
E = O.
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(4) The Cauchy–Schwarz inequality and inequality (7) give

(
3∑

i=1

R ·O9Ai

)2

≤ (3R2)
3∑

i=1

O9A
2
i ≤ 9R2.

This is equivalent to

O9A1 +O9A2 +O9A3 ≤ 3R. (10)

(5) Using the same inequality and the relation (8), we have

(

R

4∑

i=1

EAi

)2

≤ 4R2 ·
4∑

i=1

EAi = 16R4,

or equivalently,
4∑

i=1

EAi ≤ 4R. (11)

(6) Using the relation

2EAi = 2|e− ai| = 2
∣
∣∣
s

2
− ai

∣
∣∣ = |s− 2ai|,

the inequalities (4), (5) become respectively
∑

cyc

| − a1 + a2 + a3| ≤ 6R

and
∑

cyc

| − a1 + a2 + a3 + a4| ≤ 8R.

The above inequalities hold for all complex numbers of the same
modulus R.

4.13 Some Geometric Transformations of the Complex
Plane

4.13.1 Translation

Let z0 be a fixed complex number and let tz0 be the mapping defined by

tz0 : C → C, tz0(z) = z + z0.

The mapping tz0 is called the translation of the complex plane by complex
number z0.



4.13 Some Geometric Transformations of the Complex Plane 165

Figure 4.17.

Taking into account the geometric interpretation of the addition of two
complex numbers (see Sect. 1.2.3), we have Fig. 4.17, giving the geometric
image of tz0(z).

In Fig. 4.17, OM0M
′M is a parallelogram and OM ′ is one of its diago-

nals. Therefore, the mapping tz0 corresponds in the complex plane C to the

translation t−−−→
OM0

by the vector
−−−→
OM0 in the case of the Euclidean plane.

It is clear that the composition of two translations tz1 and tz2 satisfies the
relation

tz1 ◦ tz2 = tz1+z2 .

It is also clear that the set T of all translations of the complex plane is
a group with respect to the composition of mappings. The group (T , ◦) is
abelian, and its unit is tO = 1C, translation by the complex number 0.

4.13.2 Reflection in the Real Axis

Consider the mapping s : C → C, s(z) = z. If M is the point with coordinate
z, then the point M ′(s(z)) is obtained by reflecting M across the real axis
(see Fig. 4.18). The mapping s is called the reflection in the real axis. It is
clear that s ◦ s = 1C.

4.13.3 Reflection in a Point

Consider the mapping s0 : C → C, s0(z) = −z. Since s0(z)+z = 0, the origin
O is the midpoint of the segment [M(z)M ′(z)]; hence M ′ is the reflection of
point M across O (Fig. 4.19).
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Figure 4.18.

The mapping s0 is called the reflection in the origin.
Consider a fixed complex number z0 and the mapping

sz0 : C → C, sz0(z) = 2z0 − z.

If z0, z, sz0(z) are the coordinates of points M0, M, M ′, then M0 is the
midpoint of the segment [MM ′]. Hence M ′ is the reflection of M in M0

(Fig. 4.20).
The mapping sz0 is called the reflection in the point M0(z0). It is clear

that the following relation holds: sz0 ◦ sz0 = 1C.

Figure 4.19.

4.13.4 Rotation

Let a = cos t0 + i sin t0 be a complex number having modulus 1 and let ra be
the mapping given by ra : C → C, ra(z) = az. If z = ρ(cos t + i sin t), then
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Figure 4.20.

ra(z) = az = ρ[cos(t+ t0) + i sin(t+ t0)],

and hence M ′(ra(z)) is obtained by rotating point M(z) about the origin
through the angle t0 (Fig. 4.21).

The mapping ra is called the rotation with center O and angle t0 = arg a.

4.13.5 Isometric Transformation of the Complex
Plane

A mapping f : C → C is called an isometry if it preserves distance, i.e., for
all z1, z2 ∈ C, |f(z1)− f(z2)| = |z1 − z2|.

Theorem 1. Translations, reflections (in the real axis or in a point), and
rotations about center O are isometries of the complex plane.

Figure 4.21.
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Proof. For the translation tz0 , we have

|tz0(z1)− tz0(z2)| = |(z1 + z0)− (z2 + z0)| = |z1 − z2|.

For the reflection s across the real axis, we obtain

|s(z1)− s(z2)| = |z1 − z2| = |z1 − z2| = |z1 − z2|,

and the same goes for the reflection in a point. Finally, if ra is a rotation,
then

|ra(z1)− ra(z2)| = |az1 − az2| = |a||z1 − z2| = |z1 − z2|, since |a| = 1. �


We can easily check that the composition of two isometries is also an
isometry. The set Iso(C) of all isometries of the complex plane is a group
with respect to the composition of mappings, and (T , ◦) is a subgroup of
that group.

Problem. Let A1A2A3A4 be a cyclic quadrilateral inscribed in a circle
with center O, and let H1, H2, H3, H4 be the orthocenters of triangles
A2A3A4, A1A3A4, A1A2A4, A1A2A3, respectively.

Prove that quadrilaterals A1A2A3A4 and H1H2H3H4 are congruent.

(Balkan Mathematical Olympiad, 1984)

Solution. Consider the complex plane with origin at the circumcenter, and
denote by the corresponding lowercase letter the coordinates of a point de-
noted by an uppercase letter.

If s = a1+a2+a3+a4, then h1 = a2+a3+a4 = s−a1, h2 = s−a2, h3 =
s − a3, h4 = s− a4. Hence the quadrilateral H1H2H3H4 is the reflection of

quadrilateral A1A2A3A4 across the point with coordinate
s

2
.

The following result describes all isometries of the complex plane.

Theorem 2. Every isometry of the complex plane is a mapping f : C → C

with f(z) = az + b or f(z) = az + b, where a, b ∈ C and |a| = 1.

Proof. Let b = f(0), c = f(1), and a = c− b. Then

|a| = |c− b| = |f(1)− f(0)| = |1− 0| = 1.

Consider the mapping g : C → C, given by g(z) = az+b. It is not difficult to
prove that g is an isometry, with g(0) = b = f(0) and g(1) = a+b = c = f(1).
Hence h = g−1 is an isometry, with 0 and 1 as fixed points. By definition,
it follows that every real number is a fixed point of h, and hence h = 1C or
h = s, the reflection in the real axis. Hence g = f or g = f ◦ s, and the proof
is complete. �


The above result shows that every isometry of the complex plane is the
composition of a rotation and a translation or the composition of a rotation
with a reflection in the origin O and a translation.
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4.13.6 Morley’s Theorem

In 1899, Frank Morley, then professor of mathematics at Haverford College,
came across a result so surprising that it entered mathematical folklore under
the name “Morley’s Miracle.” Morley’s marvelous theorem states that the
three points of intersection of the adjacent trisectors of the angles of any
triangle form an equilateral triangle.

The theorem was mistakenly attributed to Napoleon Bonaparte, who made
some contributions to geometry.

There are various proofs of this nice result, such as those by J. Conway,
D.J. Newman, L. Bankoff, and N. Dergiades.

Here we present a new proof published in 1998, by Alain Connes. His proof
is derived from the following result:

Theorem 1 (Alain Connes). Consider the transformations fi : C → C,
fi(z) = aiz+ bi, i = 1, 2, 3, of the complex plane, where all coefficients ai are
different from zero. Assume that the mappings f1 ◦ f2, f2 ◦ f3, f3 ◦ f1, and
f1 ◦ f2 ◦ f3 are not translations, equivalently, that a1a2, a2a3, a3a1, a1a2a3 ∈
C\{1}. Then the following statements are equivalent:

(1) f3
1 ◦ f3

2 ◦ f3
3 = 1C.

(2) j3 = 1 and α+ jβ + j2γ = 0, where j = a1a2a3 �= 1 and α, β, γ are the
respective unique fixed points of the mappings f1 ◦ f2, f2 ◦ f3, f3 ◦ f1.

Proof. Note that (f1 ◦ f2)(z) = a1a2z + a1b2 + b1, a1a2 �= 1,

(f2 ◦ f3)(z) = a2a3z + a2b3 + b2, a2a3 �= 1,

(f3 ◦ f1)(z) = a3a1z + a3b1 + b3, a3a1 �= 1,

Fix (f1 ◦ f2) =
{
a1b2 + b1
1− a1a2

}
=

{
a1a3b2 + a3b1

a3 − j
=: α

}
,

Fix (f2 ◦ f3) =
{
a2b3 + b2
1− a2a3

}
=

{
a1a2b3 + a1b2

a1 − j
=: β

}
,

Fix (f3 ◦ f1) =
{
a3b1 + b3
1− a3a1

}
=

{
a2a3b1 + a2b3

a2 − j
=: γ

}
,

where Fix(f) denotes the set of fixed points of the mapping f .
For the cubes of f1, f2, f3, we have the formulas

f3
1 (z) = a31z + b1(a

2
1 + a1 + 1),

f3
2 (z) = a32z + b2(a

2
2 + a2 + 1),

f3
3 (z) = a33 + b3(a

2
3 + a3 + 1),

whence

(f3
1 ◦ f3

2 ◦ f3
3 )(z) = a31a

3
2a

3
3z + a31a

3
2b3(a

2
3 + a3 + 1)

+a31b2(a
2
2 + a2 + 1) + b1(a

2
1 + a1 + 1).
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Therefore, f3
1 ◦ f3

2 ◦ f3
3 = idC if and only if a31a

3
2a

3
3 = 1 and

a31a
3
2b3(a

2
3 + a3 + 1) + a31b2(a

2
2 + a2 + 1) + b1(a

2
1 + a1 + 1) = 0.

To prove the equivalence of statements (1) and (2) we have to show that
α+ jβ+ j2γ is different from the free term of f3

1 ◦ f3
2 ◦ f3

3 by a multiplicative
constant. Indeed, using the relation j3 = 1 and implicitly j2 + j + 1 = 0, we
have successively

α+ jβ + j2γ = α+ jβ + (−1− j)γ = α− γ + j(β − γ)

=
a1a3b2 + a3b1

a3 − j
− a2a3b1 + a2b3

a2 − j
+ j

(
a1a2b3 + a1b2

a1 − j
− a2a3b1 + a2b3

a2 − j

)

=
a1a2a3b2 + a2a3b1 − a1a3b2j − a3b1j− a2a

2
3b1 − a2a3b3 + a2a3b1j + a2b3j

(a2 − j)(a3 − j)

+j
a1a

2
2b3 + a1a2b2 − a1a2b3j − a1b2j− a1a2a3b1− a1a2b3 + a2a3b1j + a2b3j

(a1 − j)(a2 − j)

=
1

a2 − j

(
b2j − a2a3b1j

2 − a1a3b2j − a3b1j − a2a
2
3b1 − a2a3b3 + a2b3j

a3 − j

+
a1a

2
2b3j + a1a2b2j + a1a2b3 − a1b2j

2 − b1j
2 + a2a3b1j

2 + a2b3j
2

a1 − j

)

=
1

(a1 − j)(a2 − j)(a3 − j)
(a1b2j − b1 − a21a3b2j − a1a3b1j − a1a2a

2
3b1 − b3j

+a1a2b3j − b2j
2 + a2a3b1 + a1a3b2j

2 + a3b1j
2 + a2a

2
3b1j + a2a3b3j − a2b3j

2

+a2b3j
2 + b2j

2 + b3j − a1a3b2j
2 − a3b1j

2 + a2a3b1j
2 + a2a3b3j

2

−a1a
2
2b3j

2 − a1a2b2j
2 − a1a2b3j + a1b2 + b1 − a2a3b1 − a2b3)

=
1

(a1 − j)(a2 − j)(a3 − j)
(−a1b2j

2 − a21a3b2j − a1a3b1j − a3b1j

−a2a
2
3b1 − a2a3b3 − aa22b3j

2 − a1a2b2j
2 − a2b3)

= − 1

(a1 − j)(a2 − j)(a3 − j)
(a21a

2
2a

2
3b2 + a31a2a

2
3b2

+a21a2a
2
3b1 + a1a2a

2
3b1 + a2a

2
3b1 + a2a3b3 + a31a

4
2a

2
3b3 + a31a

3
2a

2
3b2 + a2b3)

= − 1

(a1 − j)(a2 − j)(a3 − j)
[a2a

2
3b1(1 + a1 + a21) + a31a2a

2
3b2(1 + a2 + a22)

+a2b3(1 + a3 + a31 + a31a
3
2a

2
3)]

= − a2a
2
3

(a1 − j)(a2 − j)(a3 − j)
[a31a

3
2b3(1 + a3 + a23)

+a31b2(1 + a2 + a22) + b1(1 + a1 + a21)]. �
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Theorem 2 (Morley). The three points A′(α), B′(β), C′(γ) of the adjacent
trisectors of the angles of any triangle ABC form an equilateral triangle.

Figure 4.22.

Proof (Alain Connes). Let us consider the rotations f1 = rA,2x, f2 = rB,2y,

f3 = rC,2z with centers A, B, C and angles x =
1

3
Â, y =

1

3
B̂, z =

1

3
Ĉ

(Fig. 4.22).
Note that Fix (f1 ◦ f2) = {A′}, Fix (f2 ◦ f3) = {B′}, Fix (f3 ◦ f1) = {C′}

(see Fig. 4.23).

Figure 4.23.

Figure 4.24.
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To prove that triangle A′B′C′ is equilateral, it is sufficient to show, by
Proposition 2, in Sect. 2.4 and above Theorem 1 in Sect. 4.13.6, that f3

1 ◦
f3
2 ◦f3

3 = 1C. The composition sAC◦sAB of reflections sAC and sAB across the
lines AC and AB is a rotation about center A through angle 6x (Fig. 4.24).

Therefore, f3
1 = sAC ◦ sAB, and analogously, f3

2 = sBA◦sBC and
f3
3 = sCB◦sCA. It follows that

f3
1 ◦ f3

2 ◦ f3
3 = sAC ◦ sAB ◦ sBA ◦ sBC ◦ sCB ◦ sCA = 1C.

�


4.13.7 Homothecy

Given a fixed nonzero real number k, the mapping hk : C → C, hk(z) = kz,
is called the homothety of the complex plane with center O and magnitude k.

Figures 4.25 and 4.26 show the position of point M ′(hk(z)) in the cases
k > 0 and k < 0.

Points M(z) and M ′(hk(z)) are collinear with center O, which lies on the
line segment MM ′ if and only if k < 0.

Moreover, the following relation holds:

|OM ′| = |k||OM |.

Point M ′ is called the homothetic point of M with center O and magnitude k.

Figure 4.25.

It is clear that the composition of two homotheties hk1 and hk2 is also a
homothety, that is,

hk1 ◦ hk2 = hk1k2 .

The set H of all homotheties of the complex plane is an abelian group with
respect to the composition of mappings. The identity of the group (H, ◦) is
h1 = 1C, the homothety of magnitude 1.
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Figure 4.26.

Problem. Let M be a point inside an equilateral triangle ABC and let
M1, M2, M3 be the feet of the perpendiculars from M to the sides
BC, CA, AB, respectively. Find the locus of the centroid of the triangle
M1M2M3.

Solution. Let 1, ε, ε2 be the coordinates of points A, B, C, where
ε = cos 120◦ + i sin 120◦. Recall that

ε2 + ε+ 1 = 0 and ε3 = 1.

If m, m1, m2, m3 are the coordinates of points M, M1, M2, M3, we have

m1 =
1

2
(1 + ε+m− εm),

m2 =
1

2
(ε+ ε2 +m−m),

m3 =
1

2
(ε2 + 1 +m− ε2m).

Let g be the coordinate of the centroid of the triangle M1M2M3. Then

g =
1

3
(m1 +m2 +m3) =

1

6
(2(1 + ε+ ε2) + 3m−m(1 + ε+ ε2)) =

m

2
,

and hence OG =
1

2
OM .

The locus of G is the interior of the triangle obtained from ABC under a

homothety of center O and magnitude
1

2
. In other words, the vertices of this

triangle have coordinates
1

2
,
1

2
ε,

1

2
ε2.
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4.13.8 Problems

1. Prove that the composition of two isometries of the complex plane is an
isometry.

2. An isometry of the complex plane has two fixed points A and B. Prove
that every point M of line AB is a fixed point of the transformation.

3. Prove that every isometry of the complex plane is a composition of a
rotation with a translation and possibly also with a reflection in the real
axis.

4. Prove that the mapping f : C → C, f(z) = i · z + 4 − i, is an isometry.
Analyze f as in the previous problem.

5. Prove that the mapping g : C → C, g(z) = −iz + 1 + 2i, is an isometry.
Analyze g as in the previous problem.



Chapter 5

Olympiad-Caliber Problems

The use of complex numbers is helpful in solving Olympiad problems. In many
instances, a rather complicated problem can be solved unexpectedly by
employing complex numbers. Even though the methods of Euclidean geome-
try, coordinate geometry, vector algebra, and complex numbers look similar,
in many situations the use of complex numbers has multiple advantages. This
chapter will illustrate some classes of Olympiad-caliber problems for which
the method of complex numbers works efficiently.

5.1 Problems Involving Moduli and Conjugates

Problem 1. Let z1, z2, z3 be complex numbers such that

|z1| = |z2| = |z3| = r > 0

and z1 + z2 + z3 �= 0. Prove that

∣
∣
∣
∣
z1z2 + z2z3 + z3z1

z1 + z2 + z3

∣
∣
∣
∣ = r.

Solution. Observe that

z1 · z1 = z2 · z2 = z3 · z3 = r2.

T. Andreescu and D. Andrica, Complex Numbers from A to ... Z,
DOI 10.1007/978-0-8176-8415-0 5, © Springer Science+Business Media New York 2014
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Then

∣
∣
∣
∣
z1z2 + z2z3 + z3z1

z1 + z2 + z3

∣
∣
∣
∣

2

=
z1z2 + z2z3 + z3z1

z1 + z2 + z3
· z1z2 + z2z3 + z3z1

z1 + z2 + z3

=
z1z2 + z2z3 + z3z1

z1 + z2 + z3
·

r2

z1
· r

2

z2
+

r2

z2
· r

2

z3
+

r2

z3
· r

2

z1
r2

z1
+

r2

z2
+

r2

z3

= r2,

as desired.

Problem 2. Let z1, z2 be complex numbers such that

|z1| = |z2| = r > 0.

Prove that
(

z1 + z2
r2 + z1z2

)2
+

(
z1 − z2
r2 − z1z2

)2
≥ 1

r2
.

Solution. The desired inequality is equivalent to

(
r(z1 + z2)

r2 + z1z2

)2
+

(
r(z1 − z2)

r2 − z1z2

)2
≥ 1.

Setting
z1 = r(cos 2x+ i sin 2x) and z2 = r(cos 2y + i sin 2y)

yields

r(z1 + z2)

r2 + z1z2
=

r2(cos 2x+ i sin 2x+ cos 2y + i sin 2y)

r2(1 + cos(2x+ 2y) + i sin(2x+ 2y))
=

cos(x− y)

cos(x+ y)
.

Similarly,

r(z1 − z2)

r2 − z1z2
=

sin(y − x)

sin(y + x)
.

Thus

(
r(z1 + z2
r2 + z1z2

)2
+

(
r(z1 − z2)

r2 − z1z2

)2
=

cos2(x− y)

cos2(x+ y)
+

sin2(x− y)

sin2(x+ y)

≥ cos2(x − y) + sin2(x− y) = 1,

as claimed.

Problem 3. Let z1, z2, z3 be complex numbers such that

|z1| = |z2| = |z3| = 1
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and

z21
z2z3

+
z22
z1z3

+
z23
z1z2

+ 1 = 0.

Prove that

|z1 + z2 + z3| ∈ {1, 2}.

Solution 1. The given equality can be written as

z31 + z32 + z33 + z1z2z3 = 0,

or

−4z1z2z3 = z31 + z32 + z33 − 3z1z2z3

= (z1 + z2 + z3)(z
2
1 + z22 + z23 − z1z2 − z2z3 − z3z1).

Setting z = z1 + z2 + z3 yields

z3 − 3z(z1z2 + z2z3 + z3z1) = −4z1z2z3.

This is equivalent to

z3 = z1z2z3

[
3z

(
1

z1
+

1

z2
+

1

z3

)
− 4

]
.

The last relation can be written as

z3 = z1z2z3[3z(z1 + z2 + z3)− 4], i.e., z3 = z1z2z3(3|z|2 − 4).

Taking the absolute values of both sides yields |z|3 = |3|z|2− 4|. If |z| ≥ 2√
3
,

then |z|3−3|z|2+4 = 0, implying |z| = 2. If |z| < 2√
3
, then |z|3+3|z|2−4 = 0,

giving |z| = 1, as required.

Solution 2. It is not difficult to see that |z31+z32+z33 | = 1. From the algebraic
identity

(u + v)(v + w)(w + u) = (u+ v + w)(uv + vw + wu)− uvw

for u = z31 , v = z32 , w = z33 , it follows that

(z31 + z32)(z
3
2 + z33)(z

3
3 + z31) = (z31 + z32 + z33)(z

3
1z

3
2 + z32z

3
3 + z33z

3
1)− z31z

3
2z

3
3

= z31z
3
2z

3
3(z

3
1 + z32 + z33)

(
1

z31
+

1

z32
+

1

z33

)
− z31z

3
2z

3
3

= z31z
3
2z

3
3(z

3
1 + z32 + z33)(z

3
1 + z32 + z33)− z31z

3
2z

3
3

= z31z
3
2z

3
3 − z31z

3
2z

3
3 = 0.



178 5 Olympiad-Caliber Problems

Suppose that z31 + z32 = 0. Then z1 + z2 = 0 or z21 − z1z2 + z22 = 0, implying
z21 + z22 = −2z1z2 or z21 + z22 = z1z2.

On the other hand, from the given relation it follows that z33 = −z1z2z3,
yielding z23 = −z1z2.

We have

|z1 + z2 + z3|2 = (z1 + z2 + z3)

(
1

z1
+

1

z2
+

1

z3

)

= 3 +

(
z1
z2

+
z2
z1

)
+

(
z1
z3

+
z3
z2

)
+

(
z2
z3

+
z3
z1

)

= 3 +
z21 + z22
z1z2

+
z23 + z1z2

z2z3
+

z23 + z1z2
z3z1

= 3 +
z21 + z22
z1z2

.

This leads to |z1 + z2 + z3|2 = 1 if z21 + z22 = −2z1z2 and |z1 + z2 + z3|2 = 4
if z21 + z22 = z1z2. The conclusion follows.

Problem 4. If a, b ∈ C, then |1 + a|+ |1 + b|+ |1 + ab| ≥ 2.

Solution. If |a| ≥ 1 we have

|1 + a|+ |1 + b|+ |1 + ab| ≥ |(1 + a)− (1 + ab)|+ |1 + b|
= |a| · |1− b|+ |1 + b| ≥ |1− b|+ |1 + b| ≥ |(1 − b) + (1 + b)| = 2.

If |a| ≤ 1, we have

|1 + a|+ |1 + b|+ |1 + ab| ≥ |(1 + a) + (1 + ab)|+ |1 + b|
= |2 + a(1 + b)|+ |1 + b| ≥ |2 + a(1 + b)|+ |a| · |1 + b|

= |2 + a(1 + b)|+ |a(1 + b)| ≥ |(2 + a(1 + b))− a(1 + b)| = 2.

Problem 5. Let n > 0 be an integer and let z be a complex number such that
|z| = 1. Prove that

n|1 + z|+ |1 + z2|+ |1 + z3|+ · · ·+ |1 + z2n|+ |1 + z2n+1| ≥ 2n.

Solution 1. We have

n|1 + z|+ |1 + z2|+ |1 + z3|+ · · ·+ |1 + z2n|+ |1 + z2n+1|

=

n∑

k=1

(|1 + z |+ |1 + z2k+1|) +
n∑

k=1

|1 + z2k|

≥
n∑

k=1

|z − z2k+1|+
n∑

k=1

|1 + z2k| =
n∑

k=1

(|z ||1 − z2k|+ |1 + z2k|)

=

n∑

k=1

(|1 − z2k|+ |1 + z2k|) ≥
n∑

k=1

|1 − z2k + 1 + z2k| = 2n,

as claimed.
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Solution 2. We use induction on n.
For n = 1, we prove that |1 + z|+ |1 + z2|+ |1 + z3| ≥ 2. Indeed,

2 = |1 + z + z3 + 1− z(1 + z2)| ≤ |1 + z|+ |z3 + 1|+ |z||1 + z2|
= |1 + z|+ |1 + z2|+ |1 + z3|.

Assume that the inequality is valid for some n, so

n|1 + z|+ |1 + z2|+ · · ·+ |1 + z2n+1| ≥ 2n.

We prove that

(n+1)|1+ z|+ |1+ z2|+ · · ·+ |1+ z2n+1|+ |1+ z2n+2|+ |1+ z2n+3| ≥ 2n+2.

Using the inductive hypothesis yields

(n+ 1)|1 + z|+ |1 + z2|+ · · ·+ |1 + z2n+2|+ |1 + z2n+3|
≥ 2n+ |1 + z|+ |1 + z2n+2|+ |1 + z2n+3|

= 2n+ |1 + z|+ |z||1 + z2n+2|+ |1 + z2n+3|
≥ 2n+ |1 + z − z(1 + z2n+2) + 1 + z2n+3| = 2n+ 2,

as needed.

Problem 6. Let z1, z2, z3 be complex numbers such that

(1) |z1| = |z2| = |z3| = 1;
(2) z1 + z2 + z3 �= 0;
(3) z21 + z22 + z23 = 0.

Prove that for all integers n ≥ 2,

|zn1 + zn2 + zn3 | ∈ {0, 1, 2, 3}.

Solution 1. Let

s1 = z1 + z2 + z3, s2 = z1z2 + z2z3 + z3z1, s3 = z1z2z3

and consider the cubic equation

z3 − s1z
2 + s2z − s3 = 0

with roots z1, z2, z3.
Because z21 + z22 + z23 = 0, we have

s21 = 2s2. (1)
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On the other hand,

s2 = s3

(
1

z1
+

1

z2
+

1

z3

)
= s3(z1 + z2 + z3) = s3 · s1. (2)

The relations (1) and (2) imply s21 = 2s3 · s1 and, consequently, |s1|2 =
2|s3| · |s1| = 2|s1|. Because s1 �= 0, we have |s1| = 2, so s1 = 2λ with |λ| = 1.

From relations (1) and (2), it follows that s2 =
1

2
s21 = 2λ2 and s3 =

s2
s1

=

2λ2

2λ
= λ3.

The equation with roots z1, z2, z3 becomes

z3 − 2λz2 + 2λ2z − λ3 = 0.

This is equivalent to

(z − λ)(z2 − λz + λ2) = 0.

The roots are λ, λε,−λε2, where ε =
1

2
+ i

√
3

2
.

Without loss of generality we may assume that z1 = λ, z2 = λε, z3 =
−λε2. From the relations ε2 − ε+ 1 = 0 and ε3 = −1, it follows that

En = |zn1 + zn2 + zn3 | = |λn + λnεn + (−1)nλnε2n|
= |1 + εn + (−1)nε2n|.

It is not difficult to see that Ek+6 = Ek for all integers k and that the
equalities

E0 = 3, E1 = 2, E2 = 0, E3 = 1, E4 = 0, E5 = 2,

settle the claim.

Solution 2. It is clear that z21 , z
2
2 , z

2
3 are distinct. Otherwise, if, for example,

z21 = z22 , then 1 = |z23 | = | − (z21 + z22)| = 2|z21 | = 2, a contradiction.
From z21 + z22 + z23 = 0 it follows that z21 , z22 , z23 are the coordinates of

the vertices of an equilateral triangle. Hence we may assume that z22 = εz21
and z23 = ε2z21 , where ε2 + ε + 1 = 0. Because z22 = ε4z21 and z23 = ε2z21 , it
follows that z2 = ±ε2z1 and z3 = ±εz1. Then

|zn1 +zn2 +zn3 | = |(1+(±ε)n+(±ε2)n)zn1 | = |1+(±ε)n+(±ε2)n| ∈ {0, 1, 2, 3}

by the same argument used at the end of the previous solution.

Problem 7. Find all complex numbers z such that

|z − |z + 1|| = |z + |z − 1||.
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Solution. We have

|z − |z + 1|| = |z + |z − 1||

if and only if

|z − |z + 1||2 = |z + |z − 1||2,

i.e.,

(z − |z + 1|) · (z − |z + 1|) = (z + |z − 1|) · (z + |z − 1|).

The last equation is equivalent to

z · z − (z + z)|z + 1|+ |z + 1|2 = z · z + (z + z) · |z − 1|+ |z − 1|2.

This can be written as

|z + 1|2 − |z − 1|2 = (z + z) · (|z + 1|+ |z − 1|),

i.e.,

(z + 1)(z + 1)− (z − 1)(z − 1) = (z + z) · (|z + 1|+ |z − 1|).

The last equation is equivalent to

2(z + z) = (z + z) · (|z + 1|+ |z − 1|), i.e., z + z = 0,

or |z + 1|+ |z − 1| = 2.
The triangle inequality

2 = |(z + 1)− (z − 1)| ≤ |z + 1|+ |z − 1|

shows that the solutions to the equation |z + 1|+ |z − 1| = 2 satisfy z + 1 =
t(1 − z), where t is a real number and t ≥ 0.

It follows that z =
t− 1

t+ 1
, so z is any real number such that −1 ≤ z ≤ 1.

The equation z + z = 0 has the solutions z = bi, b ∈ R. Hence, the
solutions to the equation are

{bi : b ∈ R} ∪ {a ∈ R : a ∈ [−1, 1]}.

Problem 8. Let z1, z2, . . . , zn be complex numbers such that |z1| = |z2| =
· · · = |zn| > 0. Prove that

Re

⎛

⎝
n∑

j=1

n∑

k=1

zj
zk

⎞

⎠ = 0
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if and only if
n∑

k=1

zk = 0.

(Romanian Mathematical Olympiad—Second Round, 1987)

Solution. Let

S =

n∑

j=1

n∑

k=1

zj
zk

.

Then

S =

(
n∑

k=1

zk

)

·
(

n∑

k=1

1

zk

)

,

and since zk · zk = r2 for all k, we have

S =

(
n∑

k=1

zk

)

·
(

n∑

k=1

zk
r2

)

=
1

r2

(
n∑

k=1

zk

)(
n∑

k=1

zk

)

=
1

r2

∣
∣∣
∣
∣

n∑

k=1

zk

∣
∣∣
∣
∣

2

.

Hence S is a real number, so ReS = S = 0 if and only if
n∑

k=1

zk = 0.

Problem 9. Let λ be a real number and let n ≥ 2 be an integer. Solve the
equation

λ(z + zn) = i(z − zn).

Solution. The equation is equivalent to

zn(λ+ i) = z(−λ+ i).

Taking the absolute values of both sides of the equation, we obtain |z|n =
|z| = |z|; hence |z| = 0 or |z| = 1.

If |z| = 0, then z = 0, which satisfies the equation. If |z| = 1, then z =
1

z
,

and the equation may be rewritten as

zn+1 =
−λ+ i

λ+ i
.

Because |−λ+ i

λ+ i
| = 1, there exists t ∈ [0, 2π) such that

−λ+ i

λ+ i
= cos t + i sin t.
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Then

zk = cos
t+ 2kπ

n+ 1
+ i sin

t+ 2kπ

n+ 1

for k = 0, 1, . . . , n are the other solutions to the equation (besides z = 0).

Problem 10. Prove that
∣
∣
∣
∣
6z − i

2 + 3iz

∣
∣
∣
∣ ≤ 1 if and only if |z| ≤ 1

3
.

Solution. We have
∣∣
∣
∣
6z − i

2 + 3iz

∣∣
∣
∣ ≤ 1 if and only if |6z − i| ≤ |2 + 3iz|.

The last inequality is equivalent to

|6z − i|2 ≤ |2 + 3iz|2, i.e., (6z − i)(6z + i) ≤ (2 + 3iz)(2− 3iz).

We obtain
36z · z + 6iz − 6iz + 1 ≤ 4− 6iz + 6iz + 9zz,

i.e., 27z · z ≤ 3. Finally, zz ≤ 1

9
, or equivalently, |z| ≤ 1

3
, as desired.

Problem 11. Let z be a complex number such that z ∈ C\R and

1 + z + z2

1− z + z2
∈ R.

Prove that |z| = 1.

Solution. We have

1 + z + z2

1− z + z2
= 1 + 2

z

1− z + z2
∈ R if and only if

z

1− z + z2
∈ R.

That is,
1− z + z2

z
=

1

z
− 1 + z ∈ R, i.e., z +

1

z
∈ R.

The last relation is equivalent to

z +
1

z
= z +

1

z
, i.e., (z − z)(1 − |z|2) = 0.

We obtain z = z or |z| = 1.
Because z is not a real number, it follows that |z| = 1, as desired.
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Problem 12. Let z1, z2, . . . , zn be complex numbers such that |z1| = · · · =
|zn| = 1, and let

z =

(
n∑

k=1

zk

)

·
(

n∑

k=1

1

zk

)

.

Prove that z is a real number and 0 ≤ z ≤ n2.

Solution. Note that zk =
1

zk
for all k = 1, . . . , n. Because

z =

(
n∑

k=1

zk

)(
n∑

k=1

1

zk

)

=

(
n∑

k=1

1

zk

)(
n∑

k=1

zk

)

= z,

it follows that z is a real number.
Let zk = cosαk + i sinαk, where αk are real numbers for k = 1, n. Then

z =

(
n∑

k=1

cosαk + i

n∑

k=1

sinαk

)(
n∑

k=1

cosαk − i

n∑

k=1

sinαk

)

=

(
n∑

k=1

cosαk

)2

+

(
n∑

k=1

sinαk

)2

≥ 0.

On the other hand, we have

z =

n∑

k=1

(cos2 αk + sin2 αk) + 2
∑

1≤i<j≤n

(cosαi cosαj + sinαi sinαj)

= n+ 2
∑

1≤i<j≤n

cos(αi − αj) ≤ n+ 2

(
n
2

)
= n+ 2

n(n− 1)

2
= n2,

as desired.

Remark. An alternative solution to the inequalities 0 ≤ z ≤ n2 is as follows:

z =

(
n∑

k=1

zk

)(
n∑

k=1

1

zk

)

=

(
n∑

k=1

zk

)(
n∑

k=1

zk

)

=

(
n∑

k=1

zk

)(
n∑

k=1

zk

)

=

∣
∣
∣∣
∣

n∑

k=1

zk

∣
∣
∣∣
∣

2

≤
(

n∑

k=1

|zk|
)2

= n2,

so 0 ≤ z ≤ n2.

Problem 13. Let z1, z2, z3 be complex numbers such that

z1 + z2 + z3 �= 0 and |z1| = |z2| = |z3|.



5.1 Problems Involving Moduli and Conjugates 185

Prove that

Re

(
1

z1
+

1

z2
+

1

z3

)
· Re
(

1

z1 + z2 + z3

)
≥ 0.

Solution. Let r = |z1| = |z2| = |z3| > 0. Then

z1z1 = z2z2 = z3z3 = r2

and
1

z1
+

1

z2
+

1

z3
=

z1 + z2 + z3
r2

=
z1 + z2 + z3

r2
.

On the other hand, we have

1

z1 + z2 + z3
=

z1 + z2 + z3
|z1 + z2 + z3|2

,

and consequently,

Re

(
1

z1
+

1

z2
+

1

z3

)
·Re
(

1

z1 + z2 + z3

)

= Re

(
z1 + z2 + z3

r2

)
·Re
(

z1 + z2 + z3
|z1 + z2 + z3|2

)
=

(Re(z1 + z2 + z3))
2

r2|z1 + z2 + z3|2
≥ 0,

as desired.

Problem 14. Let x, y, z be complex numbers.

(a) Prove that

|x|+ |y|+ |z| ≤ |x+ y − z|+ |x− y + z|+ | − x+ y + z|.

(b) If x, y, z are distinct and the numbers x+ y − z, x− y + z, −x+ y + z
have equal absolute values, prove that

2(|x|+ |y|+ |z|) ≤ |x+ y − z|+ |x− y + z|+ | − x+ y + z|.

Solution. Let

m = −x+ y + z, n = x− y + z, p = x+ y − z.

We have

x =
n+ p

2
, y =

m+ p

2
, z =

m+ n

2
.

(a) Adding the inequalities

|x| ≤ 1

2
(|n|+ |p|), |y| ≤ 1

2
(|m|+ |p|), |z| ≤ 1

2
(|m|+ |n|)
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yields
|x|+ |y|+ |z| ≤ |m|+ |n|+ |p|,

as desired.
(b) Let A, B, C be the points with coordinates m, n, p and observe that

the numbers m, n, p are distinct and that |m| = |n| = |p| = R, the
circumradius of triangle ABC.

Let the origin of the complex plane be the circumcenter of triangle ABC.
The orthocenter H of triangle ABC has the coordinate h = m+ n+ p. The
desired inequality becomes

|h−m|+ |h− n|+ |h− p| ≤ |m|+ |n|+ |p|,

or
AH +BH + CH ≤ 3R.

This is equivalent to

cosA+ cosB + cosC ≤ 3

2
. (1)

Inequality (1) can be written as

2 cos
A+B

2
cos

A−B

2
+ 1− 2 sin2

C

2
≤ 3

2
,

or

0 ≤
(
2 sin

C

2
− cos

A−B

2

)2
+ sin2

A−B

2
,

which is clear. We have equality in (1) if and only if triangle ABC is equi-
lateral, i.e., m = a, n = aε, p = aε2, where a is a complex parameter and

ε = cos
2π

3
+ i sin

2π

3
. In this case, x = −a

2
, y = −a

2
ε, z = −a

2
ε2.

Problem 15. Let z0, z1, z2, . . . , zn be complex numbers such that

(k + 1)zk+1 − i(n− k)zk = 0

for all k ∈ {0, 1, 2, . . . , n− 1}.

(1) Find z0 such that
z0 + z1 + · · ·+ zn = 2n.

(2) For the value of z0 determined above, prove that

|z0|2 + |z1|2 + · · ·+ |zn|2 <
(3n+ 1)n

n!
.
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Solution.

(a) Use induction to prove that

zk = ik
(
n
k

)
z0, for all k ∈ {0, 1, . . . , n}.

Then

z0 + z1 + · · ·+ zn = 2n if and only if z0(1 + i)n = 2n,

i.e., z0 = (1 − i)n.
(b) Applying the AM-GM inequality, we have

|z0|2 + |z1|2 + · · ·+ |zn|2 = |z0|2
( (

n
0

)2
+

(
n
1

)2
+ · · ·+

(
n
n

)2)

= |z0|2.
(
2n
n

)
= 2n.

(
2n
n

)
=

2n

n!
2n(2n− 1) · · · (n+ 1)

<
2n

n!

(
2n+ (2n− 1) + · · ·+ (n+ 1)

n

)n
=

(3n+ 1)n

n!
,

as desired.

Problem 16. Let z1, z2, z3 be complex numbers such that

z1 + z2 + z3 = z1z2 + z2z3 + z3z1 = 0.

Prove that |z1| = |z2| = |z3|.

Solution 1. Substituting z1 + z2 = −z3 in z1z2 + z3(z1 + z2) = 0 gives
z1z2 = z23 , so |z1| · |z2| = |z3|2. Likewise, |z2| · |z3| = |z1|2 and |z3||z1| = |z2|2.
Then

|z1|2 + |z2|2 + |z3|2 = |z1||z2|+ |z2||z3|+ |z3||z1|,

i.e.,

(|z1| − |z2|)2 + (|z2| − |z3|)2 + (|z3| − |z1|)2 = 0,

yielding |z1| = |z2| = |z3|.

Solution 2. Using the relations between the roots and the coefficients, it
follows that z1, z2, z3 are the roots of the polynomial z3−p, where p = z1z2z3.
Hence z31−p = z32−p = z33−p = 0, implying z31 = z32 = z33 , and the conclusion
follows.

Problem 17. Prove that for all complex numbers z with |z| = 1, the following
inequalities hold:

√
2 ≤ |1− z|+ |1 + z2| ≤ 4.
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Solution. Setting z = cos t+ i sin t yields

|1− z| =
√

(1− cos t)2 + sin2 t =
√
2− 2 cos t = 2

∣
∣
∣
∣sin

t

2

∣
∣
∣
∣

and

|1 + z2| =
√
(1 + cos 2t)2 + sin2 2t =

√
2 + 2 cos 2t

= 2| cos t| = 2

∣
∣∣
∣1− 2 sin2

t

2

∣
∣∣
∣ .

It suffices to prove that

√
2

2
≤ |a| + |1 − 2a2| ≤ 2 for a = sin

t

2
∈ [−1, 1].

We leave this to the reader.

Problem 18. Let z1, z2, z3, z4 be distinct complex numbers such that

Re
z2 − z1
z4 − z1

= Re
z2 − z3
z4 − z3

= 0.

(a) Find all real numbers x such that

|z1 − z2|x + |z1 − z4|x ≤ |z2 − z4|x ≤ |z2 − z3|x + |z4 − z3|x.

(b) Prove that |z3 − z1| ≤ |z4 − z2|.

Solution. Consider the points A, B, C, D with coordinates z1, z2, z3, z4,
respectively. The conditions

Re
z2 − z1
z4 − z1

= Re
z2 − z3
z4 − z3

= 0

imply B̂AD = B̂CD = 90◦. Then |z1 − z2| = AB and |z1− z4| = AD are the
lengths of the sides of the right triangleABD with hypotenuseBD = |z2−z4|.

The inequality ABx +ADx ≤ BDx holds for x ≥ 2.
Similarly, |z2−z3| = BC and |z4−z3| = CD are the sides of the right trian-

gleBCD, so the inequalityBDx ≤ BCx+CDx holds for x ≤ 2. Consequently,
x = 2.

Finally, AC = |z3− z1| ≤ BD = |z4− z2|, since AC is a chord in the circle
of diameter BD.

Problem 19. Let x and y be distinct complex numbers such that |x| = |y|.
Prove that

1

2
|x+ y| < |x|.

Solution 1. Let x = a + ib and y = c + id, with a, b, c, d ∈ R and
a2 + b2 = c2 + d2. The inequality is equivalent to
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(a+ c)2 + (b+ d)2 < 4(a2 + b2),

or
(a− c)2 + (b− d)2 > 0,

which is clear, since x �= y.

Solution 2. Consider points X(x) and Y (y). In triangle XOY , we have
OX = OY . Hence OM < OX , where M is the midpoint of segment [XY ].

The coordinate of point M is
x+ y

2
, and the desired inequality follows.

Problem 20. Consider the set

A = {z ∈ C : z = a+ bi, a > 0, |z| < 1}.

Prove that for every z ∈ A, there is a number x ∈ A such that

z =
1− x

1 + x
.

Solution. Let z ∈ A. The equation z =
1− x

1 + x
has the root

x =
1− z

1 + z
=

1− a− ib

1 + a+ ib
,

where a > 0 and a2 + b2 < 1.
To prove that x ∈ A, it suffices to show that |x| < 1 and Re(x) > 0.

Indeed, we have

|x|2 =
(1− a)2 + b2

(1 + a)2 + b2
< 1 if and only if (1− a)2 < (1 + a)2,

i.e., 0 < 4a, as needed.

Moreover, Re(x) =
1− |z|2
|1 + z|2 > 0, since |z| < 1.

Here are more problems involving moduli and conjugates of complex
numbers.

Problem 21. Consider the set

A = {z ∈ C : |z| < 1},

a real number a such that |a| > 1, and the function

f : A → A, f(z) =
1 + az

z + a
.

Prove that f is bijective.
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Problem 22. Let z be a complex number such that |z| = 1 and both Re(z)
and Im(z) are rational numbers. Prove that |z2n−1| is rational for all integers
n ≥ 1.

Problem 23. Consider the function

f : R → C, f(t) =
1 + ti

1− ti
.

Prove that f is injective and determine its range.

Problem 24. Let z1, z2 ∈ C
∗ be such that |z1+z2| = |z1| = |z2|. Compute

z1
z2

.

Problem 25. Prove that the following inequality holds for all complex num-
bers z1, z2, . . . , zn:

(|z1|+ |z2|+ · · ·+ |zn|+ |z1 + z2 + · · ·+ zn|)2

≥ 2(|z1|2 + · · ·+ |zn|2 + |z1 + z2 + · · ·+ zn|2).

Problem 26. Let z1, z2, . . . , z2n be complex numbers such that |z1| = |z2| =
· · · = |z2n| and arg z1 ≤ arg z2 ≤ · · · ≤ arg z2n ≤ π. Prove that

|z1 + z2n| ≤ |z2 + z2n−1| ≤ · · · ≤ |zn + zn+1|.

Problem 27. Find all positive real numbers x and y satisfying the system of
equations

√
3x

(
1 +

1

x+ y

)
= 2,

√
7y

(
1− 1

x+ y

)
= 4

√
2.

(1996 Vietnamese Mathematical Olympiad)

Problem 28. Let z1, z2, z3 be complex numbers. Prove that z1+ z2+ z3 = 0
if and only if |z1| = |z2 + z3|, |z2| = |z3 + z1| and |z3| = |z1 + z2|.

Problem 29. Let z1, z2, . . . , zn be distinct complex numbers with the same
modulus such that

z3z4 . . . zn−1zn + z1z4 . . . zn−1zn + · · ·+ z1z2 . . . zn−2 = 0.

Prove that
z1z2 + z2z3 + · · ·+ zn−1zn = 0.

Problem 30. Let a and z be complex numbers such that |z + a| = 1. Prove
that
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|z2 + a2| ≥ |1− 2|a|2|√
2

.

Problem 31. Find the geometric images of the complex numbers z for which

zn ·Re(z) = zn · Im(z),

where n is an integer.

Problem 32. Let a, b be real numbers with a+b = 1 and let z1, z2 be complex
numbers with |z1| = |z2| = 1.

Prove that

|az1 + bz2| ≥
|z1 + z2|

2
.

Problem 33. Let k, n be positive integers and let z1, z2, . . . , zn be nonzero
complex numbers with the same modulus such that

zk1 + zk2 + · · ·+ zkn = 0.

Prove that
1

zk1
+

1

zk2
+ · · ·+ 1

zkn
= 0.

Problem 34. Find all pairs (a, b) of real numbers such that

(a+ bi)5 = b+ ai.

Problem 35. For every value of a ∈ R find min |z2 − az + a|, where z ∈ C

and |z| ≤ 1.

Problem 36. Let a, b, c be three complex numbers such that

a|bc|+ b|ca|+ c|ab| = 0.

Prove that
|(a− b)(b− c)(c− a)| ≥ 3

√
3|abc|.

(Romanian Mathematical Olympiad—Final Round, 2008)

Problem 37. Let a and b be two complex numbers. Prove the inequality

|1 + ab|+ |a+ b| ≥
√

|a2 − 1||b2 − 1|.

(Romanian Mathematical Olympiad—District Round, 2008)

Problem 38. Consider complex numbers a, b, and c such that a+ b+ c = 0
and |a| = |b| = |c| = 1. Prove that for every complex number z, |z| ≤ 1, we
have

3 ≤ |z − a|+ |z − b|+ |z − c| ≤ 4.

(Romanian Mathematical Olympiad—Final Round, 2012)
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5.2 Algebraic Equations and Polynomials

Problem 1. Consider the quadratic equation

a2z2 + abz + c2 = 0b

where a, b, c ∈ C
∗, and denote by z1, z2 its roots. Prove that if

b

c
is a real

number, then |z1| = |z2| or
z1
z2

∈ R.

Solution. Let t =
b

c
∈ R. Then b = tc and

Δ = (ab)2 − 4a2 · c2 = a2c2(t2 − 4).

If |t| ≥ 2, the roots of the equation are

z1,2 =
−tac± ac

√
t2 − 4

2a2
=

c

2a
(−t±

√
t2 − 4),

and it is obvious that
z1
z2

is a real number.

If |t| < 2, the roots of the equation are

z1,2 =
c

2a
(−t± i

√
4− t2);

hence |z1| = |z2| =
|c|
|a| , as claimed.

Problem 2. Let a, b, c, z be complex numbers such that |a| = |b| = |c| > 0
and az2 + bz + c = 0. Prove that

√
5− 1

2
≤ |z| ≤

√
5 + 1

2
.

Solution. Let r = |a| = |b| = |c| > 0. We have

|az2| = | − bz − c| ≤ |b||z|+ |c|,

and hence r|z2| ≤ r|z|+ r. It follows that |z|2 − |z| − 1 ≤ 0, so |z| ≤ 1 +
√
5

2
.

On the other hand, |c| = |−az2−bz| ≤ |a||z|2+b|z|, so that |z|2+|z|−1 ≥ 0.

Thus |z| ≥
√
5− 1

2
, and we are done.

Problem 3. Let p, q be complex numbers such that |p|+ |q| < 1. Prove that
the moduli of the roots of the equation z2 + pz + q = 0 are less than 1.
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Solution. Because z1 + z2 = −p and z1z2 = q, the inequality |p| + |q| < 1
implies |z1 + z2|+ |z1z2| < 1. But ||z1| − |z2|| ≤ |z1 + z2|; hence

|z1| − |z2|+ |z1||z2| − 1 < 0 if and only if (1 + |z2|)(|z1| − 1) < 0

and

|z2| − |z1|+ |z2||z1| − 1 < 0 if and only if (1 + |z1|)(|z2| − 1) < 0.

Consequently, |z1| < 1 and |z2| < 1, as desired.

Problem 4. Let f = x2 + ax + b be a quadratic polynomial with complex
coefficients with both roots having modulus 1. Prove that g = x2 + |a|x + |b|
has the same property.

Solution. Let x1 and x2 be the complex roots of the polynomial f = x2 +
ax + b and let y1 and y2 be the complex roots of the polynomial g = x2 +
|a|x+ |b|.

We have to prove that if |x1| = |x2| = 1, then |y1| = |y2| = 1.
Since x1 · x2 = b and x1 + x2 = −a, then |b| = |x1||x2| = 1 and |a| ≤

|x1|+ |x2| = 2.
The quadratic polynomial g = x2 + |a|x + 1 has discriminant

Δ = |a|2 − 4 ≤ 0; hence

y1,2 =
−|a| ± i

√
4− |a|2

2
.

It is easy to see that |y1| = |y2| = 1, as desired.

Problem 5. Let a, b be nonzero complex numbers. Prove that the equation

az3 + bz2 + bz + a = 0

has at least one root with absolute value equal to 1.

Solution. Observe that if z is a root of the equation, then
1

z
is also a root of

the equation. Consequently, if z1, z2, z3 are the roots of the equation, then
1

z1
,
1

z2
,
1

z3
are the same roots, not necessarily in the same order.

If zk =
1

zk
for some k = 1, 2, 3, then |zk|2 = zkzk = 1, and we are done. If

zk �= 1

zk
for all k = 1, 2, 3, we may consider without loss of generality that

z1 =
1

z2
, z2 =

1

z3
, z3 =

1

z1
.
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The first two equalities yield z1 · z2 · z2·z3 = 1; hence |z1| · |z2|2 · |z3| = 1. On

the other hand, z1z2z3 = −a

a
, so |z1||z2||z3| = 1. It follows that |z2| = 1, as

claimed.

Problem 6. Let f = x4 + ax3 + bx2 + cx + d be a polynomial with real
coefficients and real roots. Prove that if |f(i)| = 1, then a = b = c = d = 0.

Solution. Let x1, x2, x3, x4 be the real roots of the polynomial f . Then

f = (x− x1)(x− x2)(x− x3)(x− x4),

and we have

f(i) = (−x1 + i)(−x2 + i)(−x3 + i)(−x4 + i);

hence

|f(i)| = | − x1 + i| · | − x2 + i| · | − x3 + i| · | − x4 + i|

=
√
1 + x2

1 ·
√
1 + x2

2 ·
√

1 + x2
3 ·
√
1 + x2

4.

Because |f(i)| = 1, we deduce that x1 = x2 = x3 = x4 = 0, and consequently
a = b = c = d = 0, as desired.

Problem 7. Prove that if 11z10 + 10iz9 + 10iz − 11 = 0, then |z| = 1.

(1989 Putnam Mathematical Competition)

Solution. The equation can be rewritten as z9 =
11− 10iz

11z + 10i
. If z = a + bi,

then

|z|9 =

∣∣
∣
∣
11− 10iz

11z + 10i

∣∣
∣
∣ =

√
112 + 220b+ 102(a2 + b2)
√
112(a2 + b2) + 220b+ 102

.

Let f(a, b) and g(a, b) denote the numerator and denominator of the right-
hand side. If |z| > 1, then a2 + b2 > 1, so g(a, b) > f(a, b), leading to
|z9| < 1, a contradiction. If |z| < 1, then a2 + b2 < 1, so g(a, b) < f(a, b),
yielding |z9| > 1, again a contradiction. Hence |z| = 1.

Problem 8. Let n ≥ 3 be an integer and let a be a nonzero real number.
Show that every nonreal root z of the equation xn + ax + 1 = 0 satisfies the
inequality

|z| ≥ n

√
1

n− 1
.

(Romanian Mathematical Olympiad—Final Round, 1995)
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Solution. Let z = r(cosα+ i sinα) be a nonreal root of the equation, where
α ∈ (0, 2π) and α �= π. Substituting back into the equation, we obtain
rn cosnα+ ra cosα+ 1 + i(rn sinnα+ ra sinα) = 0. Hence

rn cosnα+ ra cosα+ 1 = 0 and rn sinnα+ ra sinα = 0.

Multiplying the first relation by sinα, the second by cosα, and then sub-
tracting them, we find that rn sin(n− 1)α = sinα. It follows that

rn| sin(n− 1)α| = | sinα|.

The inequality | sin kα| ≤ k| sinα| is valid for every positive integer k. The
proof is based on a simple inductive argument on k.

Applying this inequality, from rn| sin(n − 1)α| = | sinα|, we obtain

| sinα| ≤ rn(n − 1)| sinα|. Because sinα �= 0, it follows that rn ≥ 1

n− 1
,

i.e., |z| ≥ n

√
1

n− 1
.

Problem 9. Suppose P is a polynomial of even degree with complex coeffi-
cients. If all the roots of P are complex nonreal numbers with modulus 1,
prove that

P (1) ∈ R if and only if P (−1) ∈ R.

Solution. It suffices to prove that
P (1)

P (−1)
∈ R.

Let x1, x2, . . . , x2n be the roots of P . Then

P (x) = λ(x− x1)(x − x2) · · · (x− x2n)

for some λ ∈ C
∗, and

P (1)

P (−1)
=

λ(1 − x1)(1− x2) · · · (1− x2n)

λ(−1 − x1)(−1 − x2) · · · (−1− x2n)
=

2n∏

k=1

1− xk

1 + xk
.

From the hypothesis, we have |xk| = 1 for all k = 1, 2, . . . , 2n. Then

(
1− xk

1 + xk

)
=

1− xk

1 + xk
=

1− 1

xk

1 +
1

xk

=
xk − 1

xk + 1
= −1− xk

1 + xk
,

whence

(
P (1)

P (−1)

)
=

2n∏

k=1

(
1− xk

1 + xk

)
=

2n∏

k=1

(
−1− xk

1 + xk

)

= (−1)2n
2n∏

k=1

1− xk

1 + xk
=

P (1)

P (−1)
.
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This proves that
P (1)

P (−1)
is a real number, as desired.

Problem 10. Consider the sequence of polynomials defined by P1(x) = x2−2
and Pj(x) = P1(Pj−1(x)) for j = 2, 3, . . .. Show that for every positive integer
n, the roots of the equation Pn(x) = x are all real and distinct.

(18th IMO—Shortlist)

Solution. Put x = z + z−1, where z is a nonzero complex number. Then
P1(x) = x2 − 2 = (z + z−1)2 − 2 = z2 + z−2. A simple inductive argument
shows that for all positive integers n, we have Pn(x) = z2

n

+ z−2n .
The equation Pn(x) = x is equivalent to z2

n

+ z−2n = z + z−1. We obtain
z2

n − z = z−1 − z−2n , i.e., z(z2
n−1 − 1) = z−2n(z2

n−1 − 1). It follows that
(z2

n−1 − 1)(z2
n+1 − 1) = 0. Because gcd(2n − 1, 2n + 1) = 1, the unique

common root of the equations z2
n−1 − 1 = 0 and z2

n+1 − 1 = 0 is z = 1
(see Proposition 1 in Sect. 2.2.2). Moreover, for every root of the equation
(z2

n−1 − 1)(z2
n+1 − 1) = 0, we have |z| = 1, i.e., z−1 = z. Also, observe that

for two roots z and w of (z2
n−1 − 1)(z2

n+1 − 1) = 0 that are different from
1, we have z+ z−1 = w+w−1 if and only if (z−w)(1− (zw)−1) = 0. This is
equivalent to zw = 1, i.e., w = z−1 = z, a contradiction to the fact that the
unique common root of z2

n−1 − 1 = 0 and z2
n+1 − 1 = 0 is 1.

It is clear that the degree of the polynomial Pn is 2n. As we have seen
before, all the roots of Pn(x) = x are given by x = z+ z−1, where z = 1, z =

cos
2kπ

2n − 1
+ i sin

2kπ

2n − 1
, k = 1, . . . , 2n−2, and z = cos

2sπ

2n + 1
+ i sin

2sπ

2n + 1
,

s = 1, . . . , 2n.
Taking into account the symmetry of the expression z + z−1, we see that

the total number of these roots is 1 +
1

2
(2n − 2)+

1

2
2n = 2n, and all of them

are real and distinct.

Here are other problems involving algebraic equations and polynomials.

Problem 11. Let a, b, c be complex numbers with a �= 0. Prove that if the
roots of the equation az2 + bz + c = 0 have equal moduli, then ab|c| = |a|bc.
Problem 12. Let z1, z2 be the roots of the equation z2 + z + 1 = 0, and let
z3, z4 be the roots of the equation z2 − z + 1 = 0. Find all integers n such
that zn1 + zn2 = zn3 + zn4 .

Problem 13. Consider the equation with real coefficients

x6 + ax5 + bx4 + cx3 + bx2 + ax+ 1 = 0,

and denote by x1, x2, . . . , x6 the roots of the equation.
Prove that

6∏

k=1

(x2
k + 1) = (2a− c)2.
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Problem 14. Let a and b be complex numbers and let P (z) = az2 + bz + i.
Prove that there exists z0 ∈ C with |z0| = 1 such that |P (z0)| ≥ 1 + |a|.

Problem 15. Find all polynomials f with real coefficients satisfying, for
every real number x, the relation f(x)f(2x2) = f(2x3 + x).

(21st IMO—Shortlist)

Problem 16. Find all complex numbers z such that

(z − z2)(1 + z + z2)2 =
1

7
.

(Mathematical Reflections, 2013)

Problem 17. Determine all pairs (z, n) such that

z + z2 + . . .+ zn = n|z|,

where z ∈ C and |z| ∈ Z+.

(Mathematical Reflections, 2008)

Problem 18. Let a, b, c, d be nonzero complex numbers such that ad−bc �= 0,
and let n be a positive integer. Consider the equation

(ax+ b)n + (cx+ d)n = 0.

(a) Prove that for |a| = |c|, the roots of the equation are situated on a line.
(b) Prove that for |a| �= |c|, the roots of the equation are situated on a circle.
(c) Find the radius of the circle when |a| �= |c|.

(Mathematical Reflections, 2010)

Problem 19. Let n be a positive integer. Prove that a complex number of
absolute value 1 is a solution to zn + z + 1 = 0 if and only if n = 3m+ 2 for
some positive integer m.

(Romanian Mathematical Olympiad—Final Round, 2007)

Problem 20. Let a and b be two complex numbers. Prove that the following
statements are equivalent:

(1) The absolute values of the roots of the equation x2 − ax + b = 0 are
respectively equal to the absolute values of the roots of the equation

x2 − bx+ a = 0.

(2) a3 = b3 or b = a.

(Romanian Mathematical Olympiad—District Round, 2011)
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5.3 From Algebraic Identities to Geometric Properties

Problem 1. Consider equilateral triangles ABC and A′B′C′, both in the
same plane and having the same orientation. Show that the segments [AA′],
[BB′], [CC′] can be the sides of a triangle.

Solution. Let a, b, c be the coordinates of vertices A, B, C and let a′, b′, c′

be the coordinates of vertices A′, B′, C′. Because triangles ABC and A′B′C′

are similar, we have the relation (see the remark in Sect. 3.3)

⎡

⎣
1 1 1
a b c
a′ b′ c′

⎤

⎦ = 0. (1)

That is,

a′(b − c) + b′(c− a) + c′(a− b) = 0. (2)

On the other hand, the following relation is clear:

a(b− c) + b(c− a) + c(a− b) = 0. (3)

By subtracting relation (3) from relation (2), we obtain

(a′ − a)(b − c) + (b′ − b)(c− a) + (c′ − c)(a− b) = 0. (4)

Passing to moduli, it follows that

|a′ − a||b− c| ≤ |b′ − b||c− a|+ |c′ − c||a− b|. (5)

Taking into account that |b−c| = |c−a| = |a−b|, we obtain AA′ ≤ BB′+CC′.
Similarly, we prove the inequalities BB′ ≤ CC′+AA′ and CC′ ≤ AA′+BB′,
and the desired conclusion follows.

Remarks.

(1) If ABC and A′B′C′ are two similar triangles situated in the same plane
and having the same orientation, then from (5), the inequality

AA′ ·BC ≤ BB′ · CA+ CC′. AB (1)

follows. This is the generalized Ptolemy inequality. Ptolemy’s inequality
is obtained when the triangle A′B′C′ degenerates to a point.

(2) Taking into account the inequality (1), we have also BB′ · CA ≤ CC′ ·
AB + AA′ · BC and CC′ · AB ≤ AA′ · BC + BB′ · CA. It follows that
for any two similar triangles ABC and A′B′C′ with the same orientation
and situated in the same plane, we can construct a triangle of side lengths
AA′ · BC, BB′ · CA, CC′. AB.
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(3) When the triangle A′B′C′ degenerates to the point M , it follows from the
property in our problem that the segments MA, MB, MC are the sides
of a triangle, which follows from Pompeiu’s theorem (see also Sect. 4.9.1).

Problem 2. Let P be an arbitrary point in the plane of a triangle ABC.
Then

α · PB · PC + β · PC · PA+ γ · PA · PB ≥ αβγ,

where α, β, γ are the sides of ABC.

Solution. Let us consider the origin of the complex plane at P and let
a, b, c be the coordinates of the vertices of triangle ABC. From the algebraic
identity

bc

(a− b)(a− c)
+

ca

(b − c)(b− a)
+

ab

(c− a)(c− b)
= 1, (1)

it follows if we pass to absolute values that

|b||c|
|a− b||a− c| +

|c||a|
|b− c||b− a| +

|a||b|
|c− a||c− b| ≥ 1. (2)

Taking into account that |a| = PA, |b| = PB, |c| = PC, and |b − c| =
α, |c− a| = β, |a− b| = γ, we see that the inequality (2) is equivalent to

PB · PC

βγ
+

PC · PA

γα
+

PA · PB

αβ
≥ 1,

which is the desired inequality.

Remarks.

(1) If P is the circumcenter O of triangle ABC, we can derive Euler’s
inequality R ≥ 2r. Indeed, in this case, the inequality is equivalent to
R2(α+ β + γ) ≥ αβγ. Therefore,

R2 ≥ αβγ

α+ β + γ
=

αβγ

2s
=

4R

2s
· αβγ
4R

= 2R · area[ABC]

s
= 2Rr,

and hence R ≥ 2r.
(2) If P is the centroid G of triangle ABC, we obtain the following inequality

involving the medians mα, mβ , mγ :

mαmβ

αβ
+

mβmγ

βγ
+

mγmα

γα
≥ 9

4
,

with equality if and only if triangle ABC is equilateral. A good argument
for the case of acute triangles is given in the next problem.



200 5 Olympiad-Caliber Problems

Problem 3. Let ABC be an acute triangle and let P be a point in its interior.
Prove that

α · PB · PC + β · PC · PA+ γ · PA · PB = αβγ

if and only if P is the orthocenter of triangle ABC.

(1998 Chinese Mathematical Olympiad)

Solution. Let P be the origin of the complex plane, and let a, b, c be
the coordinates of A, B, C, respectively. The relation in the problem is
equivalent to

|ab(a− b)|+ |bc(b− c)|+ |ca(c− a)| = |(a− b)(b− c)(c− a)|.

Let

z1 =
ab

(a− c)(b− c)
, z2 =

bc

(b− a)(c− a)
, z3 =

ca

(c− b)(a− b)
.

It follows that

|z1|+ |z2|+ |z3| = 1 and z1 + z2 + z3 = 1,

the latter from identity (1) in the previous problem.
We will prove that P is the orthocenter of triangle ABC if and only if

z1, z2, z3 are positive real numbers. Indeed, if P is the orthocenter, then
since the triangle ABC is acute, it follows that P is in the interior of ABC.
Hence there are positive real numbers r1, r2, r3 such that

a

b− c
= −r1i,

b

c− a
= −r2i,

c

a− b
= −r3i,

implying z1 = r1r2 > 0, z2 = r2r3 > 0, z3 = r3r1 > 0, and we are done.
Conversely, suppose that z1, z2, z3 are all positive real numbers. Because

−z1z2
z3

=

(
b

c− a

)2
,−z2z3

z1
=

(
c

a− b

)2
,−z3z1

z2
=

(
a

b− c

)2
,

it follows that
a

b− c
,

b

c− a
,

c

a− b
are purely imaginary numbers, thus AP ⊥

BC and BP ⊥ CA, showing that P is the orthocenter of triangle ABC.

Problem 4. Let G be the centroid of triangle ABC and let R1, R2, R3 be
the circumradii of triangles GBC, GCA, GAB, respectively. Then

R1 +R2 +R3 ≥ 3R,

where R is the circumradius of triangle ABC.
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Solution. In Problem 2, consider P the centroid G of triangle ABC. Then

α ·GB ·GC + β ·GC ·GA+ γ ·GA ·GB ≥ αβγ, (1)

where α, β, V are the lengths of the sides of triangle ABC.
But

α ·GB ·GC = 4R1 · area[GBC] = 4R1 ·
1

3
area[ABC].

Likewise,

β ·GC ·GA = 4R2 ·
1

3
area[ABC], γ ·GA ·GB = 4R3 ·

1

3
area[ABC].

Hence, the inequality (1) is equivalent to

4

3
(R1 +R2 +R3). area [ABC] ≥ 4R. area [ABC],

i.e., R1 +R2 +R3 ≥ 3R.

Problem 5. Let ABC be a triangle and let P be a point in its interior. Let
R1, R2, R3 be the radii of the circumcircles of triangles PBC, PCA, PAB,
respectively. Lines PA, PB, PC intersect sides BC, CA, AB at A1, B1, C1,
respectively. Let

k1 =
PA1

AA1
, k2 =

PB1

BB1
, k3 =

PC1

CC1
.

Prove that k1R1 + k2R2 + k3R3 ≥ R, where R is the circumradius of triangle
ABC.

(2004 Romanian IMO Team Selection Test)

Solution. Note that

k1 =
area[PBC]

area[ABC]
, k2 =

area[PCA]

area[ABC]
, k3 =

area[PAB]

area[ABC]
.

But area [ABC] =
αβγ

4R
and area [PBC] =

α · PB · PC

4R1
. Two similar rela-

tions for area [PCA] and area [PAB] hold.
The desired inequality is equivalent to

R
α · PB · PC

αβγ
+R

β · PC · PA

αβγ
+R

γ · PA · PB

αβγ
≥ R,

which reduces to the inequality in Problem 2.
When triangle ABC is acute, it follows from Problem 3 that equality holds

if and only if P is the orthocenter of ABC.
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Problem 6. The following inequality holds for every point M in the plane of
triangle ABC:

AM3 sinA+BM3 sinB + CM3 sinC ≥ 6 ·MG. area [ABC],

where G is the centroid of triangle ABC.

Solution. The identity

x3(y − z) + y3(z − x) + z3(x − y) = (x− y)(y − z)(z − x)(x + y + z) (1)

holds for all complex numbers x, y, z. Passing to the absolute value, we
obtain the inequality

|x3(y − z)|+ |y3(z − x)|+ |z3(x− y)| ≥ |x− y||y − z||z − x||x+ y + z|. (2)

Let a, b, c, m be the coordinates of points A, B, C, M , respectively.
In (2), consider x = m− a, y = m− b, z = m− c, and obtain

AM3 · α+BM3 · β + CM3 · γ ≥ 3αβγMG. (3)

Using the formula area [ABC] =
αβγ

4R
and the law of sines, the desired

inequality follows from (3).

Problem 7. Let ABCD be a cyclic quadrilateral inscribed in circle C(O; R)
having sides of length α, β, γ, δ and diagonals of length d1 and d2. Then

area[ABCD] ≥ αβγδd1d2
8R4

.

Solution. Take the center O to be the origin of the complex plane and
consider a, b, c, d the coordinates of vertices A, B, C, D. From the well-
known Euler identity

∑

cyc

a3

(a− b)(a− c)(a− d)
= 1, (1)

by passing to the absolute value, it follows that

∑

cyc

|a|3
|a− b||a− c||a− d| ≥ 1. (2)

The inequality (2) is equivalent to

∑

cyc

R3

AB · AC ·AD ≥ 1, (3)
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or
∑

cyc

R3 · BD · CD ·BC ≥ αβγδd1d2. (4)

But we have the known relation BD ·CD ·BC = 4R. area [BCD] and three
other such relations. The inequality (4) can be written in the form

4R4(area[ABC] + area[BCD] + area[CDA] + area[DAB]) ≥ αβγδd1d2,

or equivalently, 8R4 area[ABCD] ≥ αβγδd1d2.

Problem 8. Let a, b, c be distinct complex numbers such that

(a− b)7 + (b − c)7 + (c− a)7 = 0.

Prove that a, b, c are the coordinates of the vertices of an equilateral triangle.

Solution 1. Setting x = a − b, y = b − c, z = c − a implies x + y + z = 0

and x7 + y7 + z7 = 0. Since z �= 0, we may set α =
x

z
and β =

y

z
. Hence

α+ β = −1 and α7 + β7 = −1. Then the given relation becomes

α6 − α5β + α4β2 − α3β3 + α2β4 − αβ5 + β6 = 1. (1)

Let s = α+ β = −1 and p = ab. The relation (1) becomes

(α6 + β6)− p(α4 + β4) + p2(α2 + β2)− p3 = 1. (2)

Because α2 + β2 = s2 − 2p = 1− 2p,

α4 + β4 = (α2 + β2)2 − 2α2β2 = (1− 2p)2 − 2p2 = 1− 4p+ 2p2,

α6 + β6 = (α2 + β2)((α4 + β4)− α2β2) = (1− 2p)(1− 4p+ p2),

the equality (2) is equivalent to

(1− 2p)(1− 4p+ p2)− p(1− 4p+ 2p2) + p2(1 − 2p)− p3 = 1.

That is, 1 − 4p + p2 − 2p + 8p2 − 2p3 − p + 4p2 − 2p3 + p2 − 2p3 − p3 = 1;
i.e., −7p3 +14p2 − 7p+ 1 = 1. We obtain 7p(p− 1)2 = 0, and hence p = 0 or
p = 1.

If p = 0, then α = 0 or β = 0, and consequently, x = 0 or y = 0. It follows
that a = b or b = c, which is false; hence p = 1.

From αβ = 1 and α + β = −1, we deduce that α and β are the roots of
the quadratic equation x2 + x+ 1 = 0. Thus α3 = β3 = 1 and |α| = |β| = 1.
Therefore, |x| = |y| = |z|, or |a− b| = |b− c| = |c− a|, as claimed.

Solution 2. Let x = a− b, y = b− c, z = c− a. Because x+ y+ z = 0 and
x7 + y7 + z7 = 0, we find that (x + y)7 − x7 − y7 = 0. This is equivalent to
7xy(x+ y)(x2 + xy + y2)2 = 0.
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But xyz �= 0, so x2 + xy + y2 = 0, i.e., x3 = y3. From symmetry, x3 =
y3 = z3, whence |x| = |y| = |z|.

Problem 9. Let M be a point in the plane of the square ABCD and let
MA = x, MB = y, MC = z, MD = t. Prove that the numbers
xy, yz, zt, tx are the sides of a quadrilateral.

Solution. Consider the complex plane such that 1, i,−1,−i are the
coordinates of vertices A, B, C, D of the square. If z is the coordinate
of point M , then we have the identity

1(z − i)(z + 1) + i(z + 1)(z + i)− 1(z + i)(z − 1)− i(z − 1)(z − i) = 0. (1)

Subtracting the first term of the sum from both sides yields

i(z + 1)(z + i)− 1(z + i)(z − 1)− i(z − 1)(z − i) = −1(z − i)(z + 1),

and using the triangle inequality, we obtain

|z − i||z + 1|+ |z + 1||z + i|+ |z + i||z − 1| ≥ |z − 1||z − i|,

or yz + zt+ tx ≥ xy.
In the same manner, we prove that

xy + zt+ tx ≥ yz, xy + yz + tx ≥ zt

and xy + yz + zt ≥ tx, as needed.

Problem 10. Let z1, z2, z3 be distinct complex numbers such that |z1| =
|z2| = |z3| = R. Prove that

1

|z1 − z2||z1 − z3|
+

1

|z2 − z1||z2 − z3|
+

1

|z3 − z1||z3 − z2|
≥ 1

R2
.

Solution 1. The following identity is easy to verify:

z21
(z1 − z2)(z1 − z3)

+
z22

(z2 − z1)(z2 − z3)
+

z23
(z3 − z1)(z3 − z2)

= 1.

Passing to the absolute value, we find that

1 =

∣
∣
∣
∣
∣

∑

cyc

z21
(z1 − z2)(z1 − z3)

∣
∣
∣
∣
∣
≤
∑

cyc

|z1|2
|z1 − z2||z1 − z3|

= R2
∑

cyc

1

|z1 − z2||z1 − z3|
,

which is the desired inequality.
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Solution 2. Let

α = |z2 − z3|, β = |z3 − z1|, γ = |z1 − z2|.

From Problem 29 in Sect. 1.1.9, we have

αβ + βγ + γα ≤ 9R2.

Using the inequality

(αβ + βγ + γα)

(
1

αβ
+

1

βγ
+

1

γα

)
≥ 9

yields
1

αβ
+

1

βγ
+

1

γα
≥ 9

αβ + βγ + γα
≥ 1

R2
,

as desired.

Remark. Consider the triangle with vertices at z1, z2, z3 and whose cir-
cumcenter is the origin of the complex plane. Then the circumradius R equals
|z1| = |z2| = |z3|, and the side lengths are

α = |z2 − z3|, β = |z1 − z3|, γ = |z1 − z2|.

The above inequality is equivalent to

1

αβ
+

1

βγ
+

1

γα
≥ 1

R2
,

i.e.,

α+ β + γ ≥ αβγ

R2
=

4K

R
=

4sr

R
.

We obtain R ≥ 2r, i.e., Euler’s inequality for a triangle.

Problem 11. Let ABC be a triangle and let P be a point in its plane.

(1) Prove that

α · PA3 + β · PB3 + γ · PC3 ≥ 3αβγ · PG,

where G is the centroid of ABC.
(2) Prove that

R2(R2 − 4r2) ≥ 4r2[8R2 − (α2 + β2 + γ2)].

Solution.

(1) The identity

x3(y − z) + y3(z − x) + z3(x− y) = (x− y)(y − z)(z − x)(x+ y + z) (1)
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holds for all complex numbers x, y, z. Passing to absolute values, we
obtain

|x|3|y − z|+ |y|3|z − x|+ |z|3|x− y| ≥ |x− y||y − z||z − x||x + y + z|.

Let a, b, c, zP be the coordinates of A, B, C, P , respectively. In the
equation above, take x = zp− a, y = zp− b, z = zp− c and obtain the
desired inequality.

(2) If P is the circumcenter O of triangle ABC, after some elementary trans-
formations, the previous inequality becomes R2 ≥ 6r · OG. Squaring
both sides yields R4 ≥ 36r2 · OG2. Using the well-known relation

OG2 = R2− 1

9
(α2+β2+γ2), we obtain R4 ≥ 36R2r2−4r2(α2+β2+γ2),

and the conclusion follows.

Remark. The inequality (2) improves Euler’s inequality for the class of
obtuse triangles. This is equivalent to proving that α2+β2+γ2 < 8R2 in every
such triangle. The last relation can be written as sin2 A+sin2 B+sin2 C < 2,
or cos2 A+ cos2 B − sin2 C > 0. That is,

1 + cos 2A

2
+

1 + cos 2B

2
− 1 + cos2 C > 0,

which reduces to cos(A + B) cos(A − B) + cos2 C > 0. This is equivalent to
cosC[cos(A−B) + cos(A+B)] < 0, i.e., cosA cosB cosC < 0.

Here are some other problems involving this topic.

Problem 12. Let a, b, c, d be distinct complex numbers with |a| = |b| =
|c| = |d| and a+ b+ c+ d = 0.

Then the geometric images of a, b, c, d are the vertices of a rectangle.

Problem 13. The complex numbers zi, i = 1, 2, 3, 4, 5, have the same
nonzero modulus, and

5∑

i=1

zi =

5∑

i=1

z2i = 0.

Prove that z1, z2, . . . , z5 are the coordinates of the vertices of a regular
pentagon.

(Romanian Mathematical Olympiad—Final Round, 2003)

Problem 14. Let ABC be a triangle.

(a) Prove that if M is any point in its plane, then

AM sinA ≤ BM sinB + CM sinC.
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(b) Let A1, B1, C1 be points on the sides BC, AC and AB, respectively,
such that the angles of the triangle A1B1C1 are in this order α, β, γ.
Prove that

∑

cyc

AA1 sinα ≤
∑

cyc

BC sinα.

(Romanian Mathematical Olympiad—Second Round, 2003)

Problem 15. Let M and N be points inside triangle ABC such that

M̂AB = N̂AC and M̂BA = N̂BC.

Prove that
AM · AN
AB · AC +

BM · BN

BA ·BC
+

CM · CN

CA · CB
= 1.

(39th IMO—Shortlist)

5.4 Solving Geometric Problems

Problem 1. On each side of a parallelogram, a square is drawn external to
the figure. Prove that the centers of the squares are the vertices of another
square.

Solution. Consider the complex plane with origin at the intersection point
of the diagonals and let a, b,−a,−b be the coordinates of the vertices
A, B, C, D, respectively.

Using the rotation formulas, we obtain

b = zO1 + (a− zO1)(−i) or zO1 =
b+ ai

1 + i
.

Likewise,

zO2 =
a− bi

1 + i
, zO3 =

−b− ai

1 + i
, zO4 =

−a+ bi

1 + i
.

It follows that

̂O4O1O2 = arg
zO2 − zO1

zO4 − zO1

= arg
a− bi− b− ai

−a+ bi− b− ai
= arg i =

π

2
,

so O1O2 = O1O4, and

Ô2O3O4 = arg
zO4 − zO4

zO2 − zO3

= arg
−a+ bi+ b+ ai

a− bi+ b+ ai
= arg i =

π

2
,

so O3O4 = O3O2. Therefore, O1O2O3O4 is a square.
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Problem 2. Given a point on the circumcircle of a cyclic quadrilateral, prove
that the products of the distances from the point to any pair of opposite sides
or to the diagonals are equal.

(Pappus’s theorem)

Solution. Let a, b, c, d be the coordinates of the vertices A, B, C, D of the
quadrilateral and consider the complex plane with origin at the circumcenter
of ABCD. Without loss of generality assume that the circumradius equals 1.

The equation of line AB is

∣
∣
∣
∣
∣∣

a a 1

b b 1
z z 1

∣
∣
∣
∣
∣∣
= 0.

This is equivalent to

z(a− b)− z(a− b) = ab− ab, i.e., z + abz = a+ b.

Let point M1 be the foot of the perpendicular from a point M on the
circumcircle to the line AB. If m is the coordinate of point M , then (see the
proposition in Sect. 4.5)

ZM1 =
m− abm+ a+ b

2

and

d(M, AB) = |m−m1| =
∣
∣
∣
∣m− m− abm+ a+ b

2

∣
∣
∣
∣ =
∣
∣
∣
∣
(m− a)(m− b)

2m

∣
∣
∣
∣ ,

since mm = 1.
Likewise,

d(M, BC) =

∣
∣
∣
∣
(m− b)(m− c)

2m

∣
∣
∣
∣ , d(M, CD) =

∣
∣
∣
∣
(m− c)(m− d)

2m

∣
∣
∣
∣ ,

d(M, DA) =

∣
∣∣
∣
(m− d)(m − a)

2m

∣
∣∣
∣ , d(M, AC) =

∣
∣∣
∣
(m− a)(m− c)

2m

∣
∣∣
∣ ,

and

d(M, BD) =

∣∣
∣
∣
(m− b)(m− d)

2m

∣∣
∣
∣ .

Thus,

d(M,AB) · d(M, CD) = d(M, BC) · d(M, DA) = d(M, AC) · d(M, BD),

as claimed.
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Problem 3. Three equal circles C1(O1; r), C2(O2; r), and C3(O3; r) have a
common point O. Circles C1 and C2, C2 and C3, C3 and C1, meet again at
points A, B, C respectively. Prove that the circumradius of triangle ABC is
equal to r.

(Tzitzeica’s1 “five-lei-coin problem”)

Solution. Consider the complex plane with origin at point O and let
z1, z2, z3 be the coordinates of the centers O1, O2, O3, respectively. It fol-
lows that points A, B, C have the coordinates z1 + z2, z2 + z3, z3 + z1, and
hence

AB = |(z1 + z2)− (z2 + z3)| = |z1 − z3| = O1O3.

Likewise, BC = O1O2 and AC = O2O3; hence triangleABC andO1O2O3 are
congruent. Consequently, their circumradii are equal. Since OO1 = OO2 =
OO3 = r, the circumradii of triangles O1O2O3 and ABC are both equal to
r, as desired.

Problem 4. On the sides AB and BC of triangle ABC, draw squares with
centers D and E such that points C and D lie on the same side of line AB
and points A and E lie on opposite sides of line BC. Prove that the angle
between lines AC and DE is equal to 45◦.

Solution. The rotation about E through angle 90◦ maps point C to point
B; hence

zB = zE + (zC − zE)i and zE =
zB − zCi

1− i
.

Similarly, zD =
zB − zAi

1− i
.

The angle between the lines AC and DE is equal to

arg
zC − zA
zE − zD

= arg
(zC − zA)(1− i)

zB − zCi− zB + ziA
= arg

1− i

−i
= arg(1 + i) =

π

4
,

as desired (Fig. 5.1).

Remark. If on the sides AB and BC of the triangle ABC, we draw rect-
angles with centers D and E, satisfying the same conditions, then the angle

between lines AC and DE is equal to 90◦ − B̂AD.

Problem 5. On the sides AB and BC of triangle ABC, equilateral triangles
ABN andACM are drawn external to the figure. If P, Q, R are the midpoints
of segmentsBC, AM, AN , respectively, prove that triangle PQR is equilateral.

Solution. Consider the complex plane with origin at A and denote by
the corresponding lowercase letter the coordinate of a point denoted by an
uppercase letter (Fig. 5.2).

1 Gheorghe Tzitzeica (1873–1939), Romanian mathematician, made important contribu-
tions in geometry.
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Figure 5.1.

Figure 5.2.

The rotation about center A through angle 60◦ maps points N and C to
B and M , respectively. Setting ε = cos 60◦ + i sin 60◦, we have b = n · ε and
m = c · ε. Thus

p =
b+ c

2
, q =

m

2
=

c · ε
2

, r =
n

2
=

b

2ε
=

bε5

2
= −bε2

2
.

To prove that triangle PQR is equilateral, using Proposition 1 in Sect. 3.4, it
suffices to observe that

p2 + q2 + r2 = pq + qr + rp.

Problem 6. Let AA′BB′CC′ be a hexagon inscribed in the circle C(O; R)
such that

AA′ = BB′ = CC′ = R.
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If M, N, P are midpoints of sides A′B, B′C, C′A respectively, prove that
triangle M N P is equilateral.

Solution. Consider the complex plane with origin at the circumcenter O and
let a, b, c, a′, b′, c′ be the coordinates of the vertices A, B, C, A′, B′, C′,
respectively. If ε = cos 60◦ + i sin 60◦, then

a′ = a · ε, b′ = b · ε, c′ = c · ε.

The points M, N, P have the coordinates

m =
aε+ b

2
, n =

bε+ c

2
, p =

cε+ a

2
.

It is easy to observe that

m2 + n2 + p2 = mn+ np+ pm;

therefore, MNP is an equilateral triangle (see Proposition 1 in Sect. 3.4).

Problem 7. On the sides AB and AC of triangle ABC, squares ABDE and
ACFG are drawn external to the figure. If M is the midpoint of side BC,
prove that AM ⊥ EG and EG = 2AM .

Solution. Consider the complex plane with origin at A and let b, c, g, e, m
be the coordinates of points B, C, G, E, M (Fig. 5.3).

Observe that g = ci, e = −bi, m =
b+ c

2
; hence

m− a

g − e
=

−(b+ c)

2i(b+ c)
=

i

2
∈ iR∗

and

|m− a| = 1

2
|e− g|.

Thus, AM ⊥ EG and 2AM = EG.

Problem 8. The sides AB, BC, and CA of the triangle ABC are divided into
three equals parts by points M, N ;P, Q; and R, S, respectively. Equilateral
trianglesMND, PQE, RSF are constructed exterior to triangle ABC. Prove
that triangle D E F is equilateral.

Solution. Denote by the corresponding lowercase letters the coordinates of
the points denoted by uppercase letters. Then

m =
2a+ b

3
, n =

a+ 2b

3
, p =

2b+ c

3
,

q =
b+ 2c

3
, r =

2c+ a

3
, s =

c+ 2a

3
.



212 5 Olympiad-Caliber Problems

Figure 5.3.

The point D is obtained from point M by a rotation with center N and angle
60◦ (Fig. 5.4).

Figure 5.4.

Hence

d = n+ (m− n)ε =
a+ 2b+ (a− b)ε

3
,

where ε = cos 60◦ + i sin 60◦. Likewise,

e = q + (p− q)ε =
b+ 2c+ (b − c)ε

3

and

f = s+ (r − s)ε =
c+ 2a+ (c− a)ε

3
.

Since

f − d

e − d
=

c+ a− 2b+ (b+ c− 2a)ε

2c− a− b+ (2b− a− c)ε

=
ε(b+ c− 2a+ (c+ a− 2b)(−ε2))

2c− a− b+ (2b− a− c)ε

=
ε(b+ c− 2a) + (c+ a− 2b)(ε− 1))

2c− a− b+ (2b− a− c)ε
= ε,
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we have F̂DE = 60◦ and FD = FE, so triangle DEF is equilateral.

Problem 9. Let ABCD be a square of side length a and consider a point P
on the incircle of the square. Find the value of

PA2 + PB2 + PC2 + PD2.

Solution. Consider the complex plane such that points A, B, C, D have
coordinates

zA =
a
√
2

2
, zB =

a
√
2

2
i, zc = −a

√
2

2
, zD = −a

√
2

2
i.

Let zP =
a

2
(cosx+ i sinx) be the coordinate of point P (Fig. 5.5).

Figure 5.5.

Then

PA2+PB2+PC2+PD2=|zA−zP |2+|zB−zP |2+|zc − zP |2 + |zD − zP |2

=
∑

cyc

(zA − zP )(zA − zP ) = 4
a2

2
+ 2

a
√
2

2
· a
2

(
2 cosx+ 2 cos

(
x+

π

2

)
+

+2 cos(x + π) + 2 cos

(
x+

3π

2

))
+ 4

a2

4
= 2a2 + 0 + a2 = 3a2.

Problem 10. On the sides AB and AD of the triangle ABD draw externally
squares ABEF and ADGH with centers O and Q, respectively. If M is the
midpoint of the side BD, prove that OMQ is an isosceles triangle with a right
angle at M .

Solution. Let a, b, d be the coordinates of the points A, B, D, respectively
(Fig. 5.6).
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Figure 5.6.

The rotation formula gives

a− zO
b − zO

=
d− zQ
a− zQ

= i,

so

zO =
b+ a+ (a− b)i

2
and zQ =

a+ d+ (d− a)i

2
.

The coordinate of the midpoint M of segment [BD] is ZM =
b+ d

2
; hence

zO − zM
zQ − zM

=
a− d+ (a− b)i

a− b+ (d− a)i
= i.

Therefore, QM ⊥ OM and OM = QM , as desired.

Problem 11. On the sides of a convex quadrilateral ABCD, equilat-
eral triangles ABM and CDP are drawn external to the figure, and equi-
lateral triangles BCN and ADQ are drawn internal to the figure. Describe
the shape of the quadrilateral MNPQ.

(23rd IMO—Shortlist)

Solution. Denote by the corresponding lowercase letter the coordinate of a
point denoted by an uppercase letter (Fig. 5.7).

Using the rotation formula, we obtain

m = a+ (b− a)ε, n = c+ (b− c)ε,

p = c+ (d− c)ε, q = a+ (d− a)ε,

where

ε = cos 60◦ + i sin 60◦.
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Figure 5.7.

It is easy to see that

m+ p = a+ c+ (b + d− a− c)ε = n+ q,

whence MNPQ is a parallelogram or points M, N, P, Q are collinear.

Problem 12. On the sides of a triangle ABC draw externally the squares
ABMM ′, ACNN ′, and BCPP ′. Let A′, B′, C′ be the midpoints of the
segments M ′N ′, P ′M, PN , respectively.

Prove that triangles ABC and A′B′C′ have the same centroid.

Solution. Denote by the corresponding lowercase letter the coordinate of a
point denoted by an uppercase letter (Fig. 5.8).

Using the rotation formula, we obtain

n′ = a+ (c− a)i and m′ = a+ (b− a)(−i);

hence

a′ =
m′ + n′

2
=

2a+ (c− b)i

2
.

Likewise,

b′ =
2b+ (a− c)i

2
and c′ =

2c+ (b− a)i

2
.
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Figure 5.8.

Triangles A′B′C′ and ABC have the same centroid if and only if

a′ + b′ + c′

3
=

a+ b + c

3
.

Since

a′ + b′ + c′ =
2a+ 2b+ 2c+ (c− b+ a− c+ b− a)i

2
= a+ b+ c,

the conclusion follows.

Problem 13. Let ABC be an acute triangle. On the same side of line AC
as point B, draw isosceles triangles DAB, BCE, AFC with right angles at
A, C, F , respectively.

Prove that the points D, E, F are collinear.

Solution. Denote by the corresponding lowercase letters the coordinates of
the points denoted by uppercase letters. The rotation formula gives

d = a+ (b− a)(−i), e = c+ (b− c)i, a = f + (c− f)i.

Then

f =
a− ci

1− i
=

a+ c+ (a− c)i

2
=

d+ e

2
,

so points F, D, E are collinear.

Problem 14. On sides AB and CD of the parallelogram ABCD, draw
external equilateral triangles ABE and CDF . On the sides AD and BC,
draw external squares of centers G and H .

Prove that EHFG is a parallelogram.
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Solution. Denote by the corresponding lowercase letter the coordinate of a
point denoted by an uppercase letter.

Since ABCD is a parallelogram, we have a+ c = b+ d (Fig. 5.9).
The rotations with 90◦ and centers G and H map the points A and C into

D and B, respectively. Then d − g = (a − g)i and b − h = (c − h)i, whence

g =
d− ai

1− i
and h =

b − ci

1− i
.

The rotations with angle 60◦ and centers E and F map the points B and
D into A and C, respectively. Then a − e = (b − e)ε and c − f = (d − f)ε,

where ε = cos 60◦ + i sin 60◦. Hence e =
a− bε

1− ε
and f =

c− dε

1− ε
.

Observe that

g + h =
d+ b− (a+ c)i

1− i
=

(a+ c)− (a+ c)i

1− i
= a+ c

and

e+ f =
a+ c− (b + d)ε

1− ε
=

a+ c− (ac)ε

1− ε
= a+ c;

hence EHFG is a parallelogram.

Problem 15. Let ABC be a right triangle with Ĉ = 90◦ and let D be the foot
of the altitude from C. If M and N are the midpoints of the segments [DC]
and [BD], prove that lines AM and CN are perpendicular.

Solution 1. Consider the complex plane with origin at point C, and let
a, b, d, m, n be the coordinates of points A, B, D, M, N , respectively
(Fig. 5.10).

Triangles ABC and CDB are similar with the same orientation; hence

a− d

d− 0
=

0− d

d− b
or d =

ab

a+ b
.

Then

m =
d

2
=

ab

2(a+ b)
and n =

b+ d

2
=

2ab+ b2

2(a+ b)
.

Thus

arg
m− a

n− 0
= arg

ab

2(a+ b)
− a

2ab+ b2

2(a+ b)

= arg
(
−a

b

)
=

π

2
,

so AM ⊥ CN .
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Figure 5.9.

Figure 5.10.

Solution 2. Using the properties of the real product in Proposition 1,
Sect. 4.1, and taking into account that CA ⊥ CB, we have

(m− a) · (n− c) =

(
ab

2(a+ b)
− a

)
·
(
2ab+ b2

2(a+ b)

)

=

(
a

2a+ b

2(a+ b)

)
·
(
b
2a+ b

2(a+ b)

)
=

∣
∣
∣
∣
2a+ b

2(a+ b)

∣
∣
∣
∣

2

(a · b) = 0.

The conclusion follows from Proposition 2 in Sect. 4.1.

Problem 16. Let ABC be an equilateral triangle with circumradius equal to
1. Prove that for every point P on the circumcircle, we have

PA2 + PB2 + PC2 = 6.
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Solution. Consider the complex plane such that the coordinates of points
A, B, C are the cube roots of unity 1, ε, ε2, respectively, and let z be the
coordinate of point P . Then |z| = 1, and we have

PA2 + PB2 + PC2 = |z − 1|2 + |z − ε|2 + |z − ε2|2

= (z − 1)(z − 1) + (z − ε)(z − ε) + (z − ε2)(z − ε2)

= 3|z|2 − (1 + ε+ ε2)z − (1 + ε+ ε2)z + 1 + |ε|2 + |ε2|2

= 3− 0 · z − 0 · z + 1 + 1 + 1 = 6,

as desired.

Problem 17. Point B lies inside the segment [AC]. Equilateral triangles
ABE and BCF are constructed on the same side of line AC. If M and
N are the midpoints of segments AF and CE, prove that triangle BMN is
equilateral.

Solution. Denote by the corresponding lowercase letter the coordinate of a
point denoted by an uppercase letter. The point E is obtained from point B
by a rotation with center A and angle 60◦; hence

e = a+ (b− a)ε, where ε = cos 60◦ + i sin 60◦.

Likewise, f = b+ (c− b)ε.
The coordinates of points M and N are

m =
a+ b+ (c− b)ε

2
and n =

c+ a+ (b− a)ε

2
.

It suffices to prove that
m− b

n− b
= ε. Indeed, we have

m− b = (n− b)ε

if and only if

a− b+ (c− b)ε = (c+ a− 2b)ε+ (b − a)ε2.

That is,
a− b = (a− b)ε+ (b− a)(ε− 1),

as needed.

Problem 18. Let ABCD be a square with center O and let M, N be the
midpoints of segments BO, CD respectively.

Prove that triangle AMN is an isosceles right triangle.

Solution. Consider the complex plane with center at O such that 1i,−1,−i
are the coordinates of points A, B, C, D, respectively (Fig. 5.11).

The points M and N have coordinates m =
i

2
and n =

−1− i

2
, so
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Figure 5.11.

a−m

n−m
=

1− i

2
−1− i

2
− i

2

=
2− i

−1− 2i
= i.

Then AM ⊥ MN and AM = NM , as needed.

Problem 19. In the plane of the nonequilateral triangle A1A2A3 consider
points B1, B2, B3 such that triangles A1A2B3, A2A3B1 and A3A1B2 are
similar with the same orientation.

Prove that triangle B1B2B3 is equilateral if and only if triangles A1A2B3,
A2A3B1, A3A1B2 are isosceles with bases A1A2, A2A3, A3A1 and base
angles equal to 30◦.

Solution. Triangles A1A2B3, A2A3B1, A3A1B2 are similar with the same

orientation; hence
b3 − a2
a1 − a2

=
b1 − a3
a2 − a3

=
b2 − a1
a3 − a1

= z. Then

b3 = a2 + z(a1 − a2), b1 = a3 + z(a2 − a3), b2 = a1 + z(a3 − a1).

Triangle B1B2B3 is equilateral if and only if

b1 + εb2 + ε2b3 = 0 or b1 + εb3 + ε2b2 = 0.

Assume that the first is valid.
Then we have

b1 + εb2 + ε2b3 = 0 if and only if

a3 + z(a2 − a3) + εa1 + εz(a3 − a1) + ε2a2 + ε2z(a1 − a2) = 0, i.e.,

a3 + εa1 + ε2a2 + z(a2 − a3 + εa3 − εa1 + ε2a1 − ε2a2) = 0.
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The last relation is equivalent to

z[a2(1− ε)(1 + ε)− a1ε(1− ε)− a3(1 − ε)] = −(a3 + εa1 + ε2a2),

i.e.,

z = +
a3 + εa1 + ε2a2

(1− ε)(a3 + εa1 + ε2a2)
=

1

1− ε
=

1√
3
(cos 30◦ + i sin 30◦),

which shows that triangles A1A2B3, A2A3B1, and A3A1B2 are isosceles with
angles of 30o.

Notice that a3 + εa1 + ε2a2 �= 0, since triangle A1A2A3 is not equilateral.

Problem 20. The diagonals AC and CE of a regular hexagon ABCDEF are
divided by interior points M and N , respectively, such that

AM

AC
=

CN

CE
= r.

Determine r knowing that points B, M , and N are collinear.

(23rd IMO)

Solution. Consider the complex plane with origin at the center of the regular
hexagon such that 1, ε, ε2, ε3, ε4, ε5 are the coordinates of the vertices
B, C, D, E, F, A, where

ε = cos
π

3
+ i sin

π

3
=

1 + i
√
3

2
.

Since
MC

MA
=

NE

NC
=

1− r

r
,

the coordinates of points M and N are

m = εr + ε5(1 − r)

and

n = ε2r + ε(1− r),

respectively (Fig. 5.12).

The points B, M, N are collinear if and only if
m− 1

n− 1
∈ R

∗. We have

m− 1 = εr + ε5(1− r) − 1 = εr − ε2(1− r) − 1

=
1 + i

√
3

2
r − −1 + i

√
3

2
(1− r) = −1

2
+

i
√
3

2
(2r − 1)
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Figure 5.12.

and

n− 1 = ε3r + ε(1− r)− 1 = −r +
1 + i

√
3

2
(1 − r)− 1

= −1

2
− 3r

2
+

i
√
3

2
(1− r);

hence

m− 1

n− 1
=

−1 + i
√
3(2r − 1)

−(1 + 3r) + i
√
3(1 − r)

∈ R
∗

if and only if √
3(1− r)− (1 + 3r) ·

√
3(2r − 1) = 0.

This is equivalent to 1− r = 6r2 − r− 1, i.e., r2 =
1

3
. It follows that r =

1√
3
.

Problem 21. Let G be the centroid of quadrilateral ABCD. Prove that if
lines GA and GD are perpendicular, then AD is congruent to the line segment
joining the midpoints of sides AD and BC.

Solution. Consider a, b, c, d, g the coordinates of points A, B, C, D, G,
respectively. Using properties of the real product of complex numbers,
we have

GA ⊥ GD if and only if (a− g) · (d− g) = 0, i.e.,
(
a− a+ b+ c+ d

4

)
·
(
d− a+ b+ c+ d

4

)
= 0.

That is,

(3a− b− c− d) · (3d− a− b− c) = 0,

and we obtain

[a− b− c+ d+ 2(a− d)] · [a− b− c+ d− 2(a− d)] = 0.
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The last relation is equivalent to

(a+ d− b− c) · (a+ d− b− c) = 4(a− d) · (a− d), i.e.,
∣
∣
∣
∣
a+ d

2
− b+ c

2

∣
∣
∣
∣

2

= |a− d|2. (1)

Let M and N be the midpoints of the sides AD and BC. The coordinates

of points M and N are
a+ d

2
and

b+ c

2
; hence relation (1) shows that

MN = AD, and we are done.

Problem 22. Consider a convex quadrilateral ABCD with nonparallel
opposite sides AD and BC. Let G1, G2, G3, G4 be the centroids of the
triangles BCD, ACD, ABD, ABC, respectively. Prove that if AG1 = BG2

and CG3 = DG4, then ABCD is an isosceles trapezoid.

Solution. Denote by the corresponding lowercase letter the coordinate of a
point denoted by an uppercase letter. Setting s = a+ b+ c+ d yields

g1 =
b+ c+ d

3
=

s− a

3
, g2 =

s− b

3
, g3 =

s− c

3
, g4 =

s− d

3
.

The relation AG1 = BG2 can be written as

|a− g1| = |b− g2|, that is, |4a− s| = |4b− s|.

Using the real product of complex numbers, we see that the last relation is
equivalent to

(4a− s) · (4a− s) = (4b− s) · (4b− s), i.e.,

16|a|2 − 8a · s = 16|b|2 − 8b · s.

We obtain

2(|a|2 − |b|2) = (a− b) · s. (1)

Likewise, we have

CG3 = DG4 if and only if 2(|c|2 − |d|2) = (c− d) · s. (2)

Subtracting the relations (1) and (2) gives

2(|a|2 − |b|2 − |c|2 + |d|2) = (a− b− c+ d) · (a+ b+ c+ d).

That is,

2(|a|2 − |b|2 − |c|2 + |d|2) = |a+ d|2 − |b+ c|2, i.e.,

2(aa− bb− cc+ dd) = ac+ ad+ ad+ dd− bb− bc− bc− cc.
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We obtain

aa− ad− ad+ dd = bb− bc− bc+ cc, i.e.,

|a− d|2 = |b− c|2.

Hence

AD = BC. (3)

Adding relations (1) and (2) gives

2(|a|2 − |b|2 − |d|2 + |c|2) = (a− b− d+ c) · (a+ b+ c+ d),

and similarly, we obtain
AC = BD. (4)

From relations (3) and (4), we deduce thatAB ‖CD, and consequently,ABCD
is an isosceles trapezoid.

Problem 23. Prove that in every quadrilateral ABCD,

AC2 · BD2 = AB2 · CD2 + AD2 ·BC2 − 2AB ·BC · CD ·DA · cos(A+ C).

(Bretschneider relation, or a first generalization of Ptolemy’s theorem)

Solution. Let zA, zB, zC , zD be the coordinates of the points A, B, C, D
in the complex plane with origin at A and point B on the positive real axis
(see Fig. 5.13).

Using the identities

(zA − zC)(zB − zD) = −(zA − zB)(zD − zC)− (zA − zD)(zC − zB)

and

(zA − zC)(zB − zD) = −(zA − zB)(zD − zC)− (zA − zD)(zC − zB),

Figure 5.13.
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by multiplication we obtain

AC2 ·BD2 = AB2 ·DC2 +AD ·BC2 + z + z,

where
z = (zA − zB)(zD − zC)(zA − zD)(zC − zB).

It suffices to prove that

z + z = −2AB · BC · CD ·DA · cos(A+ C).

We have
zA − zB = AB(cosπ + i sinπ),

zD − zC = DC[cos(2π −B − C) + i sin(2π −B − C)],

zA − zD = DA[cos(π −A) + i sin(π −A)],

and

zC − zD = BC[cos(π +B) + i sin(π +B)].

Then

z + z = 2Rez = 2AB ·BC · CD ·DA cos(5π −A− C)

= −2AB ·BC · CD ·DA · cos(A+ C),

and we are done.

Remark. Since cos(A+ C) ≥ −1, this relation gives Ptolemy’s inequality

AC ·BD ≤ AB ·DC +AD ·BC,

with equality only for cyclic quadrilaterals.

Problem 24. Let ABCD be a quadrilateral and AB = a, BC = b, CD =
c, DA = d, AC = d1, and BD = d2.

Prove that

d22[a
2d2 + b2c2 − 2abcd cos(B −D)] = d21[a

2b2 + c2d2 − 2abcd cos(A− C)].

(A second generalization of Ptolemy’s theorem)

Solution. Let zA, zB, zC , zD be the coordinates of the points A, B, C, D
in the complex plane with origin at D and point C on the positive real axis
(see Figure 5.13 but with different notation).

Multiplying the identities

(zB − zD)[(zA − zB)(zA − zD)− (zC − zB)(zC − zD)]

= (zC − zA) · [(zB − zA)(zB − zC)− (zD − zA)(zD − zC)]
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and

(zB − zD)[(zA − zB)(zA − zD)− (zC − zB)(zC − zD)]

= (zC − zA) · [(zB − zA)(zB − zC)− (zD − zA)(zD − zC)]

yields

d22[a
2 · d2 + b2 · c2 − (zA − zB)(zA − zD)(zC − zB)(zC − zD)

−(zC − zB)(zC − zD)(zA − zB)(zA − zD)]

= d21[a
2 · b2 + c2 · d2 − (zB − zA)(zB − zC)(zD − zA)(zD − zC)

−(zD − zA)(zD − zC)(zB − zA)(zB − zC)].

It suffices to prove that

2Re(zA − zB)(zA − zD)(zC − zB)(zC − zD) = 2abcd cos(B −D)

and

2Re(zB − zA)(zB − zC)(zB − zA)(zD − zc) = 2abcd cos(A− C).

We have
zB − zA = a[cos(π +A+D) + i sin(π +A+D)],

zB − zC = b[cos(π − C) + i sin(π − C)],

zD − zA = d[cos(π −D) + i sin(π −D)],

zD − zC = c[cosπ + i sinπ],

zA − zB = a[cos(A+D) + i sin(A+D)],

zA − zD = d(cosD + i sinD),

zC − zB = b(cosB + i sinB),

zC − zD = c(cos 0 + i sin 0);

hence

2Re(zA − zB)(zA − zD)(zC − zB)(zC − zD)

= 2abcd cos(A+D +D + C) = 2abcd cos(2π −B +D) = 2abcd cos(B −D)

and

2Re(zB − zA)(zB − zC)(zD − zA)(zD − zC)

= 2abcd cos(π +A+D + π − C + π −D + π)

= 2abcd cos(4π +A− C) = 2abcd cos(A− C),

as desired.
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Remark. If ABCD is a cyclic quadrilateral, then B + D = A + C = π.
It follows that

cos(B −A) = cos(2B − π) = − cos 2B

and

cos(A− C) = cos(2A− π) = − cos 2A.

The relation becomes

d22[(ad+ bc)2 − 2abcd(1− cos 2B)] = d21[(ab+ cd)2 − 2abcd(1− cos 2A)].

This is equivalent to

d22(ad+ bc)2 − 4abcdd22 sin
2 B = d21(ab + cd)2 − 2abcdd21 sin

2 A. (1)

The law of sines applied to the triangles ABC and ABD with circumradii
R gives d1 = 2R sinB and d2 = 2R sinA, hence d1 sinA = d2 sinB. The
relation (1) is equivalent to

d22(ad+ bc)2 = d21(ab+ cd)2,

and consequently,

d2
d1

=
ab+ cd

ad+ bc
. (2)

Relation (2) is known as Ptolemy’s second theorem.

Problem 25. In a plane, three equilateral triangles OAB, OCD, and OEF
are given. Prove that the midpoints of the segments BC, DE, and FA are the
vertices of an equilateral triangle.

Solution. Consider the complex plane with origin at O and assume that
triangles OAB, OCD, OEF are positively oriented. Denote by the corre-
sponding lowercase letter the coordinate of a point denoted by an uppercase
letter.

Let ε = cos 60◦ + i sin 60◦. Then

b = aε, d = cε, f = eε

and

m =
b+ c

2
=

aε+ c

2
, n =

d+ e

2
=

cε+ e

2
, p =

f + a

2
=

eε+ a

2
.

Triangle MNP is equilateral if and only if

m+ ωn + ω2p = 0,
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where

ω = cos 120◦ + i sin 120◦ = ε2.

Because

m+ ε2n+ ε4p = m+ ε2n− εp =
1

2
(aε+ c− c+ eε2 − eε2 − εa) = 0,

we are done.

We invite the reader to solve the following problems using complex
numbers.

Problem 26. Let ABC be a triangle such that AC2 + AB2 = 5BC2. Prove
that the medians from the vertices B and C are perpendicular.

Problem 27. On the sides BC, CA, AB of triangle ABC, the points
A′, B′, C′ are chosen such that

A′B
A′C

=
B′C
B′A

=
C′A
C′B

= k.

Consider the points A′′, B′′, C′′ on the segments B′C′, C′A′, A′B′ such that

A′′C′

A′′B′ =
C′′B′

C′′A′ =
B′′A′

B′′C′ = k.

Prove that triangles ABC and A′′B′′C′′ are similar.

Problem 28. Prove that the following inequality is true in every triangle:

R

2r
≥ mα

hα
.

Equality holds only for equilateral triangles.

Problem 29. Let ABCD be a quadrilateral inscribed in the circle C(O; R).
Prove that

AB2 +BC2 + CD2 +DA2 = 8R2

if and only if AC ⊥ BD or one of the diagonals is a diameter of C(O;R).

Problem 30. On the sides of the convex quadrilateral ABCD, equilateral
triangles ABM, BCN, CDP and DAQ are drawn external to the figure.
Prove that quadrilaterals ABCD and MNPQ have the same centroid.

Problem 31. Let ABCD be a quadrilateral and consider the rotations
R1, R2, R3, R4 with centers A, B, C, D through angle α in the same
direction.



5.4 Solving Geometric Problems 229

Points M, N, P, Q are the images of points A, B, C, D under the
rotations R2, R3, R4, R1, respectively.

Prove that the midpoints of the diagonals of the quadrilaterals ABCD and
MNPQ are the vertices of a parallelogram.

Problem 32. Prove that in every cyclic quadrilateral ABCD, the following
hold:

(a) AD +BC cos(A+B) = AB cosA+ CD cosD.
(b) BC sin(A+B) = AB sin A–CD sinD.

Problem 33. Let O9, I, G be the nine-point center, the incenter, and the
centroid, respectively, of a triangle ABC. Prove that lines O9G and AI are

perpendicular if and only if Â =
π

3
.

Problem 34. Two circles ω1 and ω2 are given in the plane, with centers O1

and O2, respectively. Let M
′
1 and M ′

2 be two points on ω1 and ω2, respectively,
such that the lines O1M

′
1 and O2M

′
2 intersect. Let M1 and M2 be points on ω1

and ω2, respectively, such that when measured clockwise, the angles ̂M ′
1O1M1

and ̂M ′
2O2M2 are equal.

(a) Determine the locus of the midpoint of [M1M2].
(b) Let P be the point of intersection of lines O1M1 and O2M2 The circum-

circle of triangle M1PM2 intersects the circumcircle of triangle O1PO2 at
P and another point Q. Prove that Q is fixed, independent of the locations
of M1 and M2.

(2000 Vietnamese Mathematical Olympiad)

Problem 35. Isosceles triangles A3A1O2 and A1A2O3 are constructed
externally along the sides of a triangle A1A2A3 with O2A3 = O2A1 and
O3A1 = O3A2. Let O1 be a point on the opposite side of line A2A3 from A1,

with Ô1A3A2 = 1
2

̂A1O3A2 and Ô1A2A3 = 1
2

̂A1O2A3, and let T be the foot of
the perpendicular from O1 to A2A3. Prove that A1O1 ⊥ O2O3 and that

A1O1

O2O3
= 2

O1T

A2A3
.

(2000 Iranian Mathematical Olympiad)

Problem 36. A triangle A1A2A3 and a point P0 are given in the plane.
We define As = As−3 for all s ≥ 4. We construct a sequence of points
P0, P1, P2, . . . such that Pk+1 is the image of Pk under the rotation with
center Ak+1 through the angle 120◦ clockwise (k = 0, 1, 2, . . .). Prove that
if P1986 = P0, then the triangle A1A2A3 is equilateral.

(27th IMO)
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Problem 37. Two circles in a plane intersect. Let A be one of the points of
intersection. Starting simultaneously from A, two points move with constant
speed, each point traveling along its own circle in the same direction. After
one revolution, the two points return simultaneously to A. Prove that there
exists a fixed point P in the plane such that at every time, the distances from
P to the moving points are equal.

(21st IMO)

Problem 38. Inside the square ABCD, the equilateral triangles ABK,
BCL, CDM , DAN are inscribed. Prove that the midpoints of the segments
KL, LM , MN , NK and the midpoints of the segments AK, BK, BL, CL,
CM , DM , DN , AN are the vertices of a regular dodecagon.

(19th IMO)

Problem 39. Let ABC be an equilateral triangle and let M be a point in

the interior of angle B̂AC. Points D and E are the images of points B and
C under the rotations with center M and angle 120◦, counterclockwise and
clockwise, respectively. Prove that the fourth vertex of the parallelogram with
sides MD and ME is the reflection of point A across point M .

Problem 40. Prove that the following inequality holds for every point M
inside parallelogram ABCD:

MA ·MC +MB ·MD ≥ AB · BC.

Problem 41. Let ABC be a triangle, H its orthocenter, O its circumcenter,
and R its circumradius. Let D be the reflection of A across BC, let E be that
of B across CA, and F that of C across AB. Prove that D, E, and F are
collinear if and only if OH = 2R.

(39th IMO—Shortlist)

Problem 42. Let ABC be a triangle such that ÂCB = 2ÂBC. Let D be the
point on the side BC such that CD = 2BD. The segment AD is extended to
E so that AD = DE. Prove that

ÊCB + 180◦ = 2ÊBC.

(39th IMO—Shortlist)

Problem 43. Let P be point situated in the interior of a circle. Two variable
perpendicular lines through P intersect the circle at A and B. Find the locus
of the midpoint of the segment AB.

(Mathematical Reflections, 2010)
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Problem 44. Let ABC be a triangle and consider the points M ∈ (BC),
N ∈ (CA), P ∈ (AB) such that

AP

PB
=

BM

MC
=

CN

NA
.

Prove that if MNP is an equilateral triangle, then ABC is an equilateral
triangle as well.

(Romanian Mathematical Olympiad—District Round, 2006)

Problem 45. Consider the triangle ABC and the points D ∈ (BC), E ∈
(CA), F ∈ (AB), such that

BD

DC
=

CE

EA
=

AF

FB
.

Prove that if the circumcenter of triangles DEF and ABC coincide, then the
triangle ABC is equilateral.

(Romanian Mathematical Olympiad—Final Round, 2008)

Problem 46. Exterior to a nonequilateral triangle ABC, consider the similar
triangles (in this order) ABM , BCN , and CAP such that the triangle MNP
is equilateral. Find the angles of the triangles ABM , BCN , and CAP .

(Romanian Mathematical Olympiad—Final Round, 2010)

5.5 Solving Trigonometric Problems

Problem 1. Prove that

cos
π

11
+ cos

3π

11
+ cos

5π

11
+ cos

7π

11
+ cos

9π

11
=

1

2
.

Solution. Setting z = cos
π

11
+ i sin

π

11
implies that

z + z3 + z5 + z7 + z9 =
z11 − z

z2 − 1
=

−1− z

z2 − 1
=

1

1− z
.

Taking the real parts of both sides of the equality gives the desired result.

Problem 2. Compute the product P = cos 20◦ · cos 40◦ · cos 80◦.

Solution 1. Setting z = cos 20◦ + i sin 20◦ implies z9 = −1, z = cos 20◦ −
i sin 20◦, and cos 20◦ =

z2 + 1

2z
, cos 40◦ =

z4 + 1

2z2
, cos 80◦ =

z8 + 1

2z4
. Then
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P =
(z2 + 1)(z4 + 1)(z8 + 1)

8z7
=

(z2 − 1)(z2 + 1)(z4 + 1)(z8 + 1)

8z7(z2 − 1)

=
z16 − 1

8(z9 − z7)
=

−z7 − 1

8(−1− z7)
=

1

8
.

Solution 2. This is a classical problem with a classical solution. Let S =
cos 20◦ cos 40◦ cos 80◦. Then

S sin 20◦ = sin 20◦ cos 20◦ cos 40◦ cos 80◦

=
1

2
sin 40◦ cos 40◦ cos 80◦

=
1

4
sin 80◦ cos 80◦

=
1

8
cos 160◦ =

1

8
sin 20◦.

So S =
1

8
.

Note that this classical solution is contrived, with no motivation. The
solution using complex numbers, however, is a straightforward computation.

Problem 3. Let x, y, z be real numbers such that

sinx+ sin y + sin z = 0 and cosx+ cos y + cos z = 0.

Prove that

sin 2x+ sin 2y + sin 2z = 0 and cos 2x+ cos 2y + cos 2z = 0.

Solution. Setting z1 = cosx+ i sinx, z2 = cos y+ i sin y, z3 = cos z+ i sin z,
we have z1 + z2 + z3 = 0 and |z1| = |z2| = |z3| = 1.

We have

z21 + z22 + z23 = (z1 + z2 + z3)
2 − 2(z1z2 + z2z3 + z3z1)

= −2z1z2z3

(
1

z1
+

1

z2
+

1

z3

)
= −2z1z2z3(z1 + z2 + z3)

= −2z1z2z3(z1 + z2 + z3) = 0.

Thus (cos 2x + cos 2y + cos 2z) + i(sin 2x + sin 2y + sin 2z) = 0, and the
conclusion is obvious.

Problem 4. Prove that

cos2 10◦ + cos2 50◦ + cos2 70◦ =
3

2
.
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Solution. Setting z = cos 10◦ + i sin 10◦, we have z9 = i and

cos 10◦ =
z2 + 1

2z
, cos 50◦ =

z10 + 1

2z5
, cos 70◦ =

z14 + 1

2z7
.

The identity is equivalent to

(
z2 + 1

2z

)2
+

(
z10 + 1

2z5

)2
+

(
z14 + 1

2z7

)2
=

3

2
.

That is,

z16 + 2z14 + z12 + z24 + 2z14 + z4 + z28 + 2z14 + 1 = 6z14, i.e.,

z28 + z24 + z16 + z12 + z4 + 1 = 0.

Using relation z18 = −1, we obtain

z16 + z12 − z10 − z6 + z4 + 1 = 0,

or equivalently,

(z4 + 1)(z12 − z6 + 1) = 0.

That is,

(z4 + 1)(z18 + 1)

z6 + 1
= 0,

which is obvious.

Problem 5. Solve the equation

cosx+ cos 2x− cos 3x = 1.

Solution. Setting z = cosx+ i sinx yields

cosx =
z2 + 1

2z
, cos 2x =

z4 + 1

2z2
, cos 3x =

z6 + 1

2z3
.

The equation may be rewritten as

z2 + 1

2z
+

z4 + 1

2z2
− z6 + 1

2z3
= 1, i.e., z4 + z2 + z5 + z − z6 − 1− 2z3 = 0.

This is equivalent to

(z6 − z5 − z4 + z3) + (z3 − z2 − z + 1) = 0,

or

(z3 + 1)(z3 − z2 − z + 1) = 0.

Finally, we obtain
(z3 + 1)(z − 1)2(z + 1) = 0.
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Thus, z = 1 or z = −1 or z3 = −1, and consequently, x ∈ {2kπ|k ∈ Z} or

x ∈ {π + 2kπ|k ∈ Z} or x ∈
{
π + 2kπ

3
|k ∈ Z

}
. Therefore,

x ∈ {kπ|k ∈ Z} ∪
{
2k + 1

3
π|k ∈ Z

}
.

Problem 6. Compute the sums

S =
n∑

k=1

qk · cos kx and T =
n∑

k=1

qk · sin kx.

Solution. We have

1 + S + iT =
n∑

k=0

qk(cos kx+ i sin kx) =
n∑

k=0

qk(cos x+ i sinx)k

=
1− qn+1(cosx+ i sinx)n+1

1− q cosx− iq sinx

=
1− qn+1[cos(n+ 1)x+ i sin(n+ 1)x]

1− q cosx− iq sinx

=
[1− qn+1 cos(n+ 1)x− iqn+1 sin(n+ 1)x][1− q cosx+ iq sinx]

q2 − 2q cosx+ 1
;

hence

1 + S =
qn+2 cosnx− qn+1 cos(n+ 1)x− q cosx+ 1

q2 − 2q cosx+ 1

and

T =
qn+2 sinnx− qn+1 sin(n+ 1)x+ q sinx

q2 − 2q cosx+ 1
.

Remark. If q = 1, then we obtain the well-known formulas

n∑

k=1

cos kx =
sin

nx

2
cos

(n+ 1)x

2

sin
x

2

and
n∑

k=1

sin kx =
sin

nx

2
sin

(n+ 1)x

2

sin
x

2

.
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Indeed, we have

n∑

k=1

cos kx =
cosnx− cos(n+ 1)x− (1− cosx)

2(1− cosx)

=
2 sin

x

2
sin

(2n+ 1)x

2
− 2 sin2

x

2

4 sin2
x

2

=
sin

(2n+ 1)x

2
− sin

x

2

2 sin
x

2

=
sin

nx

2
cos

(n+ 1)x

2

sin
x

2

and
n∑

k=1

sin kx =
sinnx− sin(n+ 1)x+ sinx

2(1− cosx)

=
2 sin

x

2
cos

x

2
− 2 sin

x

2
cos

(2n+ 1)x

2

4 sin2
x

2

=
cos

x

2
− cos

(2n+ 1)x

2

2 sin
x

2

=
sin

nx

2
sin

(n+ 1)x

2

sin
x

2

.

Problem 7. The points A1, A2, . . . , A10 are equally distributed on a circle
of radius R (in that order). Prove that A1A4 −A1A2 = R.

Solution. Let z = cos
π

10
+ i sin

π

10
. Without loss of generality, we may

assume that R = 1. We need to show that 2 sin
3π

10
− 2 sin

π

10
= 1.

In general, if z = cos a + i sina, then sin a = z2−1
2iz , and we have to prove

that
z6 − 1

iz3
− z2 − 1

iz
= 1. This reduces to z6 − z4 + z2 − 1 = iz3. Because

z5 = i, the previous relation is equivalent to z8−z6+z4−z2+1 = 0. But this
is true, because (z8 − z6 + z4 − z2 +1)(z2 +1) = z10 +1 = 0 and z2 +1 �= 0.

Problem 8. Show that

cos
π

7
− cos

2π

7
+ cos

3π

7
=

1

2
.

(5th IMO)

Solution. Let z = cos
π

7
+ i sin

π

7
. Then z7 + 1 = 0. Because z �= −1 and

z7+1 = (z+1)(z6− z5+ z4− z3+ z2− z+1) = 0, it follows that the second
factor in the above product is zero. The condition is equivalent to
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z(z2 − z + 1) =
1

1− z3
.

The given sum is

cos
π

7
− cos

2π

7
+ cos

3π

7
= Re(z3 − z2 + z).

Therefore, we have to prove that Re

(
1

1− z3

)
=

1

2
. This follows from the

following well-known lemma.

Lemma. If z = cos t+ i sin t and z �= 1, then Re
1

1− z
=

1

2
.

Proof.

1

1− z
=

1

1− (cos t+ i sin t)
=

1

(1− cos t)− i sin t

=
1

2 sin2
t

2
− 2i sin

t

2
cos

t

2

=
1

2 sin
t

2

(
sin

t

2
− i cos

t

2

)

=
sin

t

2
+ i cos

t

2

2 sin
t

2

=
1

2
+ i

cos
t

2

2 sin
t

2

.

Problem 9. Prove that the average of the numbers k sink◦ (k = 2, 4,
6, . . . , 180) is cot 1◦.

(1996 USA Mathematical Olympiad)

Solution. Set z = cos t+ i sin t. From the identity

z + 2z2 + · · ·+ nzn = (z + · · ·+ zn) + (z2 + · · ·+ zn) + · · ·+ zn

=
1

z − 1
[(zn+1 − z) + (zn+1 − z2) + · · ·+ (zn+1 − zn)]

=
nzn+1

z − 1
− zn+1 − z

(z − 1)2
,

we derive the formulas

n∑

k=1

k cos kt =
(n+ 1) sin

(2n+ 1)t

2

2 sin
t

2

− 1− cos(n+ 1)t

4 sin2
t

2

, (1)

n∑

k=1

k sin kt =
sin(n+ 1)t

4 sin2
t

2

−
n cos

(2n+ 1)t

2

2 sin
t

2

. (2)
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Using relation (2), one obtains

2 sin 2◦+4 sin 4◦+ · · ·+178 sin178◦=2(sin 2◦+2sin2 · 2◦ + · · ·+ 89 sin 89 · 2◦)

= 2

(
sin 90 · 2◦

4 sin2 1◦
− 90 cos 179◦

2 sin 1◦

)
= −90 cos179◦

sin 1◦
= 90 cot 1◦.

Finally,

1

90
(2 sin 2◦ + 4 sin 4◦ + · · ·+ 178 sin178◦ + 180 sin180◦) = cot 1◦.

Problem 10. Let n be a positive integer. Find real numbers a0 and akl, k, l =
1, n, k > l, such that

sin2 nx

sin2 x
= a0 +

∑

1≤l<k≤n

akl cos 2(k − l)x

for all real numbers x �= mπ, m ∈ Z.

(Romanian Mathematical Regional Contest “Grigore Moisil,” 1995)

Solution. Using the identities

S1 =

n∑

j=1

cos 2jx =
sinnx cos(n+ 1)x

sinx

and

S2 =

n∑

j=1

sin 2jx =
sinnx sin(n+ 1)x

sinx
,

we obtain

S2
1 + S2

2 =

(
sinnx

sinx

)2
.

On the other hand,

S2
1 + S2

2 = (cos 2x+ cos 4x+ · · ·+ cos 2nx)2

+(sin 2x+ sin 4x+ · · ·+ sin 2nx)2

= n+ 2
∑

1≤l<k≤n

(cos 2kx cos 2lx + sin 2kx sin 2lx)

= n+ 2
∑

1≤l<k≤n

cos 2(k − l)x;

hence
(
sinnx

sinx

)2
= n+ 2

∑

1≤l<k≤n

cos 2(k − l)x.
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Set a0 = n and akl = 2, 1 ≤ l < k ≤ n, and the problem is solved.

Here are some more problems.

Problem 11. Sum the following two n-term series for θ = 30◦:

(i) 1 +
cos θ

cos θ
+

cos(2θ)

cos2 θ
+

cos(3θ)

cos3 θ
+ · · ·+ cos((n− 1)θ)

cosn−1 θ
, and

(ii) cos θ cos θ + cos2 θ cos(2θ) + cos3 θ cos(3θ) + · · ·+ cosn θ cos(nθ).

(Crux Mathematicorum, 2003)

Problem 12. Prove that

1 + cos2n
(π
n

)
+ cos2n

(
2π

n

)
+ · · ·+ cos2n

(
(n− 1)π

n

)

= n · 4−n

(
2 +

(
2n
n

) )
,

for all integers n ≥ 2.

Problem 13. For every integer p ≥ 0, there are real numbers a0, a1, . . . , ap
with ap �= 0 such that

cos 2pα = a0 + a1 sin
2 α+ · · ·+ ap · (sin2 α)p, for all α ∈ R.

Problem 14. Let

x =

44∑

n=1

cosn6

44∑

n=1

sinn6

.

What is the greatest integer that does not exceed 100x?

(1997, AIME Problem 11)

Problem 15. Prove that

n∑

k=0

(
n

k

)
cos[(n− k)x+ ky] =

(
2 cos

x− y

2

)n
cosn

x+ y

2

for all positive integers n and all real numbers x and y.

(Mathematical Reflections, 2009)
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Problem 16. Let k be a fixed positive integer and let

S(j)
n =

(
n

j

)
+

(
n

j + k

)
+

(
n

j + 2k

)
+ . . . , j = 0, 1, . . . , k − 1.

Prove that

(
S(0)
n + S(1)

n cos
2π

k
+ . . .+ S(k−1)

n cos
2(k − 1)π

k

)2

+

(
S(1)
n sin

2π

k
+ S(2)

n sin
4π

k
+ . . .+ S(k−1)

n sin
2(k − 1)π

k

)2
=
(
2 cos

π

k

)2n
.

(Mathematical Reflections, 2010)

Problem 17.

(a) Let z1, z2, z3, z4 be distinct complex numbers of zero sum, having equal
absolute values. Prove that the points of complex coordinates z1, z2, z3, z4
are the vertices of a rectangle.

(b) Let x, y, z, t be real numbers such that sinx+ sin y + sin z + sin t = 0 and
cosx+ cos y + cos z + cos t = 0. Prove that for every integer n,

sin(2n+ 1)x+ sin(2n+ 1)y + sin(2n+ 1)z + sin(2n+ 1)t = 0.

(Romanian Mathematical Olympiad—District Round, 2011)

5.6 More on the nth Roots of Unity

Problem 1. Let n ≥ 3 and k ≥ 2 be positive integers and consider the
complex numbers

z = cos
2π

n
+ i sin

2π

n

and

θ = 1− z + z2 − z3 + · · ·+ (−1)k−1zk−1.

(a) If k is even, prove that θn = 1 if and only if n is even and
n

2
divides k− 1

or k + 1.
(b) If k is odd, prove that θn = 1 if and only if n divides k − 1 or k + 1.

Solution. Since z �= −1, we have

θ =
1 + (−1)k+1zk

1 + z
.
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(a) If k is even, then

θ =
1− zk

1 + z
=

1− cos
2kπ

n
− i sin

2kπ

n

1 + cos
2π

n
+ i sin

2π

n

=

sin
kπ

n

(
sin

kπ

n
− i cos

kπ

n

)

cos
π

n

(
cos

π

n
+ i sin

π

n

)

= −i
sin

kπ

n

cos
π

n

(
cos

(k − 1)π

n
+ i sin

(k − 1)π

n

)
,

and

|θ| =

∣∣
∣
∣
∣
∣
∣

sin
kπ

n

cos
π

n

∣∣
∣
∣
∣
∣
∣
.

We have

|θ| = 1 if and only if | sin kπ

n
| = | cos π

n
|.

That is,

sin2
kπ

n
= cos2

π

n
or cos

2kπ

n
+ cos

2π

n
= 0.

The last relation is equivalent to

cos
(k + 1)π

n
cos

(k − 1)π

n
= 0, i.e.,

2(k + 1)

n
∈ 2Z+ 1,

or
2(k − 1)

n
∈ 2Z+ 1. This is equivalent to the statement that n is even

and
n

2
divides k + 1 or k − 1. Hence, it suffices to prove that θn = 1 is

equivalent to |θ| = 1.
The direct implication is obvious. Conversely, if |θ| = 1, then n = 2t,
t ∈ Z+, and t divides k + 1 or k − 1. Since k is even, the numbers
k + 1, k − 1 are odd; hence t = 2l + 1 and n = 4l+ 2, l ∈ Z.
Then

θ = ±i

(
cos

(k − 1)π

n
+ i sin

(k − 1)π

n

)

and

θn = − cos(k − 1)π = 1,

as desired.
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(b) If k is odd, then

θ =
1 + zk

1 + z
=

1 + cos
2kπ

n
+ i sin

2kπ

n

1 + cos
2π

n
+ i sin

2π

n

=

cos
kπ

n

(
cos

kπ

n
+ i sin

kπ

n

)

cos
π

n

(
cos

π

n
+ i sin

π

n

)

=
cos

kπ

n

cos
π

n

(
cos

k − 1

n
π + i sin

k − 1

n
π

)
.

We have

|θ| = 1 if and only if

∣
∣
∣
∣cos

kπ

n

∣
∣
∣
∣ =
∣
∣
∣cos

π

n

∣
∣
∣ .

That is,

cos2
kπ

n
= cos2

π

n
so cos

2kπ

n
= cos

2π

n
.

It follows that

sin
(k + 1)π

n
sin

(k − 1)π

n
= 0,

i.e., n divides k + 1 or k − 1.

It suffices to prove that θn = 1 is equivalent to |θ| = 1. Since the direct
implication is obvious, let us prove the converse. If |θ| = 1, then k ± 1 =
nt, t ∈ Z. Then k = nt± 1 and

θ = (−1)t
(
cos

(k − 1)π

n
+ i sin

(k − 1)π

n

)
.

It follows that

θn = (−1)k±1(cos(k − 1)π + i sin(k − 1)π) = (−1)k±1(−1)k−1 = 1,

as desired.

Problem 2. Consider the cube root of unity

ε = cos
2π

3
+ i sin

2π

3
.

Compute

(1 + ε)(1 + ε2) · · · (1 + ε1987).

Solution. Notice that ε3 = 1, ε2 + ε+ 1 = 0 and 1987 = 662 · 3 + 1. Then



242 5 Olympiad-Caliber Problems

(1 + ε)(1 + ε2) · · · (1 + ε1987)

=
661∏

k=0

[(1 + ε3k+1)(1 + ε3k+2)(1 + ε3k+3)](1 + ε1987)

=
661∏

k=0

[(1 + ε)(1 + ε2)(1 + 1)](1 + ε) = (1 + ε)[2(1 + ε+ ε2 + ε3)]662

= (1 + ε)[2(0 + 1)]662 = 2662(1 + ε)

= 2662(−ε2) = 2662
1 + i

√
3

2
= 2661(1 + i

√
3).

Problem 3. Let ε �= 1 be a cube root of unity. Compute

(1 − ε+ ε2)(1− ε2 + ε4) · · · (1 − εn + ε2n).

Solution. Notice that 1 + ε + ε2 = 0 and ε3 = 1. Hence 1 − ε + ε2 = −2ε
and 1 + ε− ε2 = −2ε2.

Then

1− εn + ε2n =

⎧
⎨

⎩

1, if n ≡ 0(mod3),
−2ε, if n ≡ 1(mod3),
−2ε2, if n ≡ 2(mod3),

and the product of any three consecutive factors of the given product equals

1 · (−2ε) · (−2ε2) = 22.

Therefore,

(1− ε+ ε2)(1 − ε2 + ε4) · · · (1− εn + ε2n)

=

⎧
⎨

⎩

2
2n
3 , if n ≡ 0(mod3),

−22[
n
3 ]+1ε , if n ≡ 1(mod3),

22[
n
3 ]+2, if n ≡ 2(mod3).

Problem 4. Prove that the complex number

z =
2 + i

2− i

has modulus equal to 1, but z is not an nth root of unity for any positive
integer n.

Solution. Obviously, |z| = 1. Assume for the sake of a contradiction that
there is an integer n ≥ 1 such that zn = 1.

Then (2 + i)n = (2− i)n, and writing 2 + i = (2− i) + 2i, it follows that
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(2− i)n = (2 + i)n

= (2− i)n +

(
n
1

)
(2 − i)n−12i+ · · ·+

(
n

n− 1

)
(2 − i)(2i)n−1 + (2i)n.

This is equivalent to

(2i)n = (−2 + i)

[ (
n
1

)
(2i− 1)n−22i+ · · ·+

(
n

n− 1

)
(2i)n−1

]

= (−2 + i)(a+ bi),

with a, b ∈ Z.
Taking the modulus of both sides of the equality gives 2n = 5(a2 + b2), a

contradiction.

Problem 5. Let Un be the set of nth roots of unity. Prove that the following
statements are equivalent:

(a) there is α ∈ Un such that 1 + α ∈ Un;
(b) there is β ∈ Un such that 1− β ∈ Un.

(Romanian Mathematical Olympiad—Second Round, 1990)

Solution. Assume that there exists α ∈ Un such that 1 + α ∈ Un. Setting

β =
1

1 + α
, we have βn =

(
1

1 + α

)n
=

1

(1 + α)n
= 1, and hence β ∈ Un.

On the other hand, 1 − β =
α

α+ 1
and (1 − β)n =

αn

(1 + α)n
= 1; hence

1− β ∈ Un, as desired.

Conversely, if β, 1 −β ∈ Un, set α =
1− β

β
. Since αn =

(1− β)n

βn
= 1 and

(1 + α)n =
1

βn
= 1, we have α ∈ Un and 1 + α ∈ Un, as desired.

Remark. The statements (a) and (b) are equivalent to 6|n. Indeed, if α, 1+
α ∈ Un, then |α| = |1+α| = 1. It follows that 1 = |1+α|2 = (1+α)(1+α) =

1 + α+ α+ |α|2 = 1 + α+ α+ 1 = 2 + α+
1

α
, i.e., α = − 1

2 ± i
√
3
2 ; hence

1 + α =
1

2
± i

√
3

2
= cos

2π

6
± i sin

2π

6
.

Since (1 + α)n = 1, it follows that 6 divides n.

Conversely, if n is a multiple of 6, then both α = −1

2
+ i

√
3

2
and 1 + α =

1

2
+ i

√
3

2
belong to Un.

Problem 6. Let n ≥ 3 be a positive integer and let ε �= 1 be an nth root of
unity.
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(1) Show that |1− ε| > 2

n− 1
.

(2) If k is a positive integer such that n does not divide k, then

∣
∣
∣∣sin

kπ

n

∣
∣
∣∣ >

1

n− 1
.

(Romanian Mathematical Olympiad—Final Round, 1988)

Solution.

(1) We have εn − 1 = (ε− 1)(εn−1 + · · ·+ ε+ 1); hence taking into account
that ε �= 1, we obtain εn−1+ · · ·+ε+1 = 0. The last relation is equivalent
to (εn−1 − 1) + · · ·+ (ε− 1) = −n, i.e., (ε− 1)[εn−2 +2εn−3 + · · ·+ (n−
2)ε+ (n− 1)] = −n. Passing to the absolute value, we find that

n = |ε−1||εn−2+2εn−3+· · ·+(n−1)| ≤ |ε−1|(|εn−2|+2|ε|n−3+· · ·+(n−1)).

Therefore,

n ≤ |1− ε|(1 + 2 + · · ·+ (n− 1)) = |1− ε|n(n− 1)

2
,

i.e., we obtain the inequality |1 − ε| ≥ 2

n− 1
. Moreover, equality is not

possible, since the geometric images of 1, ε, . . . , εn−1 are not collinear.

(2) Consider ε = cos
2kπ

n
+ i sin

2kπ

n
and obtain

1− ε = 1− cos
2kπ

n
− i sin

2kπ

n
.

Hence

|1− ε|2 =

(
1− cos

2kπ

n

)2
+ sin2

2kπ

n
= 2− 2 cos

2kπ

n
= 4 sin2

kπ

n
.

Applying the inequality in (1), we see that the desired inequality follows.

Problem 7. Let Un be the set of nth roots of unity. Prove that

∏

ε∈Un

(
ε+

1

ε

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if n ≡ 0 (mod4),

2, if n ≡ 1 (mod2),

−4, if n ≡ 2 (mod4),

2, if n ≡ 3 (mod4).

Solution. Consider the polynomial

f(x) = Xn − 1 =
∏

ε∈Un

(X − ε).
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Denoting by Pn the product in our problem, we have

Pn =
∏

ε∈Un

(
ε+

1

ε

)
=
∏

ε∈Un

ε2 + 1

ε
=

∏

ε∈Un

(ε+ i)(ε− i)

∏

ε∈Un

ε

=

∏

ε∈Un

(i+ ε)
∏

ε∈Un

(−i+ ε)

(−1)nf(0)
=

f(−1) · f(i)
(−1)n−1

=
[(−i)n − 1](in − 1)

(−1)n−1
.

If n ≡ 0(mod 4), then in = 1 and Pn = 0.
If n ≡ 1(mod 2), then (−1)n−1 = 1 and

Pn = (−in − 1)(in − 1) = −(i2n − 1) = −((−1)n − 1) = −(−1− 1) = 2.

If n ≡ 2(mod 4), then (−1)n−1 = −1, (−i)n = in = i2 = −1, in = −1; hence

Pn =
(−1− 1)(−1− 1)

−1
= −4.

If n ≡ 3(mod 4), then (−1)n−1 = 1 and

Pn = (−in − 1)(in − 1) = (i3 − 1)(−i3 − 1) = −(i6 − 1) = −((−1)3 − 1) = 2,

and we are done.

Problem 8. Let

ω = cos
2π

2n+ 1
+ i sin

2π

2n+ 1
, n ≥ 0,

and let

z =
1

2
+ ω + ω2 + · · ·+ ωn.

Prove the following:

(a) Im(z2k) = Re(z2k+1) = 0 for all k ∈ N.
(b) (2z + 1)2n+1 + (2z − 1)2n+1 = 0.

Solution. We have ω2n+1 = 1 and

1 + ω + ω2 + · · ·+ ω2n = 0.

Then

1

2
+ ω + ω2 + · · ·+ ωn + ωn(ω + ω2 + · · ·+ ωn) +

1

2
= 0,

or

z + ωn

(
z − 1

2

)
+

1

2
= 0,
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whence

z =
1

2
· ω

n − 1

ωn + 1
.

(a) We have z =
1

2

1
ωn − 1
1
ωn + 1

= −z. Thus z2k = z2k and z2k+1 = −z2k+1. The

conclusion follows from these two equalities.
(b) From the relation

z + ωn

(
z − 1

2

)
+

1

2
= 0,

we obtain 2z + 1 = −ωn(2z − 1). Taking into account that ω2n+1 = 1, we
obtain (2z + 1)2n+1 = −(2z − 1)2n+1, and we are done.

Problem 9. Let n be an odd positive integer and ε0, ε1, . . . , εn−1 the complex
roots of unity of order n. Prove that

n−1∏

k=0

(a+ bε2k) = an + bn

for all complex numbers a and b.

(Romanian Mathematical Olympiad—Second Round, 2000)

Solution. If ab = 0, then the claim is obvious, so consider the case that
a �= 0 and b �= 0.

We start with a useful lemma.

Lemma. If ε0, ε1, . . . , εn−1 are the complex roots of unity of order n, where
n is an odd integer, then

n−1∏

k=0

(A+Bεk) = An +Bn

for all complex numbers A and B.

Proof. Using the identity

xn − 1 =

n−1∏

k=0

(x− εk)

for x = −A
B yields

−
(
An

Bn
+ 1

)
= −

n−1∏

k=0

(
A

B
+ εk

)
,

and the conclusion follows. �
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Because n is odd, the function f : Un → Un is bijective. To prove this,
it suffices to show that it is injective. Indeed, assume that f(x) = f(y).
It follows that (x−y)(x+y) = 0. If x+y = 0, then xn = (−y)n, i.e., 1 = −1,
a contradiction. Hence x = y.

From the lemma we have

n−1∏

k=0

(a+ bε2k) =

n−1∏

j=0

(a+ bεj) = an + bn.

Problem 10. Let n be an even positive integer such that n
2 is odd and let

ε0, ε1, . . . , εn−1 be the complex roots of unity of order n. Prove that

n−1∏

k=0

(a+ bε2k) = (a
n
2 + b

n
2 )2

for arbitrary complex numbers a and b.

(Romanian Mathematical Olympiad—Second Round, 2000)

Solution. If b = 0, the claim is obvious. If not, let n = 2(2s+ 1). Consider

a complex number α such that α2 =
a

b
and the polynomial

f = Xn − 1 = (X − ε0)(X − ε1) · · · (X − εn−1).

We have

f
(α
i

)
=

(
1

i

)a
(α− iε0) · · · (α− iεn−1)

and

f
(
−α

i

)
=

(
−1

i

)a
(α+ iε0) · · · (α + iεn−1);

hence

f
(α
i

)
f
(
−α

i

)
= (α2 + ε20) · · · (α2 + ε2n−1).

Therefore,

n−1∏

k=0

(a+ bε2k) = bn
n−1∏

k=0

(a
b
+ ε2k

)
= bn

n−1∏

k=0

(α2 + ε2k)

= bnf
(α
i

)
f
(
−α

i

)
= bn[(α2)2s+1 + 1]2 = bn

[(a
b

)2s+1

+ 1

]2

= b2(2s+1)

(
a2s+1 + b2s+1

b2s+1

)2
= (a

n
2 + b

n
2 )2.
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The following problems also involve nth roots of unity.

Problem 11. For all positive integers k, define

Uk = {z ∈ C|zk = 1}.

Prove that for integers m and n with 0 < m < n, we have

U1 ∪ U2 ∪ · · · ∪ Um ⊂ Un−m+1 ∪ Un−m+2 ∪ · · · ∪ Un.

(Romanian Mathematical Regional Contest “Grigore Moisil,” 1997)

Problem 12. Let a, b, c, d, α be complex numbers such that |a| = |b| �= 0
and |c| = |d| �= 0. Prove that all roots of the equation

c(bx+ aα)n − d(ax+ bα)n = 0, n ≥ 1,

are real numbers.

Problem 13. Suppose that z �= 1 is a complex number such that zn = 1, n ≥
1. Prove that

|nz − (n+ 2)| ≤ (n+ 1)(2n+ 1)

6
|z − 1|2.

(Crux Mathematicorum, 2003)

Problem 14. Let M be a set of complex numbers such that if x, y ∈ M ,

then
x

y
∈ M . Prove that if the set M has n elements, then M is the set of

the nth roots of 1.

Problem 15. A finite set A of complex numbers has the property that z ∈ A
implies zn ∈ A for every positive integer n.

(a) Prove that
∑

z∈A

z is an integer.

(b) Prove that for every integer k, one can choose a set A that satisfies the
above condition and

∑

z∈A

z = k.

(Romanian Mathematical Olympiad—Final Round, 2003)

Problem 16. Let n ≥ 3 be an odd integer. Evaluate

n−1
2∑

k=1

sec
2kπ

n
.

(Mathematical Reflections)

Problem 17. Let n be an odd positive integer and let z be a complex number
such that z2n−1 − 1 = 0. Evaluate

n−1∏

k=0

(
z2

k

+
1

z2k
− 1

)
.

(Mathematical Reflections)
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Problem 18. The expression sin 2◦ sin 4◦ sin 6◦ . . . sin 90◦ is equal to
p
√
5/250, where p is an integer. Find p.

Problem 19. The polynomial P (x) = (1 + x+ x2 + . . .+ x17)2 − x17 has 34
complex roots of the form

zk = rk[cos(2πak) + i sin(2πak)], k = 1, 2, 3, . . . , 34,

with 0 < a1 ≤ a2 ≤ a3 ≤ . . . ≤ a34 < 1 and rk > 0. Given that a1 + a2 +
a3 + a4 + a5 = m/n, where m and n are relatively prime positive integers,
find m+ n.

(2004 AIME I, Problem 13)

Problem 20. The sets A = {z : z18 = 1} and B = {w : w48 = 1} are both
sets of complex roots of unity. The set C = {zw : a ∈ A and w ∈ B} is also
a set of complex roots of unity. How many distinct elements are in C?

(1990 AIME, Problem 10)

Problem 21. Let n ≥ 3 be an integer and z = cos
2π

n
+ i sin

2π

n
. Consider

the sets

A = {1, z, z2, . . . , zn−1}

and
B = {1, 1 + z, 1 + z + z2, . . . , 1 + z + . . .+ zn−1}.

Determine A ∩B.

(Romanian Mathematical Olympiad—District Round, 2008)

5.7 Problems Involving Polygons

Problem 1. Let z1, z2, . . . , zn be distinct complex numbers such that |z1| =
|z2| = · · · = |zn|. Prove that

∑

1≤i<j≤n

∣
∣∣
∣
zi + zj
zi − zj

∣
∣∣
∣

2

≥ (n− 1)(n− 2)

2
.

Solution. Consider the pointsA1, A2, . . . , An with coordinates z1, z2, . . . , zn.
The polygon A1A2 · · ·An is inscribed in the circle with center at the origin
and radius R = |z1|.

The coordinate of the midpoint Aij of the segment [AiAj ] is equal to
zi + zj

2
, for 1 ≤ i < j ≤ n. Hence

|zi + zj |2 = 4OA2
ij and |zi − zj |2 = AiA

2
j .
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Moreover, 4OA2
ij = 4R2 −AiA

2
j .

The sum

∑

1≤i<j≤n

∣
∣
∣
∣
zi + zj
zi − zj

∣
∣
∣
∣

2

equals

∑

1≤i<j≤n

4OA2
ij

AiA2
j

=
∑

1≤i<j≤n

4R2 −AiA
2
j

AiA2
j

= 4R2
∑

1≤i<j≤n

1

AiA2
j

−
(
n
2

)
.

The AM–HM (arithmetic mean–harmonic mean) inequality gives

∑

1≤i<j≤n

1

AiA2
j

≥

((
n
2

))2

∑

1≤i<j≤n

AiA2
j

.

Since
∑

1≤i<j≤n

AiA
2
j ≤ n2 ·R2, it follows that

∑

1≤i<j≤n

∣∣
∣
∣
zi + zj
zi − zj

∣∣
∣
∣

2

≥ 4R2

((
n
2

))2

∑

1≤i<j≤n

AiAj
−
(
n
2

)

≥
4

((
n
2

))2

n2
−
(
n
2

)
=

(4

(
n
2

)
− n2) ·

(
n
2

)

n2
=

(n− 1)(n− 2)

2
,

as claimed.

Problem 2. Let A1A2 · · ·An be a polygon and let a1, a2, . . . , an be the
coordinates of the vertices A1, A2, . . . , An. If |a1| = |a2| = · · · = |an| = R,
prove that

∑

1≤i<j≤n

|ai + aj |2 ≥ n(n− 2)R2.
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Solution. We have

∑

1≤i<j≤n

|ai + aj |2 =
∑

1≤i<j≤n

(ai + aj)(ai + aj)

=
∑

1≤i<j≤n

(|ai|2 + |aj |2 + aiaj + aiaj)

= 2R2

(
n
2

)
+
∑

i	=j

aiaj = n(n− 1)R2 +

n∑

i=1

n∑

j=1

aiaj −
n∑

i=1

aiai

= n(n− 1)R2 +

(
n∑

i=1

ai

)(
n∑

i=1

ai

)

− nR2

= n(n− 2)R2 +

∣
∣
∣
∣
∣

n∑

i=1

ai

∣
∣
∣
∣
∣

2

≥ n(n− 2)R2,

as desired.

Problem 3. Let z1, z2, . . . , zn be the coordinates of the vertices of a regular
polygon with circumcenter at the origin of the complex plane. Prove that there
are i, j, k ∈ {1, 2, . . . , n} such that zi + zj = zk if and only if 6 divides n.

Solution. Let ε = cos 2π
n + i sin 2π

n . Then zp = z1 · εp−1, for all p = 1, n.
We have zi + zj = zk if and only if 1 + εj−i = εk−i, i.e.,

2 cos
(j − i)π

n

[
cos

(j − i)π

n
+ i sin

(j − i)π

n

]
= cos

2(k − i)π

n
+i sin

2(k − i)π

n
.

The last relation is equivalent to

(j − i)π

n
=

π

3
=

2(k − i)π

n
, i.e., n = 6(k − i) = 3(j − i);

hence 6 divides n.
Conversely, if 6 divides n, let

i = 1, j =
n

3
+ 1, k =

n

6
+ 1,

and we have Zi + zl = zk, as desired.

Problem 4. Let z1, z2, . . . , zn be the coordinates of the vertices of a regular
polygon. Prove that

z21 + z22 + · · ·+ z2n = z1z2 + z2z3 + · · ·+ znz1.

Solution. Without loss of generality, we may assume that the center of the
polygon is the origin of the complex plane.

Let zk = z1ε
k−1, where

ε = cos
2π

n
+ i sin

2π

n
, k = 1, . . . , n.
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The right-hand side is equal to

z1z2 + z2z3 + · · ·+ znz1 =
n∑

k=1

zizk+1

=

n∑

k=1

z21ε
2k−1 = z21 · ε ·

1− ε2n

1− ε2
= 0.

On the other hand,

z21 + z22 + · · ·+ z2n =

n∑

k=1

z2i =

n∑

k=1

z21ε
2k−2 = z21

1− ε2n

1− ε2
= 0,

and we are done.

Problem 5. Let n ≥ 4 and let a1, a2, . . . , an be the coordinates of the
vertices of a regular polygon. Prove that

a1a2 + a2a3 + · · ·+ ana1 = a1a3 + a2a4 + · · ·+ ana2.

Solution. Assume that the center of the polygon is the origin of the complex
plane and ak = a1ε

k−1, k = 1, . . . , n, where

ε = cos
2π

n
+ i sin

2π

n
.

The left-hand side of the equality is

a1a2 + a2a3 + · · ·+ ana1 = a21

n∑

k=1

ε2k−1 = a21ε
1− ε2n

1− ε2
= 0.

The right-hand side of the equality is

a21

n∑

k=1

ε2k = a21ε
2 1− ε2n

1− ε2
= 0,

and we are done.

Problem 6. Let z1, z2, . . . , zn be distinct complex numbers such that

|z1| = |z2| = · · · = |zn| = 1.

Consider the following statements:

(a) z1, z2, . . . , zn are the coordinates of the vertices of a regular polygon.
(b) zn1 + zn2 + · · ·+ znn = n(−1)n+1z1z2 . . . zn.

Decide with proof whether the implications (a) ⇒ (b) and (b) ⇒ (a) are
true.
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Solution. We condider first the implication (a) ⇒ (b).

Let ε = cos
2π

n
+i sin

2π

n
. Since z1, z2, . . . , zn are coordinates of the vertices

of a regular polygon, without loss of generality we may assume that

zk = z1ε
k−1 for k = 1, n.

Then relation (b) becomes

zn1 (1 + εn + ε2n + · · ·+ εn(n−1)) = n(−1)n+1zn1 ε
1+2+···+(n−1).

This is equivalent to

n = n(−1)n+1ε
n(n−1)

2 , i.e.,

1 = (−1)n+1

(
cos

n(n− 1)

2
· 2π
n

+ i sin
n(n− 1)

2
· 2π
n

)
.

We obtain

1 = (−1)n+1(cos(n− 1)π + i sin(n− 1)π), i.e., 1 = (−1)n+1(−1)n−1,

which is valid. Therefore, the implication (a) ⇒ (b) holds.
We prove now that the implication (b) ⇒ (a) is also valid.
Observe that

|n · (−1)n+1z1z2 . . . zn| = n|z1| · |z2| · · · |zn| = n;

hence
|zn1 + zn2 + · · ·+ znn | = n.

Using the triangle inequality, we obtain

n = |zn1 + zn2 + · · ·+ znn | ≤ |zn1 |+ |zn2 |+ · · ·+ |znn | = 1+ 1 + · · ·+ 1︸ ︷︷ ︸
n times

= n;

hence the numbers zn1 , zn2 , . . . , znn have the same argument. Since |zn1 | =
|zn2 | = · · · = |znn | = 1, it follows that zn1 = zn2 = · · · = znn = a, where a is
a complex number with |a| = 1. The numbers z1, z2, . . . , zn are distinct.
Therefore, they are the nth roots of a, and consequently the coordinates of
the vertices of a regular polygon.

Problem 7. Let A, B, C be three consecutive vertices of a regular n-gon and
consider the point M on the circumcircle such that points B and M lie on
opposite sides of the line AC.

Prove that MA+MC = 2MB cos
π

n
.

(A generalization of the Van Schouten theorem; see the first remark below)
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Solution. Consider the complex plane with origin at the center of the
polygon and let 1 be the coordinate of A1.

If ε = cos
2π

n
+ i sin

2π

n
, then εk−1 is the coordinate of Ak, then k = 1, n.

Without loss of generality, assume that A = A1, B = A2, and C = A3.
Let zM = cos t + i sin t, t ∈ [0, 2π) be the coordinate of the point M . Since

points B and M are separated by the line AC, it follows that
4π

n
< t.

Then

MA = |zM − 1| =
√
(cos t− 1)2 + sin2 t =

√
2− 2 cos t = 2 sin

t

2
,

MB = |zM − ε| = 2 sin

(
t

2
− π

n

)
,

and

MC = |zM − ε2| = 2 sin

(
t

2
− 2π

n

)
.

The equality

MA+MC = 2MB cos
π

n

is equivalent to

2 sin
t

2
+ 2 sin

(
t

2
− 2π

n

)
= 4 sin

(
t

2
− π

n

)
cos

π

n
,

which follows from the sum-to-product formula on the left-hand side.

Remarks.

(1) If n = 3, then we obtain Van Schouten’s theorem: For every point M on
the circumcircle of the equilateral triangle ABC such that M belongs to

the arc
�

AC, we have
MA+MC = MB.

Note that this result also follows from Ptolemy’s theorem.
(2) If n = 4, then for every point M on the circumcircle of the square ABCD

such that B and M lie on opposite sides of the line AC, we have the
relation

MA+MC =
√
2MB.

Problem 8. Let P be a point on the circumcircle of square ABCD. Find all
integers n > 0 such that the sum

Sn(P ) = PAn + PBn + PCn + PDn

is constant with respect to the point P .
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Solution. Consider the complex plane with origin at the center of the square
such that A, B, C, D have coordinates 1, i,−1,−i, respectively.

Let z = a+bi be the coordinate of point P , where a, b ∈ R with a2+b2 = 1.
The sum Sn(P ) is equal to

Sn(P )=[(a−1)2+b2]
n
2 +[a2+(b−1)2]

n
2 + [(a+ 1)2 + b2]

n
2 + [a2 + (b+ 1)2]

n
2

= 2
n
2

[
(1 + a)

n
2 + (1− a)

n
2 + (1 + b)

n
2 + (1− b)

n
2

]
.

Set P = A(1, 0). Then Sn(A) = 2
n+2
2 + 2n. For P = E

(√
2
2 ,

√
2
2

)
, we get

Sn(E) = 2(2−
√
2)

n
2 + 2(2 +

√
2)

n
2 .

Since Sn(P ) is constant with respect to P , it follows that Sn(A) = Sn(E), or

2
n+2
2 + 2n = 2(2−

√
2)

n
2 + 2(2 +

√
2)

n
2 .

It is obvious that 2
n+2
2 2(2 −

√
2)

n
2 for all n ≥ 1. We also have 2n >

2(2 +
√
2)

n
2 for all n ≥ 9. The last inequality is equivalent to

1

4
>

(
2 +

√
2

4

)n

for n ≥ 9.

The left-hand side of the inequality decreases with n, so it suffices to observe
that

1

4
>

(
2 +

√
2

4

)9

.

Therefore the inequality Sn(A) = Sn(E) can hold only for n ≤ 8. Now it is
not difficult to verify that Sn(P ) is constant only for n ∈ {2, 4, 6}.

Problem 9. A function f : R2 → R is called Olympic if it has the following
property: given n ≥ 3 distinct points A1, A2, . . . , An ∈ R

2, if f(A1) =
f(A2) = · · · = f(An), then the points A1, A2, . . . , An are the vertices of a
convex polygon. Let P ∈ C[X ] be a nonconstant polynomial. Prove that the
function f : R2 → R defined by f(x, y) = |P (x+ iy)| is Olympic if and only
if all the roots of P are equal.

(Romanian Mathematical Olympiad—Final Round, 2000)

Solution. First suppose that all the roots of P are equal, and write P (x) =
a(z − z0)

n for some a, z0 ∈ C and n ∈ N. If A1, A2, . . . , An are distinct
points in R

2 such that f(A1) = f(A2) = · · · = f(An), then A1, . . . , An

are situated on a circle with center (Re(z0), Im(z0)) and radius n
√
|f(A1)/a|,

implying that the points are the vertices of a convex polygon.
Conversely, suppose that not all the roots of P are equal, and write P (x) =

(z − z1)(z − z2)Q(z), where z1 and z2 are distinct roots of P (x) such that
|z1 − z2| is minimal. Let l be the line containing Z1 = (Re(z1), Im(z1)) and
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Z2 = (Re(z2), Im(z2)), and let z3 = 1
2 (z1+z2), so that Z3 = (Re(z3), Im(z3))

is the midpoint of [Z1Z2]. Also, let s1, s2 denote the rays Z3Z1 and Z3Z2,
and let d = f(Z3) ≥ 0. We must have r > 0, because otherwise, z3 would
be a root of P such that |z1 − z3| < |z1 − z2|, which is impossible. Because
f(Z3) = 0,

lim
Z3→∞
Z∈s1

f(Z) = +∞,

and f is continuous, there exists a point Z4 ∈ s1 on the side of Z1 opposite Z3

such that f(Z4) = r. Similarly, there exists Z5 ∈ s2 on the side of Z2 opposite
Z3 such that f(Z5) = r. Thus, f(Z3) = f(Z4) = f(Z5) and Z3, Z4, Z5 are
not vertices of a convex polygon. Hence f is not Olympic.

Problem 10. In a convex hexagon ABCDEF, Â+ Ĉ + Ê = 360◦ and

AB · CD · EF = BC ·DE · FA.

Prove that AB · FC ·EC = BF ·DE · CA.

(1999 Polish Mathematical Olympiad)

Solution. Position the hexagon in the complex plane and let a = zB − zA,
b = zC−zB, . . ., f = zA−zF . The product identity implies that |ace| = |bdf |,
and the angle equality implies that

−b

a
· −d

c
· −f

e
is real and positive. Hence,

ace = −bdf . Also, a+b+c+d+e+f = 0. Multiplying this by ad and adding
ace+ bdf = 0 gives a2d+ abd+ acd+ ad2 + ade+ adf + ace+ bdf = 0, which
factors as a(d+ e)(c+ d) + d(a+ b)(f + a) = 0. Thus

|a(d+ e)(c+ d)| = |d(a+ b)(f + a)|,

which is what we wanted.

Problem 11. Let n > 2 be an integer and f : R2 → R a function such that
for every regular n-gon A1A2 · · ·An,

f(A1) + f(A2) + · · ·+ f(An) = 0.

Prove that f is identically zero.

(Romanian Mathematical Olympiad—Final Round, 1996)

Solution. We identify R
2 with the complex plane and let ζ = cos

2π

n
+

i sin
2π

n
. Then the condition is that for every z ∈ C and positive real number t,

n∑

j=1

f(z + tζj) = 0.
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In particular, for each of k = 1, . . . , n, we have

n∑

j=1

f(z − ζk + ζj) = 0.

Summing over k yields

n∑

m=1

n∑

k=1

f (z − (1 − ζm)ζk) = 0.

For m = n, the inner sum is nf(z); for other m, the inner sum again runs
over a regular polygon, hence is 0. Thus f(z) = 0 for all z ∈ C.

Here are some proposed problems.

Problem 12. Prove that there exists a convex 1990-gon with the following
two properties:

(a) all angles are equal;
(b) the lengths of the sides are the numbers 12, 22, 32, . . . , 19892, 19902 in

some order.

(31st IMO)

Problem 13. Let A and E be opposite vertices of a regular octagon. Let an
be the number of paths of length n of the form (P0, P1, . . . , Pn), where Pi are
vertices of the octagon and the paths are constructed using the following rule:
P0 = A, Pn = E, Pi, and Pi+1 are adjacent vertices for i = 0, . . . , n − 1,
and Pi �= E for i = 0, . . . , n− 1.

Prove that a2n−1 = 0 and a2n =
1√
2
(xn−1 − yn−1), for all n = 1, 2, 3, . . .,

where x = 2 +
√
2 and y = 2−

√
2.

(21st IMO)

Problem 14. Let A, B, C be three consecutive vertices of a regular polygon
and let us consider a point M on the major arc AC of the circumcircle.

Prove that
MA ·MC = MB2 −AB2.

Problem 15. Let A1A2 · · ·An be a regular polygon inscribed in a circle C of
radius 1. Find the maximum value of

∏n
j=1 PAj , where P is an arbitrary

point on circle C.

(Romanian Mathematical Regional Contest “Grigore Moisil,” 1992)
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Problem 16. Let A1A2 · · ·A2n be a regular polygon with circumradius equal
to 1 and consider a point P on the circumcircle. Prove that

n−1∑

k=0

PA2
k+1 · PA2

n+k+1 = 2n.

Problem 17. Let A1A2 . . . An be a regular n-gon inscribed in a circle with
center O and radius R. Prove that for each point M in the plane of the n-gon,
the following inequality holds:

n∏

k=1

MAk ≤ (OM2 +R2)
n
2 .

(Mathematical Reflections, 2009)

5.8 Complex Numbers and Combinatorics

Problem 1. Compute the sum

3n−1∑

k=0

(−1)k
(

6n
2k + 1

)
3k.

Solution. We have

3n−1∑

k=0

(−1)k
(

6n
2k + 1

)
3k =

3n−1∑

k=0

(
6n

2k + 1

)
(−3)k

=

3n−1∑

k=0

(
6n

2k + 1

)
(i
√
3)2k =

1

i
√
3

3n−1∑

k=0

(
6n

2k + 1

)
(i
√
3)2k+1

=
1

i
√
3
Im(1 + i

√
3)6n =

1

i
√
3
Im
[
2
(
cos

π

3
+ i sin

π

3

)]6n

=
1

i
√
3
Im[26n(cos 2πn+ i sin 2πn)] = 0.

Problem 2. Calculate the sum Sn =
n∑

k=0

(
n
k

)
cos kα, where α ∈ [0, π].

Solution. Consider the complex number z = cosα + i sinα and the sum

Tn =
n∑

k=0

(
n
k

)
sin kα. We have
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Sn + iTn =

n∑

k=0

(
n
k

)
(cos kα+ i sinkα) =

n∑

k=0

(
n
k

)
(cosα+ i sinα)k

=
n∑

k=0

(
n
k

)
zk = (1 + z)n. (1)

The polar form of the complex number 1 + z is

1 + cosα+ i sinα = 2 cos2
α

2
+ 2i sin

α

2
cos

α

2

= 2 cos
α

2

(
cos

α

2
+ i sin

α

2

)
,

since α ∈ [0, π]. From (1), it follows that

Sn + iTn =
(
2 cos

α

2

)n (
cos

nα

2
+ i sin

nα

2

)
,

i.e.,

Sn =
(
2 cos

α

2

)n
cos

nα

2
and Tn =

(
2 cos

α

2

)n
sin

nα

2
.

Problem 3. Prove the identity

((
n
0

)
−
(
n
2

)
+

(
n
4

)
− · · ·
)2

+

((
n
1

)
−
(
n
3

)
+

(
n
5

)
− · · ·
)2

= 2n.

Solution. Set

xn =

(
n
0

)
−
(
n
2

)
+

(
n
4

)
− · · · and yn =

(
n
1

)
−
(
n
3

)
+

(
n
5

)
− · · ·

and observe that

(1 + i)n = xn + yni. (1)

Passing to the absolute value, it follows that

|xn + yni| = |(1 + i)n| = |1 + i|n = 2
n
2 .

This is equivalent to x2
n + y2n = 2n.

Remark. We can write the explicit formulas for xn and yn as follows.
Observe that

(1 + i)n =
(√

2
(
cos

π

4
+ i sin

π

4

))n
= 2

n
2

(
cos

nπ

4
+ i sin

nπ

4

)
.

From relation (1), we get

xn = 2
n
2 cos

nπ

4
and yn = 2

n
2 sin

nπ

4
.
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Problem 4. If m and p are positive integers and m > p, then

(
m
0

)
+

(
m
p

)
+

(
m
2p

)
+

(
m
3p

)
+ · · ·

=
2m

p

⎛

⎝1 + 2

[ p−1
2 ]∑

k=1

(
cos

kπ

p

)m
cos

mkπ

p

⎞

⎠ .

Solution. We begin with the following simple but useful remark: If f ∈ R[X ]

is a polynomial, f = a0 + a1X + · · ·+ amXm, and ε = cos
2π

p
+ i sin

2π

p
is a

primitive pth root of unity, then for all real numbers n, the following relation
holds:

a0 + apx
p + a2px

2p + · · · = 1

p
(f(x) + f(εx) + · · ·+ f(εp−1x)). (1)

To prove (1), we use the relation

1 + εk + ε2k + · · ·+ ε(p−1)k =

{
p, if p|k,
0, otherwise,

on the right-hand side.
Consider the case that p is odd. Using relation (1) for the polynomial

f = (1 +X)m =

(
m
0

)
+

(
m
1

)
X + · · ·+

(
m
m

)
Xm, we obtain

(
m
0

)
+

(
m
p

)
xp+

(
m
2p

)
x2p+· · · = 1

p
((1+x)m+(1+εx)m+· · ·+(1+εp−1x)m)

(2)
Substituting x = 1 in relation (2) we obtain

Sp =

(
m
0

)
+

(
m
p

)
+

(
m
2p

)
+· · · = 1

p
(2m+(1+ε)m+· · ·+(1+εp−1)m). (3)

From εk = cos
2kπ

p
+ i sin

2kπ

p
, it follows that for all k = 0, 1, . . . , p− 1,

(1 + εk)m = 2m
(
cos

kπ

p

)m(
cos

mkπ

p
+ i sin

mkπ

p

)
.

Using the relation εp−k = εk, we obtain

(1 + εp−k)m = (1 + εk)m = (1 + εk)m

= 2m
(
cos

kπ

p

)m(
cos

mkπ

p
− i sin

mkπ

p

)
.
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Substituting into (3), we obtain

Sp =
1

p

p−1∑

k=0

(1 + εk)m =
1

p

⎡

⎣

p−1
2∑

k=0

(1 + εk)m +

p−1
2∑

k=1

(1 + εp−k)m

⎤

⎦

=
1

p

⎡

⎣2m + 2m

p−1
2∑

k=1

(
cos

kπ

p

)m(
cos

mkπ

p
+ i sin

mkπ

p

)

+2m

p−1
2∑

k=1

(
cos

kπ

p

)m(
cos

mkπ

p
− i sin

mkπ

p

)
⎤

⎦

=
2m

p

⎛

⎝1 + 2

p−1
2∑

k=1

(
cos

kπ

p

)m
cos

mkπ

p

⎞

⎠ .

Consider now the case that p is an even positive integer. Because ε
p
2 = −1,

we have

Sp =
1

p

p−1∑

k=0

(1 + εk)m =
1

p

⎡

⎣2m +

p
2−1∑

k=1

(1 + εk)m +

p−1∑

k= p
2+1

(1 + εk)m

⎤

⎦

=
1

p

⎡

⎣2m +

p
2−1∑

k=1

2m
(
cos

kπ

p

)m(
cos

mkπ

p
+ i sin

mkπ

p

)
+

+

p
2−1∑

k=1

2m
(
cos

kπ

p

)m(
cos

mkπ

p
− i sin

mkπ

p

)⎤

⎦

=
2m

p

⎛

⎝1 + 2

p
2−1∑

k=1

(
cos

kπ

p

)m
cos

mkπ

p

⎞

⎠ .

Problem 5. The following identity holds:

(
n
m

)
+

(
n

m+ p

)
+

(
n

m+ 2p

)
+ · · · = 2n

p

p−1∑

k=0

(
cos

kπ

p

)n
cos

(n− 2m)kπ

p
.

Solution. Let ε0, ε1, . . . , εp−1 be the pth roots of unity. Then

p−1∑

k=0

ε−m
k (1 + εk)

n =

n∑

k=0

(
n
k

)
(εk−m

0 + · · ·+ εk−m
p−1 ). (1)
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Using the result in Proposition 3, Sect. 2.2.2, it follows that

εk−m
0 + · · ·+ εk−m

p−1 =

{
p, if p|(k −m),
0, otherwise.

(2)

Taking into account that

ε−m
k (1 + εk)

m

=

(
cos

2mkπ

p
− i sin

2mkπ

p

)(
2 cos

kπ

p

)n (
cos

nkπ

p
+ i sin

nkπ

p

)

= 2n
(
cos

kπ

p

)n(
cos

(n− 2m)kπ

p
+ i sin

(n− 2m)kπ

p

)

and using (1) and (2), we obtain the desired identity.

Remark. The following interesting trigonometric relation holds:

p−1∑

k=0

(
cos

kπ

p

)n
sin

(n− 2m)kπ

p
= 0. (1)

Problem 6. Consider the integers an, bn, cn, where

an =

(
n
0

)
+

(
n
3

)
+

(
n
6

)
+ · · · ,

bn =

(
n
1

)
+

(
n
4

)
+

(
n
7

)
+ · · · ,

cn =

(
n
2

)
+

(
n
5

)
+

(
n
8

)
+ · · · .

Show the following:

(1) a3n + b3n + c3n − 3anbncn = 2n.
(2) a2n + b2n + c2n − anbn − bncn − cnan = 1.
(3) Two of the integers an, bn, cn are equal, and the third differs by one.

Solution.

(1) Let ε be a cube root of unity different from 1. We have

(1+1)n = an+bn+cn, (1+ε)n = an+bnε+cnε
2, (1+ε2)n = an+bnε

2+cnε.

Therefore,

a3n+b3n+c3n−3anbncn=(an+bn+cn)(an+bnε+ cnε
2)(an + bnε

2 + cnε)

= 2n(1 + ε)n(1 + ε2)n = 2n(−ε2)n(−ε)n = 2n.
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(2) Using the identity

x3 + y3 + z3 − 3xyz = (x + y + z)(x2 + y2 + z2 − xy − yz − zx)

and the above relation, it follows that

a2n + b2n + c2n − anbn − bncn − cnan = 1.

(3) Multiplying the above relation by 2 we obtain

(an − bn)
2 + (bn − cn)

2 + (cn − an)
2 = 2. (1)

From (1), it follows that two of an, bn, cn are equal and the third differs
by one.

Remark. From Problem 5, it follows that

an =
1

3

[
2n + cos

nπ

3
+ (−1)n cos

2nπ

3

]
=

1

3

(
2n + 2 cos

nπ

3

)
,

bn =
1

3

[
2n + cos

(n− 2)π

3
+ (−1)n cos

(2n− 4)π

3

]

=
1

3

(
2n + 2 cos

(n− 2)π

3

)
,

cn =
1

3

[
2n + cos

(n− 4)π

3
+ (−1)n cos

(2n− 8)π

3

]

=
1

3

(
2n + 2 cos

(n− 4)π

3

)
.

It is not difficult to see that

an = bn if and only if n ≡ 1 (mod 3),

an = cn if and only if n ≡ 2(mod 3),

bn = cn if and only if n ≡ 0(mod 3).

Problem 7. How many positive integers of n digits chosen from the set
{2, 3, 7, 9} are divisible by 3?

(Romanian Mathematical Regional Contest “Traian Lalescu,” 2003)

Solution. Let xn, yn, zn be the numbers of all positive n-digit integers
whose digits are taken from the set {2, 3, 7, 9} that are congruent to 0, 1, and
2 modulo 3, repsectively. We have to find xn.

Consider ε = cos
2π

3
+ i sin

2π

3
. It is clear that xn + yn + zn = 4n and

xn + εyn + ε2zn =
∑

j1+j2+j3+j4=n

ε2j1+3j2+7j3+9j4 = (ε2 + ε3 + ε7 + ε9)n = 1.
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It follows that xn−1+εyn+ε2zn = 0. Applying Proposition 4 in Sect. 2.2.2,
we obtain xn − 1 = yn = zn = k. Then 3k = xn + yn + zn − 1 = 4n − 1, and

we obtain k =
1

3
(4n − 1). Finally, xn = k + 1 =

1

3
(4n + 2).

Problem 8. Let n be a prime number and let a1, a2, . . . , am be positive
integers. Consider f(k), the number of all m-tuples (c1, . . . , cm) satisfying

1 ≤ ci ≤ ai and
m∑

i=1

ci ≡ k(mod n). Show that f(0) = f(1) = · · · = f(n− 1)

if and only if n|aj for some j ∈ {1, . . . , m}.

(Rookie Contest, 1999)

Solution. Let ε = cos
2π

n
+ i sin

2π

n
. Note that the following relations hold:

m∏

i=1

(X +X2 + · · ·+Xai) =
∑

1≤ci≤ai

Xc1+···+cm

and

f(0)+f(1)ε+ · · ·+f(n−1)εn−1 =
∑

1≤ci≤ai

εc1+···+cm =
m∏

i=1

(ε+ε2+ · · ·+εai).

Applying the result in Proposition 4, Sect. 2.2.2, we have f(0) = f(1) =
. . . = f(n − 1) if and only if f(0) + f(1)ε+ · · · + f(n− 1)εn−1 = 0. This is

equivalent to
m∏

i=1

(ε+ ε2 + · · ·+ εai) = 0, i.e., ε+ ε2 + · · ·+ εaj = 0 for some

j ∈ {1, . . . , m}. It follows that εaj − 1 = 0, i.e., n|aj .

Problem 9. For a finite set A of real numbers denote by |A| the cardinal
number of A and by m(A) the sum of the elements of A.

Let p be a prime and A = {1, 2, . . . , 2p}. Find the number of all subsets
B ⊂ A such that |B| = p and p|m(B).

(36th IMO)

Solution. The case p = 2 is trivial. Consider p ≥ 3 and ε = cos
2π

p
+i sin

2π

p
.

Denote by xj the number of all subsets B ⊂ A with the properties |B| = p
and m(B) ≡ j (mod p).

Then

p−1∑

j=0

xjε
j =

∑

B⊂A,|B|=p

εmB =
∑

1≤c1<···<cp≤2p

εc1+···+cp .

The last sum is the coefficient of Xp in (X + ε)(X+ ε2) · · · (X+ ε2p). Taking
into account the relation Xp − 1 = (X − 1)(X − ε) · · · (X − εp−1), we obtain
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(X + ε)(X + ε2) · · · (X + ε2p) = (Xp + 1)2; hence the coefficient of Xp is 2.
Therefore,

p−1∑

j=0

xjε
j = 2,

i.e., x0−2+x1ε+· · ·+xp−1ε
p−1 = 0. From Proposition 4, Sect. 2.2.2, it follows

that x0 − 2 = x1 = · · · = xp−1 = k. We obtain pk = x0 + · · · + xp−1 − 2 =(
2p
p

)
− 2, and hence k =

1

p

((
2p
p

)
− 2

)
. Therefore, the desired number is

x0 = 2 + k = 2 +
1

p

((
2p
p

)
− 2

)
.

Problem 10. Prove that the number
n∑

k=0

(
2n+ 1
2k + 1

)
23k is not divisible by 5

for any integer n ≥ 0.

(16th IMO)

Solution. Since 23 ≡ −2 (mod 5), an equivalent problem is to prove that

Sn =
n∑

k=0

(
2n+ 1
2k + 1

)
(−2)k is not divisible by 5. Expanding (1+ i

√
2)2n+1 and

then separating the even and odd terms, we get

(1 + i
√
2)2n+1 = Rn + i

√
2Sn, (1)

where Rn =
n∑

k=0

(
2n+ 1
2k

)
(−2)k.

Passing to the absolute value from (1), it follows that

32n+1 = R2
n + 2S2

n. (2)

Since 32 ≡ −1(mod 5), the relation (2) leads to

R2
n + 2S2

n ≡ ±3(mod 5). (3)

Assume for the sake of a contradiction that Sn ≡ 0(mod 5) for some positive
integer n. Then from (3), we obtain R2

n ≡ ±3(mod 5), a contradiction, since
every square is congruent to 0, 1, or 4 modulo 5.

Here are some other problems concerning complex numbers and
combinatorics.

Problem 11. Calculate the sum sn =
n∑

k=0

(
n
k

)2
cos kt, where t ∈ [0, π].

Problem 12. Prove the following identities:
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(1)

(
n
0

)
+

(
n
4

)
+

(
n
8

)
+ · · · = 1

4

(
2n + 2

n
2 +1 cos

nπ

4

)
.

(Romanian Mathematical Olympiad—Second Round, 1981)

(2)

(
n
0

)
+

(
n
5

)
+

(
n
10

)
+ · · · =

=
1

5

[

2n +
(
√
5 + 1)n

2n−1
cos

nπ

5
+

(
√
5− 1)n

2n−1
cos

2nπ

5

]

.

Problem 13. Consider the integers An, Bn, Cn defined by

An =

(
n
0

)
−
(
n
3

)
+

(
n
6

)
− · · · ,

Bn = −
(
n
1

)
+

(
n
4

)
-

(
n
7

)
+ · · · ,

Cn =

(
n
2

)
−
(
n
5

)
+

(
n
8

)
− · · · .

The following identities hold:

(1) A2
n +B2

n + C2
n −AnBn −BnCn − CnAn = 3n;

(2) A2
n +AnBn +B2

n = 3n−1.

Problem 14. Let p ≥ 3 be a prime and let m, n be positive integers divisible
by p such that n is odd. For each m-tuple (c1, . . . , cm), ci ∈ {1, 2, . . . , n},
with the property that p|

m∑

i=1

ci, let us consider the product c1 · · · cm. Prove

that the sum of all these products is divisible by

(
n

p

)m
.

Problem 15. Let k be a positive integer and a = 4k−1. Prove that for every
positive integer n, the integer

sn =

(
n
0

)
−
(
n
2

)
a+

(
n
4

)
a2 −
(
n
6

)
a3 + · · · is divisible by 2n−1.

(Romanian Mathematical Olympiad—Second Round, 1984)

Problem 16. Let m and n be integers greater than 1. Prove that

∑

k1+k2+...+kn=m
k1,k2,...,kn≥0

1

k1!k2! . . . kn!
cos(k1 + 2k2 + . . .+ nkn)

2π

n
= 0.

(Mathematical Reflections, 2009)
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Problem 17. Given an integer n ≥ 2, let an, bn, cn be integers such that

(
3
√
2− 1)n = an + bn

3
√
2 + cn

3
√
4.

Show that cn ≡ 1 (mod 3) if and only if n ≡ 2 (mod 3).

(Romanian IMO Team Selection Test, 2013)

5.9 Miscellaneous Problems

Problem 1. Two unit squares K1, K2 with centers M, N are situated in the
plane so that MN = 4. Two sides of K1 are parallel to the line MN , and one
of the diagonals of K2 lies on MN . Find the locus of the midpoint of XY as
X, Y vary over the interior of K1, K2, respectively.

(1997 Bulgarian Mathematical Olympiad)

Solution. Introduce complex numbers with M = −2, N = 2. Then the
locus is the set of points of the form −(w + xi) + (y + zi), where |w|, |x| <
1/2 and |x + y|, |x − y| <

√
2/2. The result is an octagon with vertices

(1 +
√
2)/2 + i/2, 1/2 + (1 +

√
2)i/2, and so on.

Problem 2. Curves A, B, C, and D are defined in the plane as follows:

A =

{
(x, y) : x2 − y2 =

x

x2 + y2

}
,

B =

{
(x, y) : 2xy +

y

x2 + y2
= 3

}
,

C =
{
(x, y) : x3 − 3xy2 + 3y = 1

}
,

D =
{
(x, y) : 3x2y − 3x− y3 = 0

}
.

Prove that A ∩B = C ∩D.

(1987 Putnam Mathematical Competition)

Solution. Let z = x+ yi. The equations defining A and B are the real and
imaginary parts of the equation z2 = z−1 + 3i, and similarly the equations
defining C and D are the real and imaginary parts of z3− 3iz = 1. Hence for
all real x and y, we have (x, y) ∈ A ∩B if and only if z2 = z−1 + 3i. This is
equivalent to z3 − 3iz = 1, i.e., (x, y) ∈ C ∩D.

Thus A ∩B = C ∩D.

Problem 3. Determine with proof whether it is possible to consider 1975
points on the unit circle such that the distance between every pair of points
is a rational number (the distances being taken along the chord).

(17th IMO)
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Solution. There are infinitely many points with rational coordinates on the
unit circle. This is a well-known result arising from Pythagorean triangles
and the corresponding equation

m2 + n2 = p2.

Each such point A(xA, yA) can be represented by a complex number

zA = xA + iyA = cosαA + i sinαA,

where αA is the argument of the complex number zA and cosαA, sinαA are
rational numbers.

Taking on the unit circle complex numbers of the form

z2A = cos 2αA + i sin 2αA,

we have for two such points

|z2A − z2B| =
√
(cos 2αA − cos 2αB)2 + (sin 2αA − sin 2αB)2

=
√
2[1− cos 2(αB − αA)] =

√
2 · 2 sin2(αB − αA) = 2| sin(αB − αA)|

= 2| sinαB cosαA − sinαA cosαB| ∈ Q.

Answer: Yes, it is possible.

Problem 4. A tourist takes a trip through a city in stages. Each stage
consists of three segments of length 100 m separated by right turns of 60◦.
Between the last segment of one stage and the first segment of the next stage,
the tourist makes a left turn of 60◦. At what distance will the tourist be from
his initial position after 1997 stages?

(1997 Rio Plata Mathematical Olympiad)

Solution. In one stage, the tourist traverses the complex number

x = 100 + 100ε+ 100ε2 = 100− 100
√
3i,

where ε = cos
π

3
+ i sin

π

3
.

Thus in 1997 stages, the tourist traverses the complex number

z = x+ xε+ xε2 + · · ·+ xε1996 = x
1− ε1997

1− ε
= xε2.

Hence, the tourist ends up |z| = |xε2| = |x| = 200 m away from his initial
position.

Problem 5. Let A, B, C, be fixed points in the plane. A man starts from a
certain point P0 and walks directly to A. At A, he turns by 60◦ to the left and
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walks to P1 such that P0A = AP1. After he performs the same action 1986
times successively around points A, B, C, A, B, C, . . ., he returns to the
starting point. Prove that ABC is an equilateral triangle and that the vertices
A, B, C, are arranged counterclockwise.

(27th IMO)

Solution. For convenience, let A1, A2, A3, A4, A5, . . . be A,B,C,A,B, . . .,
respectively, and let P0 be the origin. After the kth step, the position Pk will

be Pk = Ak +(Pk−1−Ak)ε for k = 1, 2, . . ., where ε = cos
4π

3
+ i sin

4π

3
. We

easily obtain

Pk = (1 − ε)(Ak + εAk−1 + ε2Ak−2 + · · ·+ εk−1A1).

The condition P = P1986 is equivalent to A1986 + εA1985 + · · · + ε1984A2 +
ε1985A1 = 0, which as we see from keeping in mind that A1 = A4 = A7 =
· · · , A2 = A5 = A8 = · · · , A3 = A6 = A9 = · · · , reduces to

662(A3 + εA2 + ε2A1) = (1 + ε3 + · · ·+ ε1983)(A3 + εA2 + ε2A1) = 0,

and the assertion follows from Proposition 2 in Sect. 3.4.

Problem 6. Let a, n be integers and let p be prime such that p > |a| + 1.
Prove that the polynomial f(x) = xn + ax + p cannot be represented as a
product of two nonconstant polynomials with integer coefficients.

(1999 Romanian Mathematical Olympiad)

Solution. Let z be a complex root of the polynomial. We shall prove that
|z| > 1. Suppose |z| ≤ 1. Then zn + az = −p, and we deduce that

p = |zn + az| = |z||zn−1 + a| ≤ |zn−1|+ |a| ≤ 1 + |a|,

which contradicts the hypothesis.
Now, suppose f = gh is a decomposition of f into nonconstant polynomials

with integer coefficients. Then p = f(0) = g(0)h(0), and either |g(0)| = 1 or
|h(0)| = 1. Assume without loss generality that |g(0)| = 1. If z1, z2, . . . , zk
are the roots of g, then they are also roots of f . Therefore,

1 = |g(0)| = |z1z2 . . . zk| = |z1||z2| · · · |zk| > 1,

a contradiction.

Problem 7. Prove that if a, b, c are complex numbers such that

⎧
⎨

⎩

(a+ b)(a+ c) = b,
(b+ c)(b + a) = c,
(c+ a)(c+ b) = a,

then a, b, c are real numbers.

(2001 Romanian IMO Team Selection Test)
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Solution 1. Let P (x) = x3 − sx2 + qx − p be the polynomial with roots
a, b, c. We have s = a+ b+ c, q = ab+ bc+ ca, p = abc. The given equalities
are equivalent to

⎧
⎨

⎩

sa+ bc = b,
sb+ ca = c,
sc+ ab = a.

(1)

Adding these equalities, we obtain q = s−s2. Multiplying the equalities in (1)
by a, b, c, respectively, and adding them, we obtain s(a2 + b2+ c2)+ 3p = q,
or after a short computation,

3p = −3s3 + s2 + s. (2)

If we write the given equations in the form

(s− c)(s− b) = b, (s− a)(s− c) = c, (s− b)(s− a) = a,

we obtain ((s− a)(s− b)(s− c))2 = abc, and by performing standard compu-
tations and using (2), we finally get

s(4s− 3)(s+ 1)2 = 0.

If s = 0, then P (x) = x3, so a = b = c = 0. If s = −1, then P (x) = x3 + x2 −
2x − 1, which has the roots 2 cos

2π

7
, 2 cos

4π

7
, 2 cos

6π

7
(this is not obvious,

but we can see that P changes sign on the intervals (−2, −1), (−1, 0),
(1, 2) of the real line; hence its roots are real). Finally, if s = 3/4, then

P (x) = x3 − 3

4
x2 +

3

16
x− 1

64
,

which has roots a = b = c = 1/4.

Solution 2. Subtract the second equation from the first. We obtain (a +
b)(a− b) = b− c. Analogously, (b+ c)(b− c) = c−a and (c+a)(c−a) = a− b.
We can see that if two of the numbers are equal, then all three are equal, and
the conclusion is obvious. Suppose that the numbers are distinct. Then after
multiplying the equalities above, we obtain (a+b)(b+c)(c+a) = 1, and next,
b(b+c) = c(c+a) = a(a+b) = 1. Now, if one of the numbers is real, it follows
immediately that all three are real. Suppose none of the numbers are real.
Then arg a, arg b, arg c ∈ (0, 2π). Two of the numbers arg a, arg b, arg c
are contained in either (0, π) or [π, 2π). Suppose these are arg a, arg b, and
that arg a ≤ arg b. Then arg a ≤ arg(a+ b) ≤ arg b and arg a ≤ arg a(a+ b) ≤
arg(a+ b) ≤ arg b. This is a contradiction, since a(a+ b) = 1.

Problem 8. Find the smallest integer n such that an n × n square can be
partitioned into 40×40 and 49×49 squares, with both types of squares present
in the partition.

(2000 Russian Mathematical Olympiad)
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Solution. We can partition a 2000× 2000 square into 40× 40 and 49 × 49
squares: partition one 1960× 1960 comer of the square into 49× 49 squares
and then partition the remaining portion into 40× 40 squares.

We now show that n must be at least 2000. Suppose that an n× n square
has been partitioned into 40 ×40 and 49 ×49 squares, using at least one of

each type. Let ζ = cos
2π

40
+i sin

2π

40
and ξ = cos

2π

49
+i sin

2π

49
. Orient the n×n

square so that two sides are horizontal, and number the rows and columns
of unit squares from the top left: 0, 1, 2, . . . , n − 1. For 0 ≤ j, k ≤ n − 1,
write ζjξk in square (j, k). If an m ×m square has its top left-hand comer
at (x, y), then the sum of the numbers written in it is

x+m−1∑

j=x

y+m−1∑

k=y

ζjξk = ζxξy
(
ζm − 1

ζ − 1

)(
ξm − 1

ξ − 1

)
.

The first fraction in parentheses is 0 if m = 40, and the second fraction is 0
if m = 49. Thus, the sum of the numbers written inside each square in the
partition is 0, so the sum of all the numbers must be 0. However, applying
the above formula with (m, x, y) = (n, 0, 0), we find that the sum of all
the numbers equals 0 only if either ζn − 1 or ξn − 1 equals 0. Thus, n must
be either a multiple of 40 or a multiple of 49.

Let a and b be the number of 40 × 40 and 49 ×49 squares, respectively.
The area of the square equals 402 · a + 492 · b = n2. If 40|n, then 402|b,
and hence b ≥ 402. Thus, n2 > 492 · 402 = 19602; because n is a multiple
of 40, n ≥ 50 · 40 = 2000. If instead 49|n, then 492|a, a ≥ 492, and again
n2 > 19602. Because n is a multiple of 49, n ≥ 41·49 = 2009 > 2000. In either
case, n ≥ 2000, and 2000 is the minimum possible value of n.

Problem 9. The pair (z1, z2) of nonzero complex numbers has the following
property: there is a real number a ∈ [−2, 2] such that z21 − az1z2 + z22 = 0.
Prove that all pairs (zn1 , zn2 ), n = 2, 3, . . ., have the same property.

(Romanian Mathematical Olympiad—Second Round, 2001)

Solution 1. Set t =
z1
z2

, t ∈ C
∗. The relation z21−az1z2+z22 = 0 is equivalent

to t2−at+1 = 0. We have Δ = a2−4 ≤ 0, whence t =
a± i

√
4− a2

2
and |t| =

√
a2

4
+

4− a2

4
= 1. If t = cosα + i sinα, then

zn1
zn2

= tn = cosnα + i sinnα,

and we can write z2n1 − anz
n
1 z

n
2 + z2n2 = 0, where an = 2 cosnα ∈ [−2, 2].

Solution 2. Because a ∈ [−2, 2], we can write a = 2 cosα. The relation
z21 − az1z2 + z22 = 0 is equivalent to

z1
z2

+
z2
z1

= 2 cosα, (1)
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and by a simple inductive argument, it follows from (1) that

zn1
zn2

+
zn2
zn1

= 2 cosnα, n = 1, 2, . . . .

Problem 10. Find

min
z∈C\R

Imz5

Im5z

and the values of z for which the minimum is reached.

Solution. Let a, b be real numbers such that z = a + bi, b �= 0. Then
Im(z)5 = 5a4b− 10a2b3 + b5 and

Imz5

Im5z
= 5
(a
b

)4
− 10
(a
b

)2
+ 1.

Setting x =
(a
b

)2
yields

Im(z)5

Im5z
= 5x2 − 10x+ 1 = 5(x− 1)2 − 4.

The minimum value is −4, and it is obtained for x = 1, i.e., for z = a(1 ±
i), a �= 0.

Problem 11. Let z1, z2, z3 be complex numbers, not all real, such that |z1| =
|z2| = |z3| = 1 and 2(z1 + z2 + z3)− 3z1z2z3 ∈ R.

Prove that

max(arg z1, arg z2, arg z3) ≥
π

6
.

Solution. Let zk = cos tk + i sin tk, k ∈ {1, 2, 3}.
The condition 2 (z1 + z2 + z3)− 3z1z2 ∈ R implies

(sin t1 + sin t2 + sin t3) = 3 sin(t1 + t2 + t3). (1)

Assume by way of contradiction that max(t1, t2, t3) <
π

6
; hence t1, t2, t3 <

π

6
.

Let t =
t1 + t2 + t3

3
∈
(
0,

π

6

)
. The sine function is concave on

[
0,

π

6

)
, so

1

3
(sin t1 + sin t2 + sin t3) ≤ sin

t1 + t2 + t3
3

. (2)

From the relations (1) and (2), we obtain

sin(t1 + t2 + t3)

2
≤ sin

t1 + t2 + t3
3

.
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Then

sin 3t ≤ 2 sin t.

It follows that

4 sin3 t− sin t ≥ 0,

i.e., sin2 t ≥ 1

4
. Hence sin t ≥ 1

3
, and then t ≥ π

6
, which contradicts that

t ∈
(
0,

π

6

)
.

Therefore, max(t1, t2, t3) ≥
π

6
, as desired.

Here are some more problems.

Problem 12. Solve in complex numbers the system of equations

⎧
⎨

⎩

x|y|+ y|x| = 2z2,
y|z|+ z|y| = 2x2,
z|x|+ x|z| = 2y2.

Problem 13. Solve in complex numbers the following:

⎧
⎨

⎩

x(x − y)(x− z) = 3,
y(y − x)(y − z) = 3,
z(z − x)(z − y) = 3.

(Romanian Mathematical Olympiad—Second Round, 2002)

Problem 14. Let X, Y, Z, T be four points in the plane. The segments [XY ]
and [ZT ] are said to be connected if there is some point O in the plane such
that the triangles OXY and OZT are right isosceles triangles in O.

Let ABCDEF be a convex hexagon such that the pairs of segments [AB],
[CE], and [BD], [EF ] are connected. Show that the points A, C, D and F
are the vertices of a parallelogram and that the segments [BC] and [EA] are
connected.

(Romanian Mathematical Olympiad—Final Round, 2002)

Problem 15. Let ABCDE be a cyclic pentagon inscribed in a circle with
center O that has angles B̂ = 120◦, Ĉ = 120◦, D̂ = 130◦, Ê = 100◦. Show that
the diagonals BD and CE meet at a point belonging to the diameter AO.

(Romanian IMO, Team Selection Test, 2002)

Problem 16. A function f is defined on the complex numbers by

f(z) = (a+ bi)z,

where a and b are positive numbers. This function has the property that the
image of each point in the complex plane is equidistant from that point and
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the origin. Given that |a + bi| = 8 and that b2 = m/n, where m and n are
relatively prime positive integers, find m+ n.

(1999 AIME, Problem 9)

Problem 17. Let F (z) =
z + i

z − i
for all complex numbers z �= i, and let

zn = F (zn−1)

for all positive integers n. Given that z0 =
1

137
+ i and z2002 = a + i, where

a and b are real numbers, find a+ b.

(2002 AIME I, Problem 12)

Problem 18. Given a positive integer n, it can be shown that every complex
number of the form r+si, where r and s are integers, can be uniquely expressed
in the base −n+i using the integers 1, 2, . . . , n2 as digits. That is, the equation

r + si = am(−n+ i)m + am−1(−n+ i)m−1 + . . .+ a1(−n+ i) + a0

is valid for a unique choice of nonnegative integer m and digits a0, a1, . . . , am
chosen from the set {0, 1, 2, . . . , n2}, with am �= 0. We write

r + si = (amam−1 . . . a1a0)−n+i

to denote the base-(−n+ i) expansion of r+ si. There are only finitely many
integers k + 0i that have four-digit expansions

k = (a3a2a1a0)−3+i, a3 �= 0.

Find the sum of all such k.

(1989 AIME, Problem 14)

Problem 19. There is a complex number z with imaginary part 164 and a
positive integer n such that

z

z + n
= 4i.

Find n.

(2009 AIME, Problem 2)

Problem 20. Let u, v, w be complex numbers of modulus 1. Prove that one
can choose signs + and − such that

| ± u± v ± w| ≤ 1.

(Romanian Mathematical Olympiad—District Round, 2007)
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Problem 21. Consider a complex number z, z �= 0, and the real sequence

an =

∣
∣
∣
∣z

n +
1

zn

∣
∣
∣
∣ , n ≥ 1.

(a) Show that if a1 > 2, then

an+1 <
an + an+2

2
, for all n ∈ N

∗.

(b) Prove that if there exists k ∈ N
∗ such that ak ≤ 2, then a1 ≤ 2.

(Romanian Mathematical Olympiad—District Round, 2010)

Problem 22. Consider the set M = {z ∈ C | |z| = 1, Rez ∈ Q}. Prove that
the complex plane contains an infinity of equilateral triangles with vertices
in M .

(Romanian Mathematical Olympiad—Final Round, 2012)

Problem 23. Let (an)n≥1 be a sequence of nonnegative integers such that

an ≤ n, for all n ≥ 1, and

n−1∑

k=1

cos
πak
n

= 0, for all n ≥ 2. Find a closed

formula for the general term of the sequence.

(Romanian Mathematical Olympiad—District Round, 2012)

Problem 24. Let a and b be two rational numbers such that the absolute
value of the complex number z = a+ bi is equal to 1. Prove that the absolute
value of the complex number zn = 1+z+z2+ . . .+zn−1 is a rational number
for all odd integers n.

(Romanian Mathematical Olympiad—District Round, 2012)



Chapter 6

Answers, Hints, and Solutions
to Proposed Problems

In what follows, answers and solutions are presented to problems posed in
previous chapters.We have preserved the title of the subsection containing the
problem and the number of the proposed problem. Taking into account the
complexity of some problems in the chapter on Olympiad-caliber problems,
we have included the statements of these problems before the solutions.

6.1 Answers, Hints, and Solutions to Routine Problems

6.1.1 Problems (p. 19) from Section 1.1: Algebraic
Representation of Complex Numbers

1.(a) z1 + z2 + z3 = (0, 4); (b)z1z2 + z2z3 + z3z1 = (−4, 5);

(c) z1z2z3 = (−9, 7); (d)z21 + z22 + z23 = (−8,−10);

(e)
z1
z2

+
z2
z3

+
z3
z1

=

(
−311

130
,
65

83

)
; (f)

z21 + z22
z22 + z23

=

(
152

221
,− 72

221

)
.

2.(a) z = (7,−8); (b)z = (−7,−4);

(c) z =

(
23

13
,− 2

13

)
; (d)z = (−9, 7).

3.(a) z1 =

(

−1

2
,

√
3

2

)

, z2 =

(

−1

2
,−

√
3

2

)

;

(b) z1 = (−1, 0), z2 =

(
1

2
,

√
3

2

)

, z3 =

(
1

2
,−

√
3

2

)

.
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4.
n∑

k=0

zk =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1, 0) for n = 4k;
(1, 1) for n = 4k + 1;
(0, 1) for n = 4k + 2;
(0, 0) for n = 4k + 3.

5.(a) z = (1, 1); (b)z1 = (2, 1), z2 = (−2,−1).

6. z2 = (a2 − b2, 2ab); z3 = (a3 − 3ab2, 3a2b− b3);
z4 = (a4 − 6a2b2 + b4, 4a3b− 4ab3).

7. z1 =

(√
a+

√
a2 + b2

2
, sgn b

√
−a+

√
a2 + b2

2

)

,

z2 =

(

−
√

a+
√
a2 + b2

2
,−sgn b

√
−a+

√
a2 + b2

2

)

.

8. For all nonnegative integers k, we have

z4k = ((−4)k, 0); z4k+1 = ((−4)k,−(−4)k); z4k+2 = (0,−2(−4)k);

z4k+3 = (−2(−4)k,−2(−4)k); for k ≥ 0.

9.(a) x =
1

4
, y =

3

4
; (b)x = −2, y = 8; (c)x = 0, y = 0.

10.(a) 8 + 51i; (b)4− 43i; (c)2; (d)
11

4
− 5

√
7

2
i; (e)

61

13
+

4

13
i.

11.(a) −i; (b)E4k=1, E4k+1=1+i, E4k+2= i, E4k+3 = 0; (c)1; (d)−3i.

12.(a) z1 =

√
2

2
+ i

√
2

2
, z2 = −

√
2

2
− i

√
2

2
;

(b) z1 =

√
2

2
− i

√
2

2
, z2 = −

√
2

2
+ i

√
2

2
;

(c) z1,2 = ±
(√

1 +
√
3

2
−
√√

3− 1

2
i

)

.

13. z ∈ R or z = x+ iy with x2 + y2 = 1.

14.(a) E1 = E1;
(b) E2 = E2.

15. Use substitute the formula that defines the modulus.
16. From the identity

(
z +

1

z

)3
= z3 +

1

z3
+ 3

(
z +

1

z

)
,

we obtain

∣
∣
∣
∣z +

1

z

∣
∣
∣
∣

3

≤ 2 + 3

∣
∣
∣
∣z +

1

z

∣
∣
∣
∣ , or a3 − 3a− 2 ≤ 0,
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where

a =

∣∣
∣
∣z +

1

z

∣∣
∣
∣ , a ≥ 0.

Since

a3 − 3a− 2 = (a− 2)(a2 + 2a+ 1) = (a− 2)(a+ 1)2,

we have a ≤ 2, as desired.
17. The equation |z2 + z2| = 1 is equivalent to |z2 + z2|2 = 1. That is,

(z2 + z2)(z2 + z2) = 1. We obtain (z2 + z2)2 = 1, or (z2 +
1

z2
)2 = 1. The

last equation is equivalent to (z4+1)2 = z4, or (z4−z2+1)(z4+z2+1) = 0.

The solutions are ±1

2
i±

√
3

2
and ±

√
3

2
± 1

2
i.

18. z ∈
{

±
√

2

3
,±i

√
2

}

.

19. z ∈ {0, 1,−1, i,−i}.

20. Observe that

∣
∣
∣
∣
1

z
− 1

2

∣
∣
∣
∣ <

1

2
is equivalent to |2−z| < |z|, and consequently,

(2− z)(2− z) < z · z. It follows that 4 < 2(z + z) = 4Re(z), as needed.

21. a2 + b2 + c2 − ab− bc− ca.

22.(a) z=
−6+

√
21

3
+2i; (b) z=−7

6
+4i; (c) z=2+i;

(d) z1,2 =
−2±

√
3

2
+

1

2
i; (e) z2 = −1, z2 = −5 − 6i; (f) z2 =

−13

2
− 9

2
i.

23. m ∈ {1, 5}
24. z = −2y + 2 + iy, y ∈ R.

25. z = x+ iy with x2 + y2 = 1.

26. From |z1+z2| =
√
3 it follows that |z1+z2|2 = 3, i.e., (z1+z2)(z1 + z2) =

3. We obtain |z1|2+(z1z2+z1z2)+ |z2|2 = 3. That is, z1z2+z1z2 = 1. On
the other hand, we have |z1−z2|2 = |z1|2−(z1z2+z1z2)+|z2|2 = 2−1 = 1,
and hence |z1 − z2| = 1.

27. Letting ε = −1

2
+i

√
3

2
and noticing that ε3 = 1, we obtain n = 3k, k ∈ Z.

28. Note that z = 0 is a solution. For z �= 0, passing to the absolute value, we
obtain |z|n−1 = |z|, i.e., |z| = 1. The equation is equivalent to zn = iz · z,
which reduces to zn = i. The total number of solutions is n+ 1.

29. Let
α = |z2 − z3|, β = |z3 − z1|, γ = |z1 − z2|.
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Since the inequality

αβ + βγ + γα ≤ α2 + β2 + γ2

holds and

α2 + β2 + γ2 = 3(|z1|2 + |z2|2 + |z2|2)− |z1 + z2 + z3|2

≤ 3(|z1|2 + |z2|2 + |z2|2 = 9R2,

it follows that

αβ + βγ + γα ≤ 9R2.

30. Observe that

|w| = |v| · |u− z|
|uz − 1| =

|u− z|
|uz − 1| ≤ 1

if and only if

|u− z| ≤ |uz − 1|.

This is equivalent to

|u− z|2 ≤ |uz − 1|2.

We obtain

(u− z)(u− z) ≤ (uz − 1)(uz − 1),

i.e.,

|u|2 + |z|2 − |u|2|z|2 − 1 ≤ 0.

Finally,

(|u2| − 1)(|z|2 − 1) ≥ 0.

Since |u| ≤ 1, it follows that |w| ≤ 1 if and only if |z| ≤ 1, as desired.

31. z21 + z22 + z23 = (z1 + z2 + z3)
2 − 2(z1z2 + z2z3 + z3z1)

= −2z1z2z3

(
1

z1
+

1

z2
+

1

z3

)
= −2z1z2z3(z1 + z2 + z3) = 0.

32. The relation |zk| = r implies zk =
r2

zk
for k ∈ {1, 2, . . . , n}. Then

E =

(
r2

z1
+

r2

z2

)(
r2

z2
+

r2

z3

)
· · ·
(
r2

zn
+

r2

z1

)

r2

z1
· r

2

z2
· · · r

2

zn

=
r2n · z1 + z2

z1z2
· z2 + z3

z2z3
· · · zn + z1

znz1

r2n · 1

z1z2 · · · zn

= E;

hence E ∈ R.



6.1 Answers, Hints, and Solutions to Routine Problems 281

33. Observe that

z1 · z1 = z2 · z2 = z3 · z3 = r2

and

z1z2 + z3 ∈ R if and only if z1z2 + z3 = z1 · z2 + z3.

Then

r2

z1z2z3
=

z1z2 + z3
z1z2 + r2z3

=
z1z3 + z2
z1z3 + r2z2

=
z2z3 + z1
z2z3 + r2z1

(z1 − 1)(z2 − z3)

(z2 − z3)(z1 − r2)
=

z1 − 1

z1 − r2
=

z2 − 1

z2 − r2
=

z3 − 1

z3 − r2
=

z1 − z2
z1 − z2

= 1.

Hence z1z2z3 = r2, and consequently, r3 = r2. Therefore, r = 1 and
z1z2z3 = 1, as desired.

34. Note that x3
1 = x3

2 = −1.

(a) −1; (b)1; (c) Consider n ∈ {6k, 6k ± 1, 6k ± 2, 6k ± 3}.

35.(a) x4 + 16 = x4 + 24 = (x2 + 4i)(x2 − 4i)

= [x2 + (
√
2(1 + i))2][x2 − (

√
2(1 + i))2]

= (x +
√
2(−1 + i))(x+

√
2(1− i))(x −

√
2(1 + i))(x+

√
2(1 + i)).

(b) x3 − 27 = x3 − 33 = (x− 3)(x− 3ε)(x− 3ε2), where ε = −1

2
+

√
3

2
i.

(c) x3 + 8 = x3 + 23 = (x+ 2)(x+ 1 + i
√
3)(x + 1− i

√
3).

(d) x4 + x2 + 1 = (x2 − ε)(x2 − ε2) = (x2 − ε−2)(x2 − ε2)

= (x − ε)(x+ ε)(x− ε)(x+ ε),where ε = −1

2
+

√
3

2
i.

36.(a) x2 − 14x+ 50 = 0; (b) x2 − 18

5
x+

26

5
= 0; (c) x2 + 4x+ 8 = 0.

37. We have

2|z1+z2|·|z2+z3| = 2|z2(z1+z2+z3)+z1z3| ≤ 2|z2|·|z1+z2+z3|+2|z1||z3|,

and likewise,

2|z2 + z3| · |z3 + z1| ≤ 2|z3||z1 + z2 + z3|+ 2|z2||z1|,
2|z3 + z1| · |z1 + z2| ≤ 2|z1||z1 + z2 + z3|+ 2|z2||z3|.

Summing up these inequalities with

|z1 + z2|2 + |z2 + z3|2 + |z3 + z1|2 = |z1|2 + |z2|2 + |z3|2 + |z1 + z2 + z3|2

yields
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(|z1 + z2|+ |z2 + z3|+ |z3 + z1|)2 ≤ (|z1|+ |z2|+ |z3|+ |z1 + z2 + z3|)2.

The conclusion is now obvious.
38. Note that |zi| = |(x− xi)(y − yi)− xy| ≤ |x− xi||y − yi|+ |x||y|. Hence

by the Cauchy–Schwarz inequality,
∑

|zi| ≤
∑

|x− xi||y − yi|+ n|x||y|

≤
√∑

|x− xi|2
√∑

|y − yi|2 + n|x||y|.

Now we have

∑
|x− xi|2 =

∑
(|x|2 + |xi|2 + 2Re(xxi))

= n|x|2 + n = 2Re
(
x
∑

xi

)

= n|x|2 + n− 2nRe(xx)

= n(1 − |x|2),

the last equality following from Re(xx) = xx = |x|2. Thus
√∑

|x−xi|2
√∑

|y−yi|2 + n|x||y| = n(
√

1−|x|2
√
1−|y|2 + |x||y|) ≤ n,

where the last inequality is also proven by Cauchy–Schwarz, and we
are done.

6.1.2 Problems (p. 29) from Section 1.2: Geometric
Interpretation of the Algebraic Operations

1.(a) The circle of center (2, 0) and radius 3.
(b) The disk of center (0,−1) and radius 1.
(c) The exterior of the circle of center (1,−2) and radius 3.

(d) M =

{
(x, y) ∈ R

2|x ≥ −1

2

}
∪
{
(x, y) ∈ R

2|x < −1

2
, 3x2 − y2 − 3 < 0

}
.

(e) M =
{
(x, y) ∈ R

2| − 1 < y < 0
}
.

(f) M = {(x, y) ∈ R
2| − 1 < y < 1}.

(g) M = {(x, y) ∈ R
2|x2 + y2 − 3x+ 2 = 0}4.

(h) The union of the lines with equations x = −1

2
and y = 0.

2. M = {(x, y) ∈ R
2|y = 10− x2, y ≥ 4}.

3. z3 =
√
3(1− i) and z′3 =

√
3(1 + i).

4. M = {(x, y) ∈ R
2|x2 + y2 + x = 0, x �= 0, x �= −1}

∪{(0, y) ∈ R
2|y �= 0} ∪ {(−1, y) ∈ R

2|y �= 0}.
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5. The union of the circles with equations

x2 + y2 − 2y − 1 = 0 and x2 + y2 + 2y − 1 = 0.

6.1.3 Polar Representation of Complex Numbers

1. (a) r = 3
√
2, t∗ =

3π

4
; (b) r = 8, t∗ =

7π

6
; (c) r = 5, t∗ = π;

(d) r =
√
5, t∗ = arctan

1

2
+ π; (e) r = 2

√
5, t∗ = arctan

(
−1

2

)
+ 2π.

2. (a) x = 1, y =
√
3; (b) x =

16

5
, y = −12

5
; (c) x = −2, y = 0;

(d) x = −3, y = 0 (e)x = 0, y = 1 (f)x = 0, y = −4.

3. arg(z) =

{
2π − arg z, if arg z �= 0,
0, if arg z = 0;

arg(−z) =

{
π + arg z, if arg z ∈ [0, π),
−π + arg z, if arg z ∈ [π, 2π).

4. (a) The circle of radius 2 with center at the origin.
(b) The circle with center (0,−1) and radius 2 and its exterior.
(c) The disk with center (0, 1) and radius 3.
(d) The interior of the angle determined by the rays y = 0, x ≤ 0 and

y = x, x ≤ 0.
(e) The fourth quadrant and the ray (OY ′.
(f) The first quadrant and the ray (OX .

(g) The interior of the angle determined by the rays y =
√
3
3 x, x ≤ 0 and

y =
√
3x, x < 0.

(h) The intersection of the disk with center (−1,−1) and radius 3 with
the interior of the angle determined by the rays y = 0, x ≥ 0 and

y =
√
3
3 x, x > 0.

5. (a) z1 = 12
(
cos π

3 + i sin π
3

)
; (b)z2 = 1

2 (cos
2π
3 + i sin 2π

3 );

(c) z3 = cos 4π
3 + i sin 4π

3 ; (d)z4 = 18
(
cos 5π

3 + i sin 5π
3

)
;

(e) z5 =
√
13
[
cos(2π − arctan 2

3 ) + i sin
(
2π − arctan 2

3

)]
;

(f) z6 = 4
(
cos 3π

2 + i sin 3π
2

)
.

6. (a) z1 = cos(2π − a) + i sin(2π − a), a ∈ [0, 2π);

(b) z2 = 2| cos a
2 | ·
[
cos
(
π
2 − a

2

)
+ i sin

(
π
2 − a

2

)]
if a ∈ [0, π);

z2 = 2| cos a
2 | ·
[
cos
(
3π
2 − a

2

)
+ i sin

(
3π
2 − a

2

)]
if a ∈ (π, 2π);

(c) z3 =
√
2
[
cos
(
a+ 7π

4

)
+ i sin

(
a+ 7π

4

)]
if a ∈

[
0, π4
]
;

z3 =
√
2
[
cos
(
a− π

4

)
+ i sin

(
a− π

4

)]
if a ∈

(
π
4 , 2π
)
;

(d) z4 = 2 sin a
2

[
cos
(
π
2 − a

2

)
+ i sin

(
π
2 − a

2

)]
if a ∈ [0, π);

z4 = 2 sin a
2

[
cos
(
5π
2 − a

2

)
+ i sin

(
5π
2 − a

2

)]
if a ∈ [π, 2π).



284 6 Answers, Hints, and Solutions to Proposed Problems

7. (a) 12
√
2
(
cos 7π

4 + i sin 7π
4

)
; (b)4(cos 0 + i sin 0);

(c) 48
√
2
(
cos 5π

12 + i sin 5π
12

)
; (d)30

(
cos π

2 + i sin π
2

)
.

8. (a) |z| = 12, arg z = 0,Arg z = 2kπ, arg z = 0, arg(−z) = π;

(b) |z| = 14
√
2, arg z = 11π

12 ,Argz = 11π
12 +2kπ, arg z = 13π

12 , arg(−z) = π
12 .

9. (a) |z| = 213 + 1
213 , arg z = 5π

6 ; (b)|z| = 1
29 , arg z = π;

(c) |z| = 2n+1| cos 5nπ
3 |, arg z ∈ {0, π}.

10. If z = r(cos t+ i sin t) and n = −m, where m is a positive integer, then

zn = z−m =
1

zm
=

1

rm(cosmt + i sinmt)
=

1

rm
· cos 0 + i sin 0

cosmt + i sinmt

=
1

rm
[cos(0−m)t+ i sin(0−m)t] = r−m(cos(−mt) + i sin(−mt))

= rn(cosnt + i sinnt).

11.(a) 2n sinn a
2

[
cos n(π−a)

2 + i sin n(π−a)
2

]
if a ∈ [0, π);

2n sinn a
2

[
cos n(5π−a)

2 + i sin n(5π−a)
2

]
if a ∈ [π, 2π];

(b) zn + 1
zn = 2 cos nπ

6 .

12. Applying the quadratic formula to z2 − (2 cos 3◦)z + 1 = 0, we have

z =
2 cos 3◦ ±

√
4 cos2 3◦ − 4

2
= cos 3◦ ± i sin 3◦.

Using de Moivre theorem, we have

z2000 = cos 6000◦ + i sin 6000◦,

6000 = 16(360) + 240,

so
z2000 = cos 240◦ + i sin 240◦.

We want z2000 +
1

z2000
= 2 cos 240◦ = −1.

Finally, the least integer greater than −1 is 0.
13. We know by de Moivre’s theorem that

(cos t+ i sin t)n = cosnt+ i sinnt

for all real numbers t and all integers n. We would like, therefore, somehow
to convert our given expression into a form from which we can apply de
Moivre’s theorem.
Recall the trigonometric identities

cos
π

2
− u = sinu and sin

π

2
− u = cosu,
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which hold for all real u. If our original equation holds for all t, it must

certainly hold for t =
π

2
− u. Thus, the question is equivalent to asking

for how many positive integers n ≤ 1000 we have such that

(
sin
(π
2
− u
)
+ i cos

(π
2
− u
))n

= sinn
(π
2
− u
)
+ i cosn

(π
2
− u
)

holds for all real u. From the de Moivre’s theorem we have
(
sin
(π
2
− u
)
+ i cos

(π
2
− u
))n

= (cosu+ i sinu)n = cosnu+ i sinnu.

We know that two complex numbers are equal if and only if both their
real parts and imaginary parts are equal. Thus, we need to find all n such
that

cosnu = sinn
(π
2
− u
)

and sinnu = cosn
(π
2
− u
)

hold for all real u. Now, sinx = cos y if and only if either x+y =
π

2
+2kπ

or x − y =
π

2
+ 2kπ for some integer k. So from the equality of the real

parts, we need either

nu+ n
(π
2
− u
)
=

π

2
+ 2kπ,

in which case n = 1 + 4k, or

−nu+ n
(π
2
− u
)
=

π

2
+ 2kπ,

in which case n will depend on u, and so the equation will not hold for all
real values of u. Checking n = 1 + 4k in the equation for the imaginary
parts, we see that it works there as well, so exactly those values of n
congruent to 1 modulo 4 work. There are 250 of them in the given range.

14. Let R(x) = cosx+ i sinx. We have

(1 −
√
3i)n =

(
2R
(
−π

3

))n
= 2nR

(
−nπ

3

)
,

and thus by de Moivre’s theorem, we get

xn = 2n cos
(
−nπ

3

)
= 2n cosnθ,

yn = 2n sin
(
−nπ

3

)
= −2n sinnθ,

where θ =
π

3
.

Substituting these into the given expressions, we obtain

(a) xnyn−1 − xn−1yn = 22n−1 sin(nθ− (n− 1)θ) = 22n−1 sin θ =
√
3 · 4n−1,

(b) xnxn−1 + ynyn−1 = 22n−1 cos(nθ − (n− 1)θ) = 22n−1 cos θ = 4n−1.
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6.1.4 The nth Roots of Unity

1.(a) zk = 4
√
2
(
cos

π
4 +2kπ

2 + i sin
π
4 +2kπ

2

)
, k ∈ {0, 1};

(b) zk = cos
π
2 +2kπ

2 + i sin
π
2 +2kπ

2 , k ∈ {0, 1};
(c) zk = cos

π
4 +2kπ

2 + i sin
π
4 +2kπ

2 , k ∈ {0, 1};

(d) zk = 2
(
cos

4π
3 +2kπ

2 + i sin
4π
3 +2kπ

2

)
, k ∈ {0, 1};

(e) z0 = 4− 3i, z1 = −4 + 3i.

2.(a) zk = cos
3π
2 +2kπ

3 + i sin
3π
2 +2kπ

2 , k ∈ {0, 1, 2};
(b) zk = 3

(
cos π+2kπ

3 + i sin π+2kπ
3

)
, k ∈ {0, 1, 2};

(c) zk =
√
2
(
cos

π
4 +2kπ

3 + i sin
π
4 +2kπ

3

)
, k ∈ {0, 1, 2};

(d) zk = cos
5π
3 +2kπ

3 + i sin
5π
3 +2kπ

3 , k ∈ {0, 1, 2};
(e) z0 = 3+ i, z1 = (3+ i)ε, z2 = (3+ i)ε2, where 1, ε, ε2 are the cube roots

of 1.

3.(a) zk =
√
2
(
cos

5π
4 +2kπ

4 + i sin
5π
4 +2kπ

4

)
, k ∈ {0, 1, 2, 3};

(b) zk = 4
√
2
(
cos

π
6 +2kπ

4 + i sin
π
6 +2kπ

4

)
, k ∈ {0, 1, 2, 3};

(c) zk = cos
π
2 +2kπ

4 + i sin
π
2 +2kπ

4 , k ∈ {0, 1, 2, 3};

(d) zk = 4
√
2
(
cos

3π
2 +2kπ

4 + i sin
3π
2 +2kπ

4

)
, k ∈ {0, 1, 2, 3};

(e) z0 = 2 + i, z1 = −2− i, z2 = −1 + 2i, z3 = 1− 2i.

4. zk = cos 2kπ
n + i sin 2kπ

n , k ∈ {0, 1, . . . , n− 1}, n ∈ {5, 6, 7, 8, 12}.
5.(a) Consider εj = εj, εk = εk, where ε = cos 2π

n + i sin 2π
n . Then εj · εk =

εj+k. Let r be the remainder modulo n of j + k. We have j + k =
p·n+r, r ∈ {0, 1, . . . , n−1} and εj ·εk =p·n+r= (εn)p·εr = εr = εr ∈ Un.

(b) We can write ε−1
j = 1

εj
= 1

εj = εn

εj = εn−j ∈ Un.

6.(a) zk = 5
(
cos 2kπ

3 + i sin 2kπ
3

)
, k ∈ {0, 1, 2};

(b) zk = 2
(
cos π+2kπ

4 + i sin π+2kπ
4

)
, k ∈ {0, 1, 2, 3};

(c) zk = 4
(
cos

3π
2 +2kπ

3 + i sin
3π
2 +2kπ

3

)
, k ∈ {0, 1, 2};

(d) zk = 3
(
cos

π
2 +2kπ

3 + i sin
π
2 +2kπ

3

)
, k ∈ {0, 1, 2}.

7.(a) The equation is equivalent to (z4 − i)(z3 − 2i) = 0.
(b) We can write the equation as (z3 + 1)(z3 + i− 1) = 0.
(c) The equation is equivalent to z6 = −1 + i.
(d) We can write the equation equivalently as (z5 − 2)(z5 + i) = 0.

8. It is clear that every solution is different from zero. Multiplying by z, we
see that the equation is equivalent to z5 − 5z4 + 10z3 − 10z2 + 5z − 1 =
−1, z �= 0. We obtain the binomial equation (z − 1)5 = −1, z �= 0. The

solutions are zk = 1 + cos (2k+1)π
5 + i sin (2k+1)π

5 , k = 0, 1, 3, 4.
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9. It suffices to prove that

nzn + . . .+ 2z2 + z =
n+ 1

z − 1
.

Clearly, zn+1 − 1 = 0, with z �= 1. We have

zn + zn−1 + . . .+ z =
z(zn − 1)

z − 1
=

zn+1 − z

z − 1
=

1− z

z − 1
,

zn + zn−1 + . . .+ z2 =
z2(zn−1 − 1)

z − 1
=

zn+1 − z2

z − 1
=

1− z2

z − 1
,

. . . . . . . . . . . . . . .

zn + zn−1 =
zn−1(z2 − 1)

z − 1
=

zn+1 − zn−1

z − 1
=

1− zn−1

z − 1
,

zn =
zn(z − 1)

z − 1
=

zn+1 − zn

z − 1
=

1− zn

z − 1
.

Hence

nzn + . . .+ 2z2 + z =
n− (z + z2 + . . .+ zn)

z − 1
=

n− zn+1 − z

z − 1
z − 1

=
n− 1− z

z − 1
z − 1

=
n+ 1

z − 1
.

10. The given condition is equivalent to

z2 + z + 1 +
1

z
+

1

z2
= 0,

that is,
z5 − 1

z2(z − 1)
= 0, because z �= 1.

For n ≡ 0 (mod 5), our product is equal to (1 + 1)(1 + 1 + 1) = 6.
Otherwise,

(
zn +

1

zn

)(
zn +

1

zn
+ 1

)
− 1 = z2n + zn +1+

1

zn
+

1

z2n
=

(zn)5 − 1

z2n(zn − 1)

=
(z5)n − 1

z2n(zn − 1)
= 0,

so the answer to the problem is

{
6, if n ≡ 0 (mod 5),
1, otherwise.
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11. Solution 1. We have z1997 = 1 = 1(cos 0 + i sin 0).
By de Moivre’s theorem, we find that (k ∈ {0, 1, . . . , 1996})

z = cos

(
2kπ

1997

)
+ i sin

(
2kπ

1997

)
.

Now let v be the root corresponding to θ =
2mπ

1997
, and let w be the root

corresponding to θ =
2nπ

1997
. The magnitude of v + w is therefore

√(
cos

(
2mπ

1997

)
+ cos

(
2nπ

1997

))2
+

(
sin

(
2mπ

1997

)
+ sin

(
2nπ

1997

))2

=

√

2 + 2 cos

(
2mπ

1997

)
cos

(
2nπ

1997

)
+ 2 sin

(
2mπ

1997

)
sin

(
2nπ

1997

)
.

We need

cos

(
2mπ

1997

)
cos

(
2nπ

1997

)
+ sin

(
2mπ

1997

)
sin

(
2nπ

1997

)
≥

√
3

2
.

The cosine difference identity simplifies the above to

cos

(
2mπ

1997
− 2nπ

1997

)
≥

√
3

2
.

Thus

|m− n| ≤ π

6
· 1997

2π
=

⌊
1997

12

⌋
= 166.

Therefore, m and n cannot be more than 166 away from each other. This
means that for a given value of m, there are 332 values for n that satisfy
the inequality; 166 of them greater than m, and 166 of them less than m.
Since m and n must be distinct, n has 1996 possible values. Therefore,

the probability is
332

1996
=

83

499
. The answer is then 499 + 83 = 582.

Solution 2. The solutions of the equation z1997 = 1 are the 1997th roots
of unity and are equal to

cos

(
2kπ

1997

)
+ i sin

(
2kπ

1997

)
for k = 0, 1, . . . , 1996.

They are also located at the vertices of a regular 1997-gon that is centered
at the origin in the complex plane.
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Without loss of generality, let v = 1. Then

|v + w|2 =

∣
∣
∣
∣cos
(

2kπ

1997

)
+ i sin

(
2kπ

1997

)
+ 1

∣
∣
∣
∣

2

=

∣
∣∣
∣

[
cos

(
2kπ

1997

)
+ 1

]
+ i sin

(
2kπ

1997

)∣∣∣
∣

2

= cos2
(

2kπ

1997

)
+ 2 cos

(
2kπ

1997

)
+ 1 + sin2

(
2kπ

1997

)

= 2 + 2 cos

(
2kπ

1997

)
.

We want |v + w|2 ≥ 2 +
√
3. From what we just obtained, this is

equivalent to

cos

(
2kπ

1997

)
≥

√
3

2
.

This occurs when
π

6
≥ 2kπ

1997
≥ −π

6
, which is satisfied by

k = 166, 165, . . . ,−165,−166

(we do not include 0, because that corresponds to v). So out of the 1996
possible k, 332 work. Thus, m/n = 332/1996 = 83/499. So our answer is
83 + 499 = 582.

12. Solution 1. We have the following equations:

1− z

2z − i
= 1,

1− z

2z − i
= −1,

1− z

2z − i
= i,

1− z

2z − i
= −i.

Let us work each equation separately. The first one gives
z

2z − i
= 0, or

z = 0. The second one gives 2 =
z

2z − i
, or 4z − 2i = z or z =

2i

3
. The

third one gives
z − i

2z − i
= i or z − i = 2zi+ 1, or z =

i+ 1

−2i+ 1
, which is

3i− 1

5
. The fourth one gives (1 + i)(2z − i) = z, or z + 2iz − i + 1 = 0,

which gives the solution
3i+ 1

5
.
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Thus our answers are

(0+1)

(
−4

9
+ 1

)(
− 8

25
− 6i

25
+ 1

)(
− 8

25
+

6i

25
+ 1

)
=

(
5

9

)(
13

25

)
=

13

45
.

Solution 2.
z4

(2z + i)4
= 1 has roots z1 + i, z2 + i, z3 + i, z4 + i.

From z4 = 16z4 + . . .+ 1, we get the product of roots
1

15
.

(z − 2i)4

(2z − 3i)4
= 1 has roots z1 − i, z2 − i, z3 − i, z4 − i.

From z4+ . . .+16 = 16z4+ . . .+81, we get the product of roots
65

15
=

13

3
.

Hence

4∏

r=1

(z2r + 1) =

4∏

r=1

(zr + i)

4∏

r=1

(zr − i) =

(
1

15

)(
13

3

)
=

13

45
.

Solution 3. The roots of the given equation are the same as the roots of
the polynomial

P (z) = (z − i)4 − (2z − i)4.

If a is the leading coefficient of P (z), in this case a = 1− 24 = −15, then

the desired expression is simply
P (i)

a
· P (−i)

a
. Since P (i) = −i4 = −1 and

P (−i) = (−2i)4 − (−3i)4 = 16− 81 = −65, we get

E =
P (i)P (−i)

a2
=

65

225
=

13

45
.

13. Let t = 1/x. After multiplying the equation by t10, we have

1 + (13− t)10 = 0 ⇒ (13− t)10 = −1.

Using de Moivre’s theorem, we obtain 13 − t = cis

(
(2k + 1)π

10

)
, where

k is an integer between 0 and 9, and cisθ = cos θ + i sin θ. We have

t = 13− cis

(
(2k + 1)π

10

)
⇒ t = 13− cis

(
− (2k + 1)π

10

)
.

Since cisθ + cis(−θ) = 2 cos θ, we have

tt = 170− 26 cos

(
(2k + 1)π

10

)

after expanding. Here k ranges from 0 to 4, because two angles that sum
to 2π are involved in the product.
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The expression to find is

∑
tt = 850− 26

4∑

k=0

cos
(2k + 1)π

10
.

But

cos
π

10
+ cos

9π

10
= cos

3π

10
+ cos

7π

10
= cos

π

2
= 0,

so the sum is 850.
14. Since the coefficients of the polynomial are real, it follows that the nonreal

roots must come in complex-conjugate pairs. Let the first two roots be
m,n. Since m + n is not real, m,n are not conjugate, so the other pair
of roots must be the conjugates of m,n. Let m′ be the conjugate of m,
and n′ be the conjugate of n. Then

mn = 13 + i, m′ + n′ = 3 + 4i ⇒ m′n′ = 13− i, m+ n = 3− 4i.

By Viète’s formulas, we have that

b = mm′+nn′+mn′+nm′+mn+m′n′ = (m+n)(m′+n′)+mn+m′n′ = 51.

6.1.5 Some Geometric Transformations
of the Complex Plane

1. Suppose that f, g are isometries. Then for all complex numbers a, b, we
have |f(g(a))−f(g(b))| = |g(a)−g(b)| = |a−b|, so f ◦g is also an isometry.

2. Suppose that f is an isometry and let C be any point on the line AB.
Let f(C) = M . Then MA = f(C)f(A) = AC, and similarly, MB = BC.
Thus |MA−MB| = AB. Hence A,M,B are collinear. Now, from MA =
AC and MB = BC, we conclude that M = C. Hence f(M) = M , and
the conclusion follows.

3. This follows immediately from the fact that every isometry f is of the
form f(z) = az + b or f(z) = az + b, with |a| = 1.

4. The function f is the product of the rotation z → iz, the translation
z → z + 4 − i, and a reflection in the real axis. It is clear that f is an
isometry.

5. The function f is the product of the rotation z → −iz with the translation
z → z + 1 + 2i.
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6.2 Solutions to the Olympiad-Caliber Problems

6.2.1 Problems Involving Moduli and Conjugates

Problem 21. Consider the set

A = {z ∈ C : |z| < 1},

a real number a with |a| > 1, and the function

f : A → A, f(z) =
1 + az

z + a
.

Prove that f is bijective.

Solution. First, we prove that the function f is well defined, i.e., that
|f(z)| < 1 for all z with |z| < 1.

Indeed, we have |f(z)| < 1 if and only if | 1+az
z+a | < 1, i.e., |1+az|2 < |z+a|2.

The last relation is equivalent to (1 + az)(1 + az) < (z + a)(z + a). That is,
1 + |a|2|z|2 < |a|2 + |z|2, or equivalently, (|a|2 − 1)(|z|2 − 1) < 0. The last
inequality is obvious, since |z| < 1 and |a| > 1.

To prove that f is bijective, it suffices to observe that for every y ∈ A,
there is a unique z ∈ A such that

f(z) =
1 + az

z + a
= y.

We obtain

z =
ay − 1

a− y
= −f(−y),

and hence |z| = |f(−y)| < 1, as desired.

Problem 22. Let z be a complex number such that |z| = 1 and both Re(z)
and Im(z) are rational numbers. Prove that |z2n−1| is rational for all integers
n ≥ 1.

Solution. Let z = cosϕ+ i sinϕ with cosϕ, sinϕ ∈ Q. Then

z2n − 1 = cos 2nϕ+ i sin 2nϕ− 1 = 1− 2 sin2 nϕ+ 2i sinnϕ cosnϕ− 1

= −2 sinnϕ(sinnϕ− i cosnϕ)

and

|z2n − 1| = 2| sinnϕ|.

It suffices to prove that sinnϕ ∈ Q. We prove by induction on n that both
sinnϕ and cosnϕ are rational numbers. The claim is obvious for n = 1.
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Assume that sinnϕ, cosnϕ ∈ Q. Then

sin(n+ 1)ϕ = sinnϕ cosϕ+ cosnϕ cosϕ ∈ Q

and
cos(n+ 1)ϕ = cosnϕ cosϕ− sinnϕ sinϕ ∈ Q,

as desired.

Problem 23. Consider the function

f : R → C, f(t) =
1 + ti

1− ti
.

Prove that f is injective and determine its range.

Solution. To prove that the function f is injective, let f(a) = f(b). Then

1 + ai

1− ai
=

1 + bi

1− bi
.

This is equivalent to 1+ab+(a−b)i = 1+ab+(b−a)i, i.e., a = b, as needed.

The image of the function f is the set of numbers z ∈ C such that there is
t ∈ R with

z = f(t) =
1 + ti

1− ti
.

From z = 1+ti
1−ti , we obtain t = z−1

i(1+z) if z �= 1. Then t ∈ R if and only if t = t.

The last relation is equivalent to

z − 1

i(1 + z)
=

z − 1

−i(1 + z
,

i.e.,

−(z − 1)(z + 1) = (z + 1)(z − 1).

It follows that 2zz = 2, i.e., |z| = 1; hence the image of the function f is
the set {z ∈ R||z| = 1 and z �= −1}, the unit circle without the point with
coordinate z = −1.

Problem 24. Let z1, z2 ∈ C
∗ such that |z1 + z2| = |z1| = |z2|. Compute z1

z2
.

Solution 1. Let z2
z1

= t ∈ C. Then

|z1 + z1t| = |z1| = |z1t| or |1 + t| = |t| = 1.

It follows that tt = 1 and

1 = |1 + t|2 = (1 + t)(1 + t) = 1 + t+ t+ 1,

whence t2 + t+ 1 = 0.
Therefore, t is a nonreal cube root of unity.
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Solution 2. Let A,B,C be the geometric images of the complex numbers
z1, z2, z1+z2, respectively. In the parallelogram OACB we have OA = OB =

OC; hence ÂOB = 120◦. Then

z2
z1

= cos 120◦ + i sin 120◦ or
z1
z2

= cos 120◦ + i sin 120◦,

and therefore,

z2
z1

= cos
2π

3
± i sin

2π

3
.

Problem 25. Prove that for all complex numbers z1, z2, . . . , zn, the fol-
lowing inequality holds:

(|z1|+ |z2|+ · · ·+ |zn|+ |z1 + z2 + · · ·+ zn|)2

≥ 2(|z1|2 + · · ·+ |zn|2 + |z1 + z2 + · · ·+ zn|2).

Solution. We prove first the inequality

|zk| ≤ |z1|+ |z2|+ · · ·+ |zk−1|+ |zk+1|+ · · ·+ |zn|+ |z1 + z2 + · · ·+ zn|

for all k ∈ {1, 2, . . . , n}. Indeed,

|zk| = |(z1 + z2 + · · ·+ zk−1 + zk + zk+1 + · · ·+ zn)

−(z1 + z2 + · · ·+ zk−1 + zk+1 + · · ·+ zn)|

≤ |z1 + z2 + · · ·+ zn|+ |z1|+ · · ·+ |zk−1|+ |zk+1|+ · · ·+ |zn|,

as claimed.
Set Sk = |z1|+ · · ·+ |zk−1|+ |zk+1|+ · · ·+ |zn| for all k. Then

|zk| ≤ Sk + |z1 + z2 + · · ·+ zn|, for all k. (1)

Moreover,
|z1 + z2 + · · ·+ zn| ≤ |z1|+ |z2|+ · · ·+ |zn|. (2)

Multiplying the inequalities (1) by |zk| and the inequalities (2) by |z1 + z2 +
· · ·+ zn|, we obtain by summation

|z1|2 + |z2|2 + · · ·+ |zn|2 + |z1 + z2 + · · ·+ zn|2

≤ 2|z1 + z2 + · · ·+ zn|
n∑

k=1

|zk|+
n∑

k=1

|zk|Sk.

Adding the expression

|z1|2 + |z2|2 + · · ·+ |zn|2 + |z1 + z2 + · · ·+ zn|2
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to both sides of the inequality yields

2(|z1|2 + |z2|2 + · · ·+ |zn|2 + |z1 + z2 + · · ·+ zn|2)
≤ (|z1|+ · · ·+ |zn|+ |z1 + z2 + · · ·+ zn|)2,

as desired.

Problem 26. Let z1, z2, . . . , z2n be complex numbers such that |z1| = |z2| =
· · · = |z2n| and arg z1 ≤ arg z2 ≤ · · · ≤ arg z2n ≤ π. Prove that

|z1 + z2n| ≤ |z2 + z2n−1| ≤ · · · ≤ |zn + zn+1|.

Solution 1. Let M1,M2, . . . ,M2n be the points with coordinates
z1, z2, . . . , z2n, and let A1, A2, . . . , An be the midpoints of the segments
M1M2n, M2M2n−1, . . . ,MnMn+1.

The points Mi, i = 1, 2n, lie on the upper semicircle centered at
the origin with radius 1. Moreover, the lengths of the chords M1M2n,
M2M2n−1, . . . ,MnMn+1 are in decreasing order; hence OA1, OA2, . . . , OAn

are increasing. Thus
∣
∣∣
∣
z1 + z2n

2

∣
∣∣
∣ ≤
∣
∣∣
∣
z2 + z2n−1

2

∣
∣∣
∣ ≤ · · · ≤

∣
∣∣
∣
zn + zn+1

2

∣
∣∣
∣ ,

and the conclusion follows (Fig. 6.1).

Figure 6.1.

Solution 2. Consider zk = r(cos tk + i sin tk), k = 1, 2, . . . , 2n and observe
that for every j = 1, 2, . . . , n, we have

|zj + z2n−j+1|2 = |r[(cos tj + cos t2n−j+1) + i(sin tj + sin t2n−j+1)]|2

= r2[(cos tj + cos t2n−j+1)
2 + (sin tj + sin t2n−j+1)

2]
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= r2[2 + 2(cos tj cos t2n−j+1 + sin tj sin t2n−j+1)]

= 2r2[1 + cos(t2n−j+1 − tj)] = 4r2 cos2
t2n−j+1 − tj

2
.

Therefore, |zj + z2n−j+1| = 2r cos
t2n−j+1−tj

2 , and the inequalities

|z1 + z2n| ≤ |z2 + z2n−1| ≤ · · · ≤ |zn + zn+1|

are equivalent to t2n − t1 ≥ t2n−1 − t2 ≥ · · · ≥ tn+1 − tn. Because 0 ≤ t1 ≤
t2 ≤ · · · ≤ t2n ≤ π, the last inequalities are obviously satisfied.

Problem 27. Find all positive real numbers x and y satisfying the system of
equations

√
3x

(
1 +

1

x+ y

)
= 2,

√
7y

(
1− 1

x+ y

)
= 4

√
2.

(1996 Vietnamese Mathematical Olympiad)

Solution. It is natural to make the substitution
√
x = u,

√
y = v. The

system becomes

u

(
1 +

1

u2 + v2

)
=

2√
3
,

v

(
1− 1

u2 + v2

)
=

4
√
2√
7
.

But u2 + v2 is the square of the absolute value of the complex number z =
u+ iv. This suggests that we add the second equation multiplied by i to the
first one. We obtain

u+ iv +
u− iv

u2 + v2
=

(
2√
3
+ i

4
√
2√
7

)

.

The quotient (u − iv)/(u2 + v2) is equal to z/|z|2 = z/(zz) = 1/z, so the
above equation becomes

z +
1

z
=

(
2√
3
+ i

4
√
2√
7

)

.

Hence z satisfies the quadratic equation
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z2 −
(

2√
3
+ i

4
√
2√
7

)

z + 1 = 0

with solutions
(

1√
3
± 2√

21

)
+ i

(
2
√
2√
7

±
√
2

)

,

where the signs + and − correspond.
This shows that the initial system has the solutions

x =

(
1√
3
± 2√

21

)2
, y =

(
2
√
2√
7

±
√
2

)2

,

where the signs + and − correspond.

Problem 28. Let z1, z2, z3 be complex numbers. Prove that z1+z2+z3 = 0
if and only if |z1| = |z2 + z3|, |z2| = |z3 + z1|, and |z3| = |z1 + z2|.

Solution. The direct implication is obvious.
Conversely, let |z1| = |z2 + z3|, |z2| = |z1 + z3|, |z3| = |z1 + z2|. It follows

that
|z1|2 + |z2|2 + |z3|2 = |z2 + z3|2 + |z3 + z1|2 + |z1 + z2|2.

This is equivalent to

z1z1 + z2z2 + z3z3 = z2z2 + z2z3 + z2z3 + z3z3

+ z3z1 + z1z3 + z1z1 + z1z1 + z1z2 + z2z1 + z2z2, i.e.,

z1z1 + z2z2 + z3z3 + z1z2 + z2z1 + z1z3 + z1z3 + z2z3 + z3z2 = 0.

We write the last relation as

(z1 + z2 + z3)(z1 + z2 + z3) = 0,

and we obtain

|z1 + z2 + z3|2 = 0, i.e., z1 + z2 + z3 = 0,

as desired.

Problem 29. Let z1, z2, . . . , zn be distinct complex numbers with the same
modulus such that

z3z4 . . . zn−1zn + z1z4 . . . zn−1zn + · · ·+ z1z2 . . . zn−2 = 0.

Prove that
z1z2 + z2z3 + · · ·+ zn−1zn = 0.

Solution. Let a = |z1| = |z2| = · · · = |zn|. Then
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zk =
a2

zk
, k = 1, n,

and

z1z2 + z2z3 + · · ·+ zn−1zn =

n−1∑

k=1

zkzk+1 =

n−1∑

k=1

a4

zkzk+1

=
a4

z1z2 · · · zn
(z3z4 · · · zn + z1z4 · · · zn + · · ·+ z1z2 · · · zn−2) = 0;

hence
z1z2 + z2z3 + · · ·+ zn−1zn = 0,

as desired.

Problem 30. Let a and z be complex numbers such that |z + a| = 1. Prove
that

|z2 + a2| ≥ |1− 2|a|2|√
2

.

Solution. Let

z = r1(cos t1 + i sin t1)

and

a = r2(cos t2 + i sin t2).

We have

1 = |z + a| =
√
(r1 cos t1 + r2 cos t2)2 + (r1 sin t1 + r2 sin t2)2

=
√

r21 + r22 + 2r1r2 cos(t1 − t2),

so

cos(t1 − t2) =
1− r21 − r22

2r1r2
.

Then

|z2 + a2| = |r21(cos 2t1 + i sin 2t1) + r22(cos 2t2 + i sin 2t2)|

=
√
(r21 cos 2t1 + r22 cos 2t2)

2 + (r21 sin 2t1 + r22 sin 2t2)
2

=
√
r41 + r42 + 2r21r

2
2 cos 2(t1 − t2)

=
√
r41 + r42 + 2r21r

2
2(2 cos

2(t1 − t2)− 1)

=

√√
√
√r41 + r42 + 2r21r

2
2 ·
(

2

(
1− r21 − r22

2r1r2

)2
− 1

)
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=
√
2r41 + 2r42 + 1− 2r21 − 2r22 .

The inequality

|z2 + a2| ≥ |1− 2|a|2|√
2

is equivalent to

2r41 + 2r42 + 1− 2r21 − 2r22 ≥ (1− 2r22)
2

2
, i.e.,

4r41 + 4r42 − 4r21 − 4r22 + 2 ≥ 1− 4r22 + 4r42 .

We

(2r21 − 1)2 ≥ 0,

and we are done.

Problem 31. Find the geometric images of the complex numbers z for which

zn ·Re(z) = zn · Im(z),

where n is an integer.

Solution. It is easy to see that z = 0 is a root of the equation. Consider
z = a+ ib �= 0, a, b ∈ R.

Observe that if a = 0, then b = 0, and if b = 0, then a = 0. Therefore, we
may assume that a, b �= 0.

Taking the modulus of both members of the equation

azn = bzn (1)

yields |a| = |b|, or a = ±b.

Case 1. If a = b, (1) becomes

(a+ ia)n = (a− ia)n.

This is equivalent to

(
1 + i

1− i

)n
= 1, i.e., in = 1,

which has solutions only for n = 4k, k ∈ Z. In that case, the solutions are

z = a(1 + i), a �= 0.

Case 2. If a = −b, (1) may be rewritten as

(a− ia)n = −(a+ ia)n.
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That is,
(
1− i

1 + i

)n
= −1, i.e., (−i)n = −1,

which has solutions only for n = 4k + 2, k ∈ Z. We obtain

z = a(1− i), a �= 0.

To conclude,

(a) if n is odd, then z = 0;
(b) if n = 4k, k ∈ Z, then z = {a(1+ i)|a ∈ R}, i.e., a line through the origin;
(c) if n = 4k + 2, k ∈ Z, then z = {a(1 − i)|a ∈ R}, i.e., a line through the

origin.

Problem 32. Let a, b be real numbers with a + b = 1 and let z1, z2 be
complex numbers with |z1| = |z2| = 1.

Prove that

|az1 + bz2| ≥
|z1 + z2|

2
.

Solution. Let z1 = cos t1 + i sin t1 and z2 = cos t2 + i sin t2. The inequality

|az 1 + bz 2| ≥
|z1 + z2|

2

is equivalent to

√
(a cos t1 + b cos t2)2 + (a sin t1 + b sin t2)2

≥ 1

2

√
(cos t1 + cos t2)2 + (sin t1 + sin t2)2.

That is,

2
√
a2 + b2 + 2ab cos(t1 − t2) ≥

√
2 + 2 cos(t1 − t2), i.e.,

4a2 + 4(1− a)2 + 8a(1− a) cos(t1 − t2) ≥ 2 + 2 cos(t1 − t2).

We obtain

8a2 − 8a+ 2 ≥ (8a2 − 8a+ 2) cos(t1 − t2), i.e., 1 ≥ cos(t1 − t2),

which is obvious.
Equality holds if and only if t1 = t2, i.e., z1 = z2 or a = b = 1

2 .

Problem 33. Let k, n be positive integers and let z1, z2, . . . , zn be nonzero
complex numbers with the same modulus such that

zk1 + zk2 + · · ·+ zkn = 0.
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Prove that
1

zk1
+

1

zk2
+ · · ·+ 1

zkn
= 0.

Solution. Let r = |z1| = |z2| = · · · = |zn| > 0. Then

1

zk1
+

1

zk2
+ · · ·+ 1

zkn
=

z1
k

r2k
+

z2
k

r2k
+ · · ·+ zn

k

r2k

=
1

r2k

(
zk1 + zk2 + · · ·+ zkn

)
= 0,

as desired.

Problem 34. Find all pairs (a, b) of real numbers such that

(a+ bi)5 = b+ ai.

Solution. Let

a+ bi = r(cos θ + i sin θ).

Then by taking the magnitude of both sides of the equation, we obtain

r5 = r, r ≥ 0,

that is, r = 0 or r = 1.
If r = 0, then a = b = 0, and so

(a, b) = (0, 0).

Now if r = 1, then by de Moivre’s law,

(a+ bi)5 = (cos θ + i sin θ)5 = cos(5θ) + i sin(5θ).

By trigonometric identities we also have

b+ ai = cos(90◦ − θ) + i sin(90◦ − θ).

It follows that

5θ ≡ 90◦ − θ (mod 360).

In other words,
5θ = 90◦ − θ + 360◦k,

where k is an integer.
Hence

θ = 15◦ + 70k◦,

where k ∈ Z. So k = 15, 75, 135, 195, 255, 315.
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Now

(a, b) =

(

±
√
2

2
,∓

√
2

2

)

,

(

±
√
6±

√
2

4
,±

√
6∓

√
2

4

)

.

Combining the r = 0 and r = 1 cases, we get seven solutions:

(a, b) = (0, 0),

(

±
√
2

2
,∓

√
2

2

)

,

(

±
√
6±

√
2

4
,±

√
6∓

√
2

4

)

,

where the signs + and − correspond.

Problem 35. For every value of a ∈ R, find min |z2 − az + a|, where z ∈ C

and |z| ≤ 1.

Solution. This was Problem 2, grade 10, at the 2009 Romanian National
Olympiad, asked for just a ∈ [2 +

√
2, 4].

The equation z2 − az + a = 0 has roots z1,2 =
a

2
±

√
a2 − 4a

2
, and it is

natural to consider various cases with respect to the values taken by a, since

|z2 − az + a| = |(z − z1)(z − z2)|,

and if we denote by M,A1, A2 the points of coordinates z, z1, z2, the expres-
sion becomes MA1 ·MA2.

(1) a ≤ 1. Then at least one of the roots z1, z2 is of magnitude at most 1;
therefore,

min |z2 − az + a| = 0,

which is realized for the root.
(2) a ≥ 4. Then the roots are real and greater than 1. Setting T (1, 0) and

B(0, 1) = {z ∈ C | |z| ≤ 1}, we have

MAj ≥ d(Aj , B(0, 1)) = TAj,

and thus

|z2 − az + a| = MA1 ·MA2 ≥ TA1 · TA2 = 1,

a minimum realized for z = 1.
(3) 1 ≤ a ≤ 4. Then a2 − 4a ≤ 0, thus the roots are complex conjugates.

The following result will be useful. Consider the points A1(α, β), A2(α,−β),
and M(x, y). Then

(MA1 ·MA2)
2 = ((x − α)2 + (y − β)2)((x − α)2 + (y + β)2)

= ((x − α)2 + y2 + β2)2 − 4β2y2,

having least value when x is closest to α.



6.2 Solutions to the Olympiad-Caliber Problems 303

Let us now compute |z2 − az + a| for |z| = 1. Thus z = cos θ + i sin θ.
We have

|z2 − az + a|2 = |(cos2 θ − sin2 θ − a cos θ + a) + i(2 cos θ sin θ − a sin θ)|2

= (cos θ(2 cos θ − a) + a− 1)2 + (sin θ(2 cos θ − a))2

= (2 cos θ − a)2 + 2(a− 1) cos θ(2 cos θ − a) + (a− 1)2

= (2a1 − 2a+ 1)− 4a

(
a+ 1

4

)2
+ 4a

(
cos θ − a+ 1

4

)2
.

For a ∈ [3, 4], the minimum of the expression above is obtained for cos θ = 1,
thus again for z = 1 and is

min |z2 − az + a| = 1.

For a ∈ [1, 3], the minimum of the expression above is obtained for cos θ =
a+ 1

4
and is

min |z2 − az + a| = (2a2 − 2a+ 1)− 4a

(
a+ 1

4

)2
= 1− a(a− 3)2

4
.

The value a = 2 +
√
2 ∈ [3, 4] is of interest. The circle γ of center (a/2, 0)

and radius
√
4a− a2/2, of diameter A1A2, is tangent at T (1, 0) to the disk

B(0, 1). For a ≥ 2 +
√
2, this allows for a special argumentation for the

minimum of the expression |z2−az+a| being 1, obtained for z = 1, and that
was the approach of the official solution.

Problem 36. Let a, b, c be three complex numbers such that

a|bc|+ b|ca|+ c|ab| = 0.

Prove that
|(a− b)(b− c)(c− a)| ≥ 3

√
3|abc|.

(Romanian Mathematical Olympiad—Final Round, 2008)

Solution. If one of the numbers is 0, then the conclusion is obvious. Other-

wise, on dividing by |abc| and setting α =
a

|a| , β =
b

|b| , γ =
c

|c| , the hypothesis
becomes a+ β + γ = 0 and |α| = ‖β| = |γ| = 1. It is a well-known fact that
in this case, the differences between the arguments of the numbers α, β, γ are

±2π

3
.

The law of cosines now gives |a− b|2 = |a|2 + |b|2 + |a||b| ≥ 3|a||b| and two
additional similar relations. Multiplication of the three inequalities yields the
desired result.



304 6 Answers, Hints, and Solutions to Proposed Problems

Problem 37. Let a and b be two complex numbers. Prove the inequality

|1 + ab|+ |a+ b| ≥
√

|a2 − 1||b2 − 1|.

(Romanian Mathematical Olympiad—District Round, 2008)

Solution 1. By the triangle inequality,

|1 + ab|+ |a+ b| ≥ |1 + ab+ a+ b|

and
|1 + ab|+ |a+ b| ≥ |1 + ab− a− b|.

Multiply these two inequalities to get

(|1 + ab|+ |a+ b|)2 ≥ (|1 + ab)2 − (a+ b)2|,

which is equivalent to |1 + ab|+ |a+ b| ≥
√
|a2 − 1| · |b2 − 1|.

Solution 2. We have

|1 + 2ab+ a2b2|+ |a2 + 2ab+ b2| ≥ |a2b2 + 1− a2 − b2| = |a2 − 1| · |b2 − 1|,

which is equivalent to

(|1 + ab|+ |a+ b|)2 ≥ |(1 + ab)2 − (a+ b)2|.

Problem 38. Consider complex numbers a, b, and c such that a+ b+ c = 0
and |a| = |b| = |c| = 1. Prove that for every complex number z, |z| ≤ 1, we
have

3 ≤ |z − a|+ |z − b|+ |z − c| ≤ 4.

(Romanian Mathematical Olympiad—Final Round, 2012)

Solution. Consider points A,B,C, and M having complex coordinates
a, b, c, and z, respectively. The triangle ABC is equilateral and inscribed
in the unit circle centered at the origin of the complex plane O.

To prove the left-hand inequality, we have successively

∑
|z−a| =

∑
|a||z−a| =

∑
|az−aa| ≥

∣
∣
∣
∑

(az − 1)
∣
∣
∣ =
∣
∣
∣z
(∑

a
)
− 3
∣
∣
∣ = 3.

For the right-hand inequality, consider a chord containing M and denote by
P,Q its points of intersection with the unit circle. Let p and q be the complex
coordinates of P and Q. Let α ∈ [0, 1] be such that m = αp+(1−α)q. We get

∑
|z − a| =

∑
|αp+ (1− α)q − a| ≤ α

∑
|p− a|+ (1− α)

∑
|q − a|,
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so
∑

|z − a| ≤ max
{∑

|p− a|,
∑

|q − a|
}
.

We can suppose without loss of generality that

max
{∑

|p− a|,
∑

|q − a|
}
=
∑

|p− a|

and that P is on the arc from A to C. By Ptolemy’s relation, PA+PC = PB,
that is,

|p− a|+ |p− c| = |p− b|.

Then
∑

|z − a| ≤
∑

|p− a| = 2|p− b| ≤ 4,

which concludes the proof.

Remark. Equality holds in the left-hand inequality when z = 0, and in the
right-hand one when z ∈ {−a,−b,−c}.

6.2.2 Algebraic Equations and Polynomials

Problem 11. Let a, b, c be complex numbers with a �= 0. Prove that if the
roots of the equation az2 + bz + c = 0 have equal moduli, then ab|c| = |a|bc.

Solution. Let r = |z1| = |z2|.
The relation ab|c| = |a|bc is equivalent to

ab|c|
aa|a| =

|a|bc
aa|a| .

This relation can be written as

b

a
·
∣
∣
∣
c

a

∣
∣
∣ = −

(
b

a

)
· c
a
.

That is,

−(x1 + x2) · |x1x2| = −(x1 + x2) · x1x2, i.e.,

(x1 + x2)r
2 = |x1|2x2 + x1|x2|2.

It follows that
(x1 + x2)r

2 = (x1 + x2)r
2,

which is certainly true.
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Problem 12. Let z1, z2 be the roots of the equation z2 + z + 1 = 0, and let
z3, z4 be the roots of the equation z2 − z + 1 = 0. Find all integers n such
that zn1 + zn2 = zn3 + zn4 .

Solution. Observe that z31 = z32 = 1 and z33 = z34 = −1. If n = 6k + r, with
k ∈ Z and r ∈ {0, 1, 2, 3, 4, 5}, then zn1 + zn2 = zr1 + zr2 and zn3 + zn4 = zr3 + zr4 .

The equality zn1 + zn2 = zn3 + zn4 is equivalent to zr1 + zr2 = zr3 + zr4 and
holds only for r ∈ {0, 2, 4}. Indeed,
(i) if r = 0, then z01 + z02 = 2 = z03 + z04 ;
(ii) if r = 2, then z21 + z22 = (z1 + z2)

2 − 2z1z2 = (−1)2 − 2 · 1 = −1 and
z23 + z24 = (z3 + z4)

2 − 2z3z4 = 12 − 2 · 1 = −1;
(iii) if r = 4, then z41 + z42 = z1 + z2 = −1 and z43 + z44 = −(z3 + z4) =

−(+1) = −1.
The other cases are as follows:

(iv) r = 1: then z1 + z2 = −1 �= z3 + z4 = 1;
(v) r = 3: then z31 + z32 = 1+ 1 = 2 �= z33 + z34 = −1− 1 = −2;
(vi) r = 5: then z51 + z52 = z21 + z22 = −1 �= z53 + z54 = −(z23 + z24) = 1.

Therefore, the desired numbers are the even numbers.

Problem 13. Consider the equation with real coefficients

x6 + ax5 + bx4 + cx3 + bx2 + ax+ 1 = 0,

and denote by x1, x2, . . . , x6 the roots of the equation.
Prove that

6∏

k=1

(x2
k + 1) = (2a− c)2.

Solution. Let

f(x) = x6 + ax 5 + bx 4 + cx3 + bx 2 + ax + 1

=
6∏

k=1

(x− xk) =
6∏

k=1

(xk − x), for all x ∈ C.

We have

6∏

k=1

(x2
k + 1) =

6∏

k=1

(xk + i) ·
6∏

k=1

(xk − i) = f(−i) · f(i)

= (i6 + ai5 + bi4 + ci3 + bi2 + ai + 1) · (i6 − ai5 + bi4 − ci3 + bi2 − ai + 1)

= (2ai − ci)(−2ai + ci) = (2a− c)2,

as desired.

Problem 14. Let a and b be complex numbers and let P (z) = az2 + bz + i.
Prove that there exists z0 ∈ C with |z0| = 1 such that |P (z0)| ≥ 1 + |a|.
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Solution. For a complex number z with |z| = 1, observe that

P (z) + P (−z) = az 2 + bz + i+ az 2 − bz + i = 2(az 2 + i).

It suffices to choose z0 such that az20 = |a|i. Let

a = |a|(cos t+ i sin t), t ∈ [0, 2π).

The equation az2 = |a|i is equivalent to

z20 = cos
(π
2
− t
)
+ i sin

(π
2
− t
)
.

Set

z0 = cos

(
π

4
− t

2

)
+ i sin

(
π

4
− t

2

)
,

and we are done.
Therefore, we have

P (z0) + P (−z0) = 2(|z|i+ i) = 2i(1 + |a|).

Passing to absolute values, it follows that

|P (z0)|+ |P (−z0)| ≥ 2(1 + |a|).

That is, |P (z0)| ≥ 1 + |a| or |P (−z0)| ≥ 1 + |a|.
Note that |z0| = | − z0| = 1, as needed.

Problem 15. Find all polynomials f with real coefficients satisfying, for ev-
ery real number x, the relation f(x)f(2x2) = f(2x3 + x).

(21st IMO—Shortlist)

Solution. Let z be a complex root of the polynomial f . From the given
relation, it follows that 2z3 + z is also a root of f . Observe that if |z| > 1,
then

|2z3 + z| = |z||2z2 + 1| ≥ |z|(2|z|2 − 1) > |z|.

Hence, if f has a root z1 with |z1| > 1, then f has a root z2 = 2z31 + z1 with
|z2| > |z1|. We can continue this procedure and obtain an infinite number of
roots of f , namely z1, z2, . . . with |z1| < |z2| < · · · , a contradiction. Therefore,
all roots of f satisfy |z| ≤ 1.

We will show that f is not divisible by x. Assume, for the sake of a con-
tradiction, the contrary and choose the greatest k ≥ 1 with the property that
xk divides f . It follows that f(x) = xk(a+ xg(x)) with a �= 0; hence

f(2x2) = x2k(a1 + 2k+1x2g(2x2)) = x2k(a1 + xg1(x))
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and

f(2x3 + x) = xk(2x2 + 1)k(a+ (2x2 + 1)xg(x)) = xk(a+ xg2(x)),

where g, g1, g2 are polynomials and a1 �= 0 is a real number. The relation
f(x)f(2x2) = f(2x3 + x) is equivalent to xk(a + xg(x))x2k(a1 + xg1(x)) =
xk(a + xg2(x)), which is not possible for a �= 0 and k > 0. Let m be the
degree of polynomial f . The polynomials f(2x2) and f(2x3+x) have degrees
2m and 3m, respectively.

If f(x) = bmxm+ · · ·+b0, then f(2x2) = 2mbmx2m+ · · · and f(2x3+x) =
2mbmx3m + · · · . From the given relation, we obtain bm · 2m · bm = 2mbm,
hence bm = 1. Again using the given relation, it follows that f2(0) = f(0),
i.e., b20 = b0; hence b0 = 1.

The product of the roots of the polynomial f is ±1. Taking into account
that for every root z of f we have |z| ≤ 1, it follows that the roots of f have
modulus 1.

Consider z a root of f . Then |z| = 1 and 1 = |2z3 + z| = |z||2z2 + 1| =
|2z2 + 1| ≥ |2z2| − 1 = 2|z|2 − 1 = 1. Equality is possible if and only if the
complex numbers 2z2 and −1 have the same argument; that is, z = ±i.

Because f has real coefficients and its roots are ±i, it follows that f is of
the form (x2 + 1)n for some positive integer n. Using the identity

(x2 + 1)(4x4 + 1) = (2x3 + x)2 + 1,

we obtain that the desired polynomials are f(x) = (x2 + 1)n, where n is an
arbitrary positive integer.

Problem 16. Find all complex numbers z such that

(z − z2)(1 + z + z2)2 =
1

7
.

(Mathematical Reflections, 2013)

Solution. From the well-known identity

(x + y)7 = x7 + y7 + 7xy(x+ y)(x2 + xy + y2)2,

we deduce

(1− z)7 = 1− z7 − 7z(1− z)(1− z + z2)2.

Hence our equation is equivalent to (1 − z)7 = −z7, that is,

(
−1

z
+ 1

)7
= 1.

It follows that

− 1

zk
+ 1 = cos

2kπ

7
+ i sin

2kπ

7
, k = 0, 1, . . . , 6.
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This reduces to

1

zk
= 1− cos

2kπ

7
− i sin

2kπ

7
= 2 sin2

kπ

7
− 2i sin

kπ

7
cos

kπ

7
,

which is equivalent to

zk =
1

−2i sin
kπ

7

(
cos

kπ

7
− i sin

kπ

7

) =
cos

kπ

7
+ i sin

kπ

7

−2i sin
kπ

7

=
1

2

(
−1 + i cot

kπ

7

)
, k = 0, 1, . . . , 6.

Problem 17. Determine all pairs (z, n) such that

z + z2 + . . .+ zn = n|z|,

where z ∈ C and |z| ∈ Z+.

(Mathematical Reflections, 2008)

Solution. For n = 1, we obtain z = |z|, and (z, 1) is a solution iff z ∈ Z
+.

For |z| = 1, we obtain

n = |z + z2 + . . .+ zn| ≤ |z|+ |z|2 + . . .+ |z|n = n,

with equality iff all zk are collinear, i.e., iff z ∈ R, and (1, n) is the only
possible solution with |z| = 1, but it is valid for every positive integer n.
These solutions may be considered “trivial.”

Let us now look for nontrivial solutions. For n = 2, the equation becomes
z + z2 = 2|z|, which after expressing

z = |z|(cos θ + i sin θ)

and separating into real and imaginary parts yields

cos θ + |z| cos(2θ) = 2 and sin θ + |z| sin(2θ) = 0.

The latter results in either

sin θ = 0 or cos θ = − 1

2|z| ,

the second option yielding

cos(2θ) = 2 cos2 θ − 1 =
1− 2|z|2
2|z|2 .
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Insertion into the former yields |z| = −2, which is obviously absurd.
So sin θ = 0, resulting in |z| = 2+1 = 3 when cos θ = −1, and |z| = 2−1 = 1
when cos θ = 1, for the trivial solution (1, 2) and the additional solution
(−3, 2).

If |z| > 1, consider n|z|(z − 1) = zn+1 − z, which after expressing

z = |z|(cos θ + i sin θ)

and separating real and imaginary parts yields

|z|n cos((n+ 1)θ) = (n|z|+ 1) cos θ − n,

|z|n sin((n+ 1)θ) = (n|z|+ 1) sin θ.

Squaring both equations and adding them, we obtain

|z|n =
√
(n|z|+ 1)2 + n2 − 2n(n|z|+ 1) cos θ ≤ n|z|+ n+ 1,

with equality iff cos θ = −1. The derivatives of |z|n and n|z| + n + 1 with

respect to n are respectively |z|n ln |z| > |z|n
2

≥ |z|n−1 and |z| + 1, where

we have used that |z| ≥ 2 and ln 2 >
1

2
, since 4 > e. Note that for n ≥ 3

and |z| ≥ 2, |z|n−1 ≥ 2|z| > |z| + 1, and since for n = 3, |z| = 3, we
obtain |z|n = 27 > 13 = n|z| + n + 1, and for n = 4, |z| = 2, we obtain
|z|n = 16 > 13 = n|z| + n + 1, we cannot have solutions for n ≥ 4 when
|z| = 2, nor for n ≥ 3 when |z| ≥ 3. Since the cases n = 1, 2 for every |z|, and
|z| = 1 for every n, have already been discussed, we need to find only whether
solutions exist for |z| = 2 and n = 3. In this case, the equations become

8 cos(4θ) = 7 cos θ − 3 and 8 sin(4θ) = 7 sin θ,

for 64 = 49+9−42 cosθ, or cos θ = −1

7
. But this is absurd, since substitution

in the previous equations yields cos(4θ) = −1

2
, but direct calculation yields

cos(2θ) = 2 cos2 θ − 1 = −47

49
,

and similarly,

cos(4θ) =
2 · 472 − 492

492
�= −1

2
,

and the potential solution found was actually artificially introduced in the
squaring-and-adding process. Hence no solution exists for n = 3 and |z| = 3,
and the only possible solutions are (−3, 2), and the trivial solutions (1, n) for
all positive integers n and (z, 1) for all positive integers z.
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Problem 18. Let a, b, c, d be nonzero complex numbers such that ad− bc �= 0
and let n be a positive integer. Consider the equation

(ax+ b)n + (cx+ d)n = 0.

(a) Prove that for |a| = |c|, the roots of the equation are situated on a line.
(b) Prove that for |a| �= |c|, the roots of the equation are situated on a circle.
(c) Find the radius of the circle when |a| �= |c|.

(Mathematical Reflections, 2010)

Solution. If there is a root x such that cx+ d = 0, then we have ax+ b = 0.
It follows that ad − bc = 0, a relation that is contrary to the hypothesis.
Therefore, we can assume that cx+ d �= 0. We can write the equation in the
equivalent form

(
ax+ b

cx+ d

)n
= −1. (1)

This is, in fact, the binomial equation zn = −1, where z =
ax+ b

cx+ d
. The roots

of this equation are

zk = cos
(2k + 1)π

n
+ i sin

(2k + 1)π

n
, where k = 0, 1, . . . , n− 1.

It is clear that the roots of our equation and the roots of the binomial equation

zn = −1 are related by zk =
axk + b

cxk + d
, k = 0, 1, . . . , n− 1. Because |zk| = 1,

it follows that
∣
∣
∣
∣
axk + b

cxk + d

∣
∣
∣
∣ = 1 for k = 0, 1, . . . , n− 1.

The last relation is equivalent to

∣∣
∣
∣
∣
∣
∣

xk +
b

a

xk +
d

c

∣∣
∣
∣
∣
∣
∣
=

|c|
|a| . (2)

If |a| = |c|, then
∣
∣
∣
∣xk +

b

a

∣
∣
∣
∣ =
∣
∣
∣
∣xk +

d

c

∣
∣
∣
∣ ,

i.e., the roots xk are situated on the perpendicular bisector of the segment

determined by the points of complex coordinates − b

a
and −d

c
.

If |a| �= |c|, then from (2), it follows that xk belongs to the circle of Apol-

lonius corresponding to the constant
|c|
|a| .
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In order to find the radius of this circle, we will use the following result,
which can be obtained from Stewart’s theorem: Let α, β, and K ≥ 0 be fixed
real numbers, and let A and B be fixed points in the plane. If

K >
αβ

α+ β
·AB2,

then the locus of points M in the plane with the property

α ·MA2 + β ·MB2 = K, (3)

is a circle of radius

R =

√
K

α+ β
− αβ

(α+ β)2
· AB2.

In our case, we have just to take K = 0, α = |a|, and β = −|c| and the fixed

points A

(
− b

a

)
and B

(
−d

c

)
. We get

R =
|b| · |ad− bc|
|c| ·
∣
∣|a| − |b|

∣
∣ .

Problem 19. Let n be a positive integer. Prove that a complex number of
absolute value 1 is a solution to zn + z + 1 = 0 if and only if n = 3m+ 2 for
some positive integer m.

(Romanian Mathematical Olympiad—Final Round, 2007)

Solution 1. If n = 3m + 2 for some positive integer m, then the complex
number cos(2π/3)+ i sin(2π/3) is clearly a solution of absolute value 1. Con-
versely, if z is a solution of absolute value 1, then so is z = 1/z. Hence
zn+z+1 = 0 = zn+zn−1+1, which yields successively zn−2 = 1, z2+z+1 = 0,
z3 = 1 with z �= 1, so n = 3m+ 2 for some positive integer m.

Solution 2. Let P (z) = zn + z + 1 = 0. If P (ω) = 0, |ω| = 1, then

ω = cos θ + i sin θ,

and so using de Moivre’s formula, we obtain ωn = cosnθ + i sinnθ. Then

0 = (cosnθ + cos θ + 1) + i(sinnθ + sin θ),

whence sin2 nθ = sin2 θ and cos2 nθ = cos2 θ + 2 cos θ + 1, so cos θ = −1

2
. It

follows that ω3 = 1 and ω2 + ω + 1 = 0, and therefore ωn = ω2, so n ≡ 2
(mod 3).
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Conversely, if n ≡ 2 (mod 3), then for ω a cube root of unity, ω �= 1, we
have P (ω) = 0. In fact, then P (z) = zn + z + 1 = (z2 + z + 1)Q(z) for some
Q (with integer coefficients).

Problem 20. Let a and b be two complex numbers. Prove that the following
statements are equivalent:

(1) The absolute values of the roots of the equation x2 − ax+ b = 0 are equal
to the absolute values of the roots of the equation

x2 − bx+ a = 0.

(2) a3 = b3 or b = a.

(Romanian Mathematical Olympiad—District Round, 2011)

Solution. Let

|x1| = |x3|, |x2| = |x4| (1)

and observe that |a| = |x3x4| = |x1x2| = |b| to derive

|x1 + x2| = |x3 + x4|. (2)

Relations (1) and (2) show that there exists a number k ∈ C such that
x2 = kx1, x4 = kx3 or x2 = kx1, x4 = kx3.

In the first case, we have a = kx2
3 = (1+ k)x1 and b = kx2

1 = (1+ k)x3, so

a3 = k(1 + k)2x2
1x

2
3 = b3.

In the latter case, we have a = kx2
3 = (1 + k)x1 and b = kx2

1 = (1 + k)x3.
It follows that x2

1x1 = x3x2, so x1 = x3 or a = b = 0, and furthermore,
x2 = x4, and hence a = b.

Conversely, if b = a, then x1 + x2 = x3 + x4, x1x2 = x3x4, implying
{x1, x2} = {x3, x4}. If a3 = b3, then a = εb, ε3 = 1. The roots satisfy the
relations x1 + x2 = ε(x3 + x4), x1x2 = ε2x3x4. Both cases lead to

{|x1|, |x2|} = {|x3|, |x4|},

as needed.

6.2.3 From Algebraic Identities to Geometric
Properties

Problem 12. Let a, b, c, d be distinct complex numbers with |a| = |b| =
|c| = |d| and a+ b+ c+ d = 0.

Then the geometric images of a, b, c, d are the vertices of a rectangle.
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Solution 1. Let A,B,C,D be the points with coordinates a, b, c, d,
respectively.

If a + b = 0, then c + d = 0. Hence a + b = c + d, i.e., ABCD is a
parallelogram inscribed in the circle of radius R = |a|, and we are done.

If a+ b �= 0, then the points M and N with coordinates a + b and c+ d,
respectively, are symmetric with respect to the origin O of the complex plane.
Since AB is a diagonal in the rhombus OAMB, it follows that AB is the
perpendicular bisector of the segmentOM . Likewise, CD is the perpendicular
bisector of the segment ON . Therefore, A,B,C,D are the intersection points
of the circle of radius R with the perpendicular bisector of the segments OM
and ON , so A,B,C,D are the vertices of a rectangle.

Solution 2. First, let us note that it follows from a + b + c + d = 0 that
a + d = −(b + c), i.e., |a + d| = |b + c|. Hence |a + d|2 = |b + c|2, and using
properties of the real product, we find that (a+ d) · (a+ d) = (b+ c) · (b+ c).
That is, |a|2 + |d|2 + 2a · d = |b|2 + |c|2 + 2b · c. Taking into account that
|a| = |b| = |c| = |d|, one obtains a · d = b · c.

On the other hand, AD2 = |d−a|2 = (d−a) · (d−a) = |d|2+ |a|2−2a ·d =
2(R2 − a · d). Analogously, we have BC2 = 2(R2 − b · c). Since a · d = b · c, it
follows that AD = BC, so ABCD is a rectangle.

Problem 13. The complex numbers zi, i = 1, 2, 3, 4, 5, have the same
nonzero modulus, and

5∑

i=1

zi =

5∑

i=1

z2i = 0.

Prove that z1, z2, . . . , z5 are the coordinates of the vertices of a regular
pentagon.

(Romanian Mathematical Olympiad—Final Round, 2003)

Solution. Consider the polynomial

P (X) = X5 + aX 4 + bX 3 + cX 2 + dX + e

with roots zk, k = 1, 5. Then

a = −
∑

z1 = 0 and b =
∑

z1z2 =
1

2

(∑
z1

)2
− 1

2

∑
z21 = 0.

Denoting by r the common modulus and taking conjugates, we also get

0 =
∑

z1 =
∑ r2

z1
=

r2

z1z2z3z4z5

∑
z1z2z3z4,

from which d = 0 and

0 =
∑

z1z2 =
∑ r4

z1z2
=

r4

z1z2z3z4z5

∑
z1z2z3.
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Therefore, c = 0. It follows that P (X) = X5+ e, so z1, z2, . . . , z5 are the fifth
roots of e, and the conclusion is proved.

Problem 14. Let ABC be a triangle.

(a) Prove that if M is any point in its plane, then

AM sinA ≤ BM sinB + CM sinC.

(b) Let A1, B1, C1 be points on the sides BC, AC, and AB, respectively,
such that the angles of the triangle A1B1C1 are in order α, β, γ. Prove
that

∑

cyc

AA1 sinα ≤
∑

cyc

BC sinα.

(Romanian Mathematical Olympiad—Second Round, 2003)

Solution.

(a) Consider a complex plane with origin at M . Denote by a, b, c the coordi-
nates of A,B,C, respectively. Since

a(b − c) = b(a− c) + c(b − a),

we have

|a||b− a| = |b(a− c) + c(b− a)| ≤ |b||a− c|+ |c||b− a|.

Thus

AM ·BC ≤ BM · AC + CM · AB,

or
2R · AM · sinA ≤ 2R ·BM · sinB + 2R · CM · sinC,

which gives

AM · sinA ≤ BM · sinB + CM · sinC.

(b) From (a), we have

AA1 · sinα ≤ AB1 · sinβ +AC 1 · sin γ,

BB1 · sinβ ≤ BA1 · sinα+ BC 1 · sin γ,

CC 1 · sin γ ≤ CA1 · sinα+ CB1 · sinβ,

which when summed give the desired conclusion.

Problem 15. Let M and N be points inside triangle ABC such that

M̂AB = N̂AC and M̂BA = N̂BC.
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Prove that
AM · AN
AB · AC +

BM · BN

BA ·BC
+

CM · CN

CA · CB
= 1.

(39th IMO—Shortlist)

Solution. Let the coordinates of A,B,C,M , and N be a, b, c,m, and n,
respectively. Since the lines AM, BM , and CM are concurrent, as well as the
lines AN, BN , and CN , it follows from Ceva’s theorem that

sin B̂AM

sin M̂AC
· sin ĈBM
sin M̂BA

· sin ÂCM
sin M̂CB

= 1, (1)

sin B̂AN

sin N̂AC
· sin ĈBN
sin N̂BA

· sin ÂCN
sin N̂CB

= 1. (2)

By hypothesis, B̂AM = N̂AC and M̂BA = ĈBN . Hence B̂AN = M̂AC and

N̂BA = ĈBM . Combined with (1) and (2), these equalities imply

sin ÂCM · sin ÂCN = sin M̂CB · sin N̂CB .

Thus,

cos(N̂CM + 2ÂCM )− cos N̂CM = cos(N̂CM + 2N̂CB)− cos N̂CM ,

and hence ÂCM = N̂CB (Fig. 6.2).

Since B̂AM = N̂AC , M̂BA = ĈBN and ÂCN = M̂CB , the following
complex ratios are all positive real numbers:

Figure 6.2.

m− a

b− a
:
c− a

n− a
,

m− b

a− b
:
c− b

n− b
,

m− c

b− c
:
a− c

n− c
.
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Hence each of these equals its absolute value, and so

AM ·AN
AB · AC +

BM · BN
BA · BC +

CM · CN
CA · CB

=
(m− a)(n− a)

(b− a)(c− a)
+

(m− b)(n− b)

(a− b)(c− b)
+

(m− c)(n− c)

(b− c)(a− c)
= 1.

6.2.4 Solving Geometric Problems

Problem 26. Let ABC be a triangle such that AC2 +AB2 = 5BC2. Prove
that the medians from the vertices B and C are perpendicular.

Solution. Let a, b, c be the coordinates of the points A,B,C, respectively.
Using the real product of complex numbers, we have

AC 2 +AB2 = 5BC 2 if and only if |c− a|2 + |b − a|2 = 5|c− b|2, i.e.,

(c− a) · (c− a) + (b − a) · (b− a) = 5(c− b) · (c− b).

The last relation is equivalent to

c2 − 2a · c+ a2 + b2 − 2a · b+ a2 = 5c2 − 10b · c+ 5b2, i.e.,

2a2 − 4b2 − 4c2 − 2a · b− 2a · c+ 10b · c = 0.

It follows that

a2 − 2b2 − 2c2 − a · b− a · c+ 5b · c = 0, i.e.,

(a+ c− 2b) · (a+ b− 2c) = 0, so

(
a+ c

2
− b

)
·
(
a+ b

2
− c

)
= 0.

The last relation shows that the medians from B and C are perpendicular,
as desired.

Problem 27. On the sides BC, CA, AB of a triangle ABC the points
A′, B′, C′ are chosen such that

A′B
A′C

=
B′C
B′A

=
C′A
C′B

= k.

Consider the points A′′, B′′, C′′ on the segments B′C′, C′A′, A′B′ such
that

A′′C′

A′′B′ =
C′′B′

C′′A′ =
B′′A′

B′′C′ = k.

Prove that triangles ABC and A′′B′′C′′ are similar.
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Solution. Denoting by the corresponding lowercase letter the coordinates of
a point denoted by an uppercase letter, we obtain

a′ =
b− kc

1− k
, b′ =

c− ka

1− k
, c′ =

a− kb

1− k
,

and

a′′ =
c′ − kb ′

1− k
=

(1 + k2)a− k(b+ c)

(1 − k)2
,

b′′ =
a′ − kc′

1− k
=

(1 + k2)b− k(a+ c)

(1− k)2
,

c′′ =
b′ − ka ′

1− k
=

(1 + k2)c− k(b+ a)

(1 − k)2
.

Then

c′′ − a′′

b′′ − a′′
=

(1 + k2)(c− a)− k(a− c)

(1 + k2)(b − a)− k(a− b)
=

c− a

b− a
,

which proves that triangles ABC and A′′B′′C′′ are similar.

Problem 28. Prove that the following inequality holds in every triangle:

R

2r
≥ mα

hα
.

Equality holds only for equilateral triangles.

Solution. Consider the complex plane with origin at the circumcircle of
triangle ABC and let z1, z2, z3 be the coordinates of points A,B,C.

The inequality
R

2r
≥ mα

hα
is equivalent to

2rmα ≤ Rhα, i.e., 2
K

s
mα ≤ R

2K

α
.

Hence αmα ≤ Rs.
Using complex numbers, we have

2αmα = 2|z2 − z3|
∣
∣
∣
∣z1 −

z2 + z3
2

∣
∣
∣
∣ = |(z2 − z3)(2z1 − z2 − z3)|

= |z2(z1 − z2) + z1(z2 − z3) + z3(z3 − z1)|

≤ |z2||z1 − z2|+ |z1||z2 − z3|+ |z3||z3 − z1| = R(α+ β + γ) = 2Rs.

Hence αmα ≤ Rs, as desired.
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Problem 29. Let ABCD be a quadrilateral inscribed in the circle C(O; R).
Prove that

AB2 +BC2 + CD2 +DA2 = 8R2

if and only if AC ⊥ BD or one of the diagonals is a diameter of C.

Solution. Consider the complex plane with origin at the circumcenter O,
and let a, b, c, d be the coordinates of points A,B,C,D.

The midpoints E and F of the diagonals AC and BD have the coordinates
a+ c

2
and

b+ d

2
.

Using the real product the complex numbers, we have

AB2 + BC 2 + CD2 +DA2 = 8R2

if and only if

(b− a) · (b− a) + (c− b) · (c− b) + (d− c) · (d− c) + (a− d) · (a− d) = 8R2,

i.e.,
2a · b+ 2b · c+ 2c · d+ 2d · a = 0.

The last relation is equivalent to

b · (a+ c) + d · (a+ c) = 0, i.e., (b + d) · (a+ c) = 0.

We obtain
b+ d

2
· a+ c

2
= 0, i.e., OE ⊥ OF

or E = O or F = O.
That is, AC ⊥ BD , or one of the diagonals AC and BD is a diameter of

the circle C.

Problem 30. On the sides of the convex quadrilateral ABCD, equilateral
triangles ABM, BCN, CDP , and DAQ are drawn external to the figure.
Prove that quadrilaterals ABCD and MNPQ have the same centroid.

Solution. Denote by the corresponding lowercase letter the coordinate of a
point denoted by an uppercase letter, and let

ε = cos 120◦ + i sin 120◦.

Since triangles ABM ,BCN ,COP , and DAQ are equilateral we have

m+ bε+ aε2 = 0, n+ cε+ bε2 = 0, p+ dε+ cε2 = 0, q + aε+ dε2 = 0.

Summing these equalities yields

(m+ n+ p+ q) + (a+ b+ c+ d)(ε+ ε2) = 0,

and since ε+ε2 = −1, it follows that m+n+p+ q = a+ b+ c+d. Therefore,
the quadrilaterals ABCD and MNPQ have the same centroid.
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Problem 31. Let ABCD be a quadrilateral and consider the rotations
R1, R2, R3, R4 with centers A, B, C, D through the angle α and of
the same orientation.

Points M, N, P, Q are the images of points A, B, C, D under the
rotations R2, R3, R4, R1, respectively.

Prove that the midpoints of the diagonals of the quadrilaterals ABCD and
MNPQ are the vertices of a parallelogram.

Solution. Denote by the corresponding lowercase letter the coordinate of a
point denoted by an uppercase letter. Using the rotation formula, we obtain

m = b + (a− b)ε, n = c+ (b− c)ε, p = d+ (c− d)ε, q = a+ (d− a)ε,

where ε = cosα+ i sinα.
Let E,F,G,H be the midpoints of the diagonals BD ,AC ,MP ,NQ , re-

spectively; then

e =
b+ d

2
, f =

a+ c

2
, g =

b+ d+ (a+ c− b− d)ε

2

and h =
a+ c+ (b+ d− a− c)ε

2
.

Since e+ f = g + h, it follows that EGFH is a parallelogram, as desired.

Problem 32. Prove that in every cyclic quadrilateral ABCD, the following
hold:

(a) AD + BC cos(A+B) = AB cosA+ CD cosD;
(b) BC sin(A+B) = AB sin A–CD sinD.

Solution. Consider the points E,F,G,H such that

OE ⊥ AB , OE = CD , OF ⊥ BC , OF = AD ,

OG ⊥ CD , OG = AB , OH ⊥ AD , OH = BC ,

where O is the circumcenter of ABCD.
We prove that EFGH is a parallelogram. Since OE = CD , OF = AD , and

ÊOF = 180◦ − ÂBC = ÂDC , it follows that triangles EOF and ADC are
congruent; hence EF = GH . Likewise, FG = EH , and the claim is proved.

Consider the complex plane with origin at O such that F is on the positive
real axis. Denote by the corresponding lowercase letter the coordinate of a
point denoted by an uppercase letter. We have

|e| = CD , |f | = AD , |g| = AB , |h| = BC .

Furthermore,

F̂OG = 180◦ − Ĉ = Â, ĜOH = B̂, ĤOE = Ĉ,



6.2 Solutions to the Olympiad-Caliber Problems 321

whence

f = |f | = AD , g = |g|(cosA+ i sinA) = AD(cosA+ i sinA),

h = |h|[cos(A+B) + i sin(A+B)] = BC [cos(A+B) + i sin(A+B)],

e = |e|[cos(A+B + C) + i sin(A+B + C)] = CD(cosD − i sinD).

Since e+ g = f + h, we obtain

AD + BC cos(A+B) + iBC sin(A+B)

= CD(cosD − i sinD) +AB(cosA+ i sinA),

and the conclusion follows.

Problem 33. Let O9, I, G be the 9-point center, the incenter, and the cen-
troid, respectively, of a triangle ABC. Prove that lines O9G and AI are per-
pendicular if and only if Â = π

3 .

Solution. Consider the complex plane with origin at the circumcenter
O of the triangle. Let a, b, c, ω, g, zI be the coordinates of the points
A,B,C,O9, G, I, respectively.

Without loss of generality, we may assume that the circumradius of the
triangle ABC is equal to 1, and hence |a| = |b| = |c| = 1.

We have

ω =
a+ b+ c

2
, g =

a+ b+ c

3
, zI =

a|b− c|+ b|a− c|+ c|a− b|
|a− b|+ |b − c|+ |a− c| .

Using the properties of the real product of complex numbers, we have

O9G ⊥ AI if and only if (ω − g) · (a− zI) = 0, i.e.,

a+ b+ c

6
· (a− b)|a− c|+ (a− c)|a− b|

|a− b|+ |b− c|+ |a− c| = 0.

This is equivalent to

(a+ b+ c) · [(a− b)|a− c|+ (a− c)|a− b|] = 0, i.e.,

Re{(a+ b+ c)[(a− b)|a− c|+ (a− c)|a− b|]} = 0.

We find that

Re{|a− c|(aa+ ba+ ca− ab− bb− cb)

+|a− b|(aa+ ba+ ca− ac− bc− cc)} = 0. (1)

Observe that

aa = bb = cc = 1 and Re(ba− ab) = Re(ca− ac) = 0;
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hence the relation (1) is equivalent to

Re{|a− c|(ca− cb) + |a− b|(ba− bc)} = 0, i.e.,

|a− c|(ca+ ca− cb− cb) + |a− b|(ab+ ab− bc− bc) = 0.

It follows that

|a− c|[(bb− bc− cb+ cc)− (aa− ca− ca+ cc)]

+|a− b|[(bb− bc− cb+ cc)− (aa− ab − ab+ bb)] = 0, i.e.,

|a− c|(|b − c|2 − |a− c|2) + |a− b|(|b− c|2 − |a− b|2) = 0.

This is equivalent to

AC · BC 2 −AC 3 +AB · BC 2 −AB3 = 0.

The last relation can be written as

BC 2(AC +AB) = (AC +AB)(AC 2 −AC · AB +AB2),

so

AC · AB = AC 2 +AB2 − BC 2.

We obtain

cosA =
1

2
, i.e., Â =

π

3
,

as desired.

Problem 34. Two circles ω1 and ω2 are given in the plane, with centers O1

and O2, respectively. Let M
′
1 and M ′

2 be two points on ω1 and ω2, respectively,
such that the lines O1M

′
1 and O2M

′
2 intersect. Let M1 and M2 be points on ω1

and ω2, respectively, such that when measured clockwise, the angles ̂M ′
1O1M1

and ̂M ′
2O2M2 are equal.

(a) Determine the locus of the midpoint of [M1M2].
(b) Let P be the point of intersection of lines O1M1 and O2M2. The circum-

circle of triangle M1PM2 intersects the circumcircle of triangle O1PO2 at
P and another point Q. Prove that Q is fixed, independent of the locations
of M1 and M2.

(2000 Vietnamese Mathematical Olympiad)

Solution.

(a) Let a lowercase letter denote the complex number associated with the
point labeled by the corresponding uppercase letter. Let M ′,M , and O
denote the midpoints of segments [M ′

1M
′
2], [M1M2], and [O1O2], respec-

tively. Also let z =
m1 − o1
m′

1 − o1
=

m2 − o2
m′

2 − o2
, so that multiplication by z is
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a rotation about the origin through some angle. Then m =
m1 +m2

2
equals

1

2
(o1 + z(m′

1 − o1)) +
1

2
(o2 + z(m′

2 − o2)) = o+ z(m′ − o),

i.e., the locus of M is the circle centered at O with radius OM ′.
(b) We shall use directed angles modulo π. Observe that

̂QM 1M2 = Q̂PM 2 = Q̂PO2 = Q̂O1O2.

Similarly, ̂QM 2M1 = Q̂O2O1, implying that triangles QM 1M2 and
QO1O2 are similar with the same orientation. Hence,

q − o1
q − o2

=
q −m1

q −m2
,

or equivalently,

q − o1
q − o2

=
(q −m1)− (q − o1)

(q −m2)− (q − o2)
=

o1 −m1

o2 −m2
=

o1 −m′
1

o2 −m′
2

.

Because lines O1M
′
1 and O2M

′
2 meet, we have o1 − m′

1 �= o2 − m′
2, and we

can solve this equation to find a unique value for q.

Problem 35. Isosceles triangles A3A1O2 and A1A2O3 are constructed ext-
ernally along the sides of a triangle A1A2A3 with O2A3 = O2A1 and O3A1 =
O3A2. Let O1 be a point on the opposite side of line A2A3 from A1, with

Ô1A3A2 =
1

2
̂A1O3A2 and Ô1A2A3 =

1

2
̂A1O2A3, and let T be the foot of the

perpendicular from O1 to A2A3. Prove that A1O1 ⊥ O2O3 and that

A1O1

O2O3
= 2

O1T

A2A3
.

(2000 Iranian Mathematical Olympiad)

Solution. Without loss of generality, assume that triangle A1A2A3 is ori-
ented counterclockwise (i.e., angle A1A2A3 is oriented clockwise). Let P be
the reflection of O1 across T .

We use the complex numbers with origin O1, where each point denoted
by an uppercase letter is represented by the complex number with the corre-
sponding lowercase letter. Let ζk = ak/p for k = 1, 2, so that z �→ ζk(z − z0)

is a similarity through angle P̂O1Ak with ratio O1A3/O1P about the point
corresponding to z0.

Because O1 and A1 lie on opposite sides of line A2A3, angles A2A3O1

and A2A3A1 have opposite orientations, i.e., the former is oriented
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counterclockwise. Thus, angles PA3O1 and A2O3A1 are both oriented

counterclockwise. Because P̂A3O1 = 2Â2A3O2 = ̂A2O3A1, it follows that
isosceles triangles PA3O1 and A2O3A1 are similar and have the same orien-
tation. Hence, o3 = a1 + ζ3(a2 − a1).

Similarly, o2 = a1 + ζ2(a3 − a1). Hence,

o3 − o2 = (ζ2 − ζ3)a1 + ζ3a2 − ζ2a3

= ζ2(a2 − a3) + ζ3(ζ2p)− ζ2(ζ3p) = ζ2(a2 − a3),

or (recalling that o1 = 0 and t = 2p)

o3 − o2
a1 − o1

= ζ2 =
a2 − a3
p− o1

=
1

2

a2 − a3
t− o1

.

Thus, the angle between [O1A1] and [O2O3] equals the angle between

[O1T ] and [A3A2], which is π/2. Furthermore, O2O3/O1A1 =
1

2
A3A2/O1T ,

or O1A1/O2O3 = 2O1T/A2A3. This completes the proof.

Problem 36. A triangle A1A2A3 and a point P0 are given in the plane.
We define As = As−3 for all s ≥ 4. We construct a sequence of points
P0, P1, P2, . . . such that Pk+1 is the image of Pk under the rotation with
center Ak+1 through the angle 120◦ clockwise (k = 0, 1, 2, . . .). Prove that
if P1986 = P0, then the triangle A1A2A3 is equilateral.

(27th IMO)

Solution. Assume that the origin O of the coordinate system in the complex
plane is the center of the circumscribed circle. Then the vertices A1, A2, A3

are represented by complex numbers w1, w2, w3 such that

|w1| = |w2| = |w3| = R.

Let ε = cos 2π
3 + i sin 2π

3 . Then ε2 + ε+ 1 = 0 and ε3 = 1. Suppose that P0

is represented by the complex number z0. The point P1 is represented by the
complex number

z1 = z0ε+ (1− ε)w1. (1)

The point P2 is represented by

z2 = z0ε
2 + (1− ε)w1ε+ (1− ε)w2,

and P3 by

z3 = z0ε
3 + (1− ε)w1ε

2 + (1 − ε)w2ε+ (1− ε)w3

= z0 + (1− ε)(w1ε
2 + w2ε+ w3).
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An easy induction on n shows that after n cycles of three such rotations, we
obtain that P3n is represented by

z3n = z0 + n(1− ε)(w1ε
2 + w2ε+ w3).

In our case, for n = 662 we obtain

z1996 = z0 + 662(1− ε)(w1ε
2 + w2ε+ w3) = z0.

Thus, we have the equality

w1ε
2 + w2ε+ w3 = 0. (2)

This can be written in the equivalent form

w3 = w1(1 + ε) + (−ε)w2. (3)

Taking into account that 1 + ε = cos π
3 + i sin π

3 , the equality (3) can be
translated, using the rotation formula, into the following: the point A3 is
obtained under the rotation of point A1 about the center A2 through the
angle π

3 . This proves that A1A2A3 is an equilateral triangle.

Problem 37. Two circles in a plane intersect. Let A be one of the points of
intersection. Starting simultaneously from A, two points move with constant
speed, each point traveling along its own circle in the same direction. After
one revolution, the two points return simultaneously to A. Prove that there
exists a fixed point P in the plane such that, at any time, the distances from
P to the moving points are equal.

(21st IMO)

Solution. Let B(b, 0), C(c, 0) be the centers of the given circles and let
A(0, a), X(0,−a) be their intersection points. The complex numbers associ-
ated with these point are zB = b, zC = c, zA = ia, and zX = −ia, respectively
(Fig. 6.3). After rotating A through angle t about B, we obtain a point M ,
and after rotating A about C, we obtain the point N . Their corresponding
complex numbers are given by the formulas

zM = (ia − b)ω + b = iaω + (1 − ω)b

and
zN = iaω + (1− ω)c.

The required result is equivalent to the following: the bisector lines lMN of
the segmentsMN pass through a fixed point P (x0, y0). Let R be the midpoint
of the segment MN . Then zR = 1

2 (zM + zN). A point Z of the plane is a
point of lMN if and only if the lines RZ and MN are orthogonal. Using the
real product of complex numbers, we obtain
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Figure 6.3.

(
z − zM + zN

2

)
· (zN − zM ) = 0.

This is equivalent to

z · (zN − zM ) =
1

2

(
|zN |2 − |zM |2

)
.

By noting that z = x+ iy , we obtain

x(c− b)(1− cos t)− y(c− b) sin t =
1

2

(
|zN |2 − |zM |2

)
.

After an easy computation, we obtain

|zM |2 = 2b2 + a2 − 2b2 cos t− 2ab sin t

and
|zN |2 = 2c2 + a2 − 2c2 cos t− 2ac sin t.

Thus, the orthogonality condition yields

x(1 − cos t)− y sin t = (b + c)− (b + c) cos t− a sin t.

This can be written in the form

(x − b− c)(1− cos t) = (y − a) sin t.

This equation shows that the point P (x0, y0) where x0 = b + c, y0 = a is a
fixed point of the family of lines lMN .

The point P belongs to the line through A parallel to BC , and it is the
symmetric point of X with respect to the midpoint of the segment BC . This
follows from the equality

zP + zX =
b+ c

2
.
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Problem 38. Inside the square ABCD, the equilateral triangles ABK,
BCL, CDM , DAN are inscribed. Prove that the midpoints of the segments
KL, LM , MN , NK and the midpoints of the segments AK, BK, BL, CL,
CM , DM , DN , AN are the vertices of a regular dodecagon.

(19th IMO)

Solution. Let A(1 + i), B(−1 + i), C(−1 − i), D(1 − i) be the vertices of
the square. Using the symmetry of the configuration of points with respect
to the axes and center O of the square, we will do computations for the
points lying in the first quadrant. Then L,M are represented by the com-
plex numbers L(

√
3 − 1),M((

√
3 − 1)i). The midpoint of the segment LM

is P
(√

3−1
2 + i

√
3−1
2

)
. Since K is represented by K(−i(

√
3 − 1)), the mid-

point of AK is Q
(

1
2 + i 2−

√
3

2

)
. In the same way, the midpoint of AN is

R
(

2−√
3

2 + i
2

)
, and the midpoint of BL is S

(
−2+

√
3

2 + i
2

)
(Fig. 6.4). It is

sufficient to prove that SR = RP = PQ and ŜRP = R̂PQ = 5π
6 . For a point

X , we denote by zX the corresponding complex number. We have

RS2 = |zS − zR|2 = (−2 +
√
3)2 = 7− 4

√
3,

RP 2 = |zP − zR|2 =

∣
∣
∣
∣∣

√
3− 1

2
+ i

√
3− 1

2
− 2−

√
3

2
− i

2

∣
∣
∣
∣∣

2

=

∣
∣
∣
∣
∣
2
√
3− 3

2
+ i

√
3− 2

2

∣
∣
∣
∣
∣

2

=
(2
√
3− 3)2 + (2

√
3− 2)2

4

=
28− 16

√
3

4
= 7− 4

√
3.

Using reflection in OA, we also have PQ2 = RP2 = 7− 4
√
3 (Fig. 6.4).

For angles, we have

cos ŜRP =

3− 2
√
3

2
(2−

√
3) +

2− 2
√
3

2
· 0

7− 4
√
3

=
(12− 7

√
3)(7 + 4

√
3)

2(7− 4
√
3)(7 + 4

√
3)

= −
√
3

2
.

This proves that ŜRP =
5π

6
. In the same way, cos R̂PQ = −

√
3

2
and

R̂PQ =
5π

6
.
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Figure 6.4.

Problem 39. Let ABC be an equilateral triangle and let M be a point in

the interior of angle B̂AC. Points D and E are the images of points B and
C under the rotations with center M and angle 120◦, counterclockwise and
clockwise, respectively. Prove that the fourth vertex of the parallelogram with
sides MD and ME is the reflection of point A across point M .

Solution. Let 1, ε, ε2, be the coordinates of points A,B,C,M , respectively,
where ε = cos 120◦ + i sin 120◦ (Fig. 6.5).

Figure 6.5.

Consider point V such that MEVD is a parallelogram. If d, e, v are the
coordinates of points D,E, V , respectively, then

v = e+ d−m.
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Using the rotation formula, we obtain

d = m+ (ε−m)ε and e = m+ (ε2 −m)ε2;

hence
v = m+ ε2 −mε+m+ ε4 −mε2 −m

= m+ ε2 + ε−m(ε2 + ε) = m− 1 +m = 2m− 1.

This relation shows that M is the midpoint of the segment [AV ], and the
conclusion follows.

Problem 40. Prove that the following inequality holds for every point M
inside parallelogram ABCD:

MA ·MC +MB ·MD ≥ AB · BC.

Solution 1. Consider the complex plane with origin at the center of the par-
allelogram ABCD. Let a, b, c, d,m be the coordinates of points A,B,C,D,M ,
respectively. It follows that c = −a and d = −b.

It suffices to prove that

|m− a| · |m+ a|+ |m− b||m+ b| ≥ |a− b||a+ b|,

or

|m2 − a2|+ |m2 − b2| ≥ |a2 − b2|.

This follows immediately from the triangle inequality.

Solution 2. By a translation t−−→
AB

of vector
−−→
AB, the points in our configura-

tion are transformed as follows: A → B, D → C, B → B′, C → C′, M → M ′.
Now the desired relation is just Ptolemy’s inequality in the quadrilateral
MBM ′C.

Problem 41. Let ABC be a triangle, H its orthocenter, O its circumcenter,
and R its circumradius. Let D be the reflection of A across BC, let E be that
of B across CA, and F that of C across AB. Prove that D, E, and F are
collinear if and only if OH = 2R.

(39th IMO—Shortlist)

Solution. Let the coordinates of A,B,C,H , and O be a, b, c, h, and o, res-
pectively. Consequently, aa = bb = cc = R2 and h = a + b + c. Since D is
symmetric to A with respect to line BC , the coordinates d and a satisfy

d− b

c− b
=

(
a− b

c− b

)
, or (b− c)d− (b − c)a+ (bc− bc) = 0. (1)
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Since

b − c = −R2(b− c)

bc
and bc− bc =

R2(b2 − c2)

bc
,

by inserting these expressions in (1), we obtain that

d =
−bc + ca + ab

a
=

k − 2bc

a
,

d =
R2(−a+ b+ c)

bc
=

R2(h− 2a)

bc
,

where k = bc + c+ ab. Similarly, we have

e =
k − 2ca

b
, e =

R2(h− 2b)

ca
, f =

k − 2ab

c
and f =

R2(h− 2c)

ab
.

Since

Δ =

∣
∣
∣
∣∣
∣

d d 1
e e 1

f f 1

∣
∣
∣
∣∣
∣
=

∣
∣
∣∣
e− d e − d

f − d f − d

∣
∣
∣∣

=

∣
∣∣
∣
∣

(b−a)(k−2ab)
ab

R2(a−b)(h−2c)
abc

(c−a)(k−2ca)
ca

R2(a−c)(h−2b)
abc

∣
∣∣
∣
∣

=
R2(c− a)(a− b)

a2b2c2
×
∣
∣
∣
∣
−(ck − 2abc) (h− 2c)
(bk − 2abc) −(h− 2b)

∣
∣
∣
∣

=
−R2(b− c)(c− a)(a− b)(hk − 4abc)

a2b2c2

and h = R2k/abc, it follows that D,E, and F are collinear if and only if
Δ = 0. This is equivalent to hk − 4abc = 0, i.e., hh = 4R2. From the last
relation, we obtain OH = 2R.

Problem 42. Let ABC be a triangle such that ÂCB = 2ÂBC. Let D be the
point on the side BC such that CD = 2BD. The segment AD is extended to
E so that AD = DE. Prove that

ÊCB + 180◦ = 2ÊBC.

(39th IMO—Shortlist)

Solution. Let the coordinates of A,B,C,D, and E be a, b, c, d, and e, re-

spectively. Then d = (2b + c)/3 and e = 2d − a. Since ÂCB = 2ÂBC , the
ratio

(
a− b

c− b

)2
:
b− c

a− c
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is real and positive. It is equal to (AB2 · AC )/BC 3. On the other hand, a
direct computation shows that the ratio

e− c

b− c
:

(
c− b

e − b

)2

is equal to

1

(b − c)3
×
(
(b − a) + 2(c− a)

3

)2(
4(b− a)− (c− a)

3

)

=
4

27
+

(b− a)2(c− a)

(b − c)3
=

4

27
− AB2 ·AC

BC 3 ,

which is a real number. Hence the arguments of (e − c)/(b − c) and

(c− b)2/(e− b)2, namely ÊCB and 2ÊBC , differ by an integer multiple of

180◦. We easily infer that either ÊCB = 2ÊBC or ÊCB = 2ÊBC −180◦, acc-
ording to whether the ratio is positive or negative. To prove that the latter
holds, we have to show that AB2 · AC/BC 3 is greater than 4/27. Choose a
point F on the ray AC such that CF = CB (Fig. 6.6).

Figure 6.6.

Since ΔCBF is isosceles and ÂCB = 2ÂBC , we have ĈFB = ÂBC .
Thus ΔABF and ΔACB are similar and AB : AF = AC : AB . Since
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AF = AC +BC , AB2 = AC (AC +BC ). Let AC = u2 and AC +BC = v2.
Then AB = uv and BC = v2 − u2. From AB + AC > BC , we obtain
u/v > 1/2. Thus

AB2 · AC
BC 3 =

u4v2

(v2 − u2)3
=

(u/v)4

(1− u2/v2)3
>

(1/2)4

(1− 1/4)3
=

4

27
,

and the conclusion follows.

Problem 43. Let P be a point situated in the interior of a circle. Two vari-
able perpendicular lines through P intersect the circle at A and B. Find the
locus of the midpoint of the segment AB.

(Mathematical Reflections, 2010)

Solution 1. We can assume, without loss of generality, that P = t ∈ [0, 1]
and the circle C is given by C = {|z| = 1}. Let A = z = x + iy ∈ C. Then
B = w = si(z − P ) + C ∈ C with some s > 0. Hence

1 = |w|2 = (t− sy)2 + s2(x− t)2. (1)

The midpoint of the segment AB is given by M = (A+B)/2.
Now we verify that

|M − P/2| =
√
2− |P |2/2.

In fact, by (1),

(2|M − P/2|)2 = (x = sy)2 + (s(x − t) + y)2 = x2 + y2 + 1− t2 = 2− t2.

Hence the required locus is a circle with center P/2 and radius
√
2− |P |2/2.

In the general setting, if the circle C has center at P0 and radius R, then the
locus is a circle with center (P0 + P )/2 and radius

√
2R2 − |P − P0|2/2.

Solution 2. Let ABCD be a quadrilateral and let M and N be the mid-
points of sides AB and CD, respectively. Using the median theorem or direct
computation with complex coordinates, it is easy to prove that the following
relation holds:

AC2 +BD2 +BC2 +DA2 = AB2 + CD2 + 4MN2.

Let M be the midpoint of the segment AB and let N be the midpoint of the
segment OP , where O is the center of the given circle. Applying the relation
above in the quadrilateral ABPO, we obtain

AP 2 +R2 +BP 2 +R2 = AB2 +OP 2 + 4MN2.

It is clear that AP 2 +BP 2 = AB2; hence we get

4MN2 = 2R2 −OP 2,
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that is,

NM =
1

2

√
2R2 −OP 2.

Since the point N is fixed, it follows that the desired locus is the circle with

center N and radius
1

2

√
2R2 −OP 2.

Problem 44. Let ABC be a triangle and consider the points M ∈ (BC),
N ∈ (CA), P ∈ (AB) such that

AP

PB
=

BM

MC
=

CN

NA
.

Prove that if MNP is an equilateral triangle, then ABC is an equilateral
triangle as well.

(Romanian Mathematical Olympiad—District Round, 2006)

Solution. Let λ =
AP

AB
=

BM

BC
=

CN

CA
. We use complex numbers, and

we choose the point M the as origin. Furthermore, we can assume that the

complex numbers corresponding to the points N and P are 1 and ε = cos
π

3
+

i sin
π

3
, respectively.

Suppose that the complex numbers corresponding to the points A,B,C
are a, b, c, respectively. We have then

ε = (1− λ)a+ λb, 0 = (1− λ)b + λc, and 1 = (1− λ)c+ λa.

It follows that
c− a

b− a
= ε. Therefore, AC = AB and A =

π

3
.

Problem 45. Consider the triangle ABC and the points D ∈ (BC), E ∈
(CA), F ∈ (AB), such that

BD

DC
=

CE

EA
=

AF

FB
.

Prove that if the circumcenter of triangles DEF and ABC coincide, then the
triangle ABC is equilateral.

(Romanian Mathematical Olympiad—Final Round, 2008)

Solution. Consider complex coordinates, the origin being taken at the cir-
cumcenter of the triangle ABC, and use lowercase letters to denote the co-

ordinates of the points. Then, if
BD

DC
= k, we have d =

b+ kc

1 + k
, and so on.

The triangles DEF and ABC have the same circumcenter if and only if
|d| = |e| = |f |, that is, dd = ee = ff .

Since aa = bb = cc, this amounts to ab+ ba = ac+ ca = bc+ cb, which is
equivalent to |a− b|2 = |a− c|2 = |b− c|2, whence the conclusion.
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Problem 46. On the exterior of a nonequilateral triangle ABC, consider
the similar triangles (in this order) ABM , BCN , and CAP such that the
triangle MNP is equilateral. Find the angles of the triangles ABM , BCN
and CAP .

(Romanian Mathematical Olympiad—Final Round, 2010)

Solution. All angles are directly oriented. Denote by the corresponding low-
ercase letter the coordinate of a point denoted by an uppercase letter.

The given similarity can be rewritten as

m− b

a− b
=

n− c

b − c
=

p− a

c− a
= k;

hence
m = ka+ (1− k)b,

n = kb+ (1− k)c,

p = kc+ (1− k)a.

Since the triangle MNP is equilateral, we have

m+ εn+ ε2p = 0,

where ε = cos
2π

3
+ i sin

2π

3
. Substituting, we infer that

0 = k(a+ bε+ cε2) + (1 − k)(b+ cε+ aε2)

= k(a+ bε+ cε2) +
1− k

ε
(a+ bε+ cε2)

= (a+ bε+ cε2)

(
k +

1− k

ε

)
.

The triangle ABC is not equilateral, so a+ bε+ cε2 �= 0, and consequently

k =
1

1− ε
.

The equality m = ka+(1−k)b yields m−a = ε(m−b), showing that triangle

AMB is isosceles, with an angle
2π

3
and two angles

π

6
.

6.2.5 Solving Trigonometric Problems

Problem 11. Sum the following two n-term series for θ = 30◦:

(i) 1 +
cos θ

cos θ
+

cos(2θ)

cos2 θ
+

cos(3θ)

cos3 θ
+ · · ·+ cos((n− 1)θ)

cosn−1 θ
, and

(ii) cos θ cos θ + cos2 θ cos(2θ) + cos3 θ cos(3θ) + · · ·+ cosn θ cos(nθ).

(Crux Mathematicorum, 2003)
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Solution.

(i) Consider the complex number

z =
1

cos θ
(cos θ + i sin θ).

From the identity
n−1∑

k=0

zk =
1− zn

1− z
, (1)

we derive

n−1∑

k=0

1

cosk θ
(cos kθ + i sinkθ) =

1− 1

cosn θ
(cosnθ + i sinnθ)

1− 1

cos θ
(cos θ + i sin θ)

=
cos θ − 1

cosn−1 θ
(cosnθ + i sinnθ)

−i sin θ
=

sinnθ

sin θ cosn−1 θ
+ i

cosn θ − cosnθ

sin θ cosn−1 θ
.

It follows that
n−1∑

k=0

cos kθ

cosk θ
=

sinnθ

sin θ cosn−1 θ
,

and we have just to substitute θ = 30◦.
(ii) We proceed in an analogous way by considering the complex number

z = cos θ(cos θ + i sin θ). Using identity (1), we obtain

n∑

k=1

zk =
z − zn+1

1− z
.

Hence
n∑

k=1

cosk θ(cos kθ + i sinkθ)

=
cos θ(cos θ + i sin θ)− cosn+1 θ(cos(n+ 1)θ + i sin(n+ 1)θ)

sin2 θ − i cos θ sin θ

= i
cos θ(cos θ + i sin θ)− cosn+1 θ(cos(n+ 1)θ + i sin(n+ 1)θ)

sin θ(cos θ + i sin θ)

= i

[
cotanθ − cosn+1 θ(cosnθ + i sin θ)

sin θ

]

=
sinnθ cosn+1 θ

sin θ
+ i

(
cotanθ − cosn+1 θ cosnθ

sin θ

)
.
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It follows that

n∑

k=1

cosk θ cos kθ =
sinnθ cosn+1 θ

sin θ
.

Finally, we let θ = 30◦ in the above sum.

Problem 12. Prove that

1 + cos2n
(π
n

)
+ cos2n

(
2π

n

)
+ · · ·+ cos2n

(
(n− 1)π

n

)

= n · 4−n

(
2 +

(
2n
n

) )
,

for all integers n ≥ 2.

Solution. Let

ω = cos
2π

n
+ i sin

2π

n

for some integer n. Consider the sum

Sn = 4n + (1 + ω)2n + (1 + ω2)2n + · · ·+ (1 + ωn−1)2n.

For all k = 1, . . . , n− 1, we have

1 + ωk = 1 + cos
2kπ

n
+ i sin

2kπ

n
= 2 cos

kπ

n

(
cos

kπ

n
+ i sin

kπ

n

)

and

(1 + ωk)2n = 22n cos2n
kπ

n
(cos 2kπ + i sin 2kπ) = 4n cos2n

kπ

n
.

Hence

Sn = 4n +
n−1∑

k=1

(1 + ωk)2n

= 4n
[
1 + cos2n

(π
n

)
+ cos2n

(
2π

n

)
+ · · ·+ cos2n

(
(n− 1)π

n

)]
. (1)
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On the other hand, using the binomial expansion, we have

Sn =

n−1∑

k=0

(1 + ωk)2n =

n−1∑

k=0

((
2n
0

)
+

(
2n
1

)
ωk+

+

(
2n
2

)
ω2k + · · ·+

(
2n
n

)
ωnk +

(
2n

2n− 1

)
ω(2n−1)k +

(
2n
2n

))

= n

(
2n
0

)
+ n

(
2n
n

)
+ n

(
2n
2n

)
+

2n−1∑

j=1
i�=n

(
2n
j

)
·
n−1∑

k=0

ωjk

= 2n+ n

(
2n
n

)
+

2n−1∑

j=1
i�=n

(
2n
j

)
· 1− ωjn

1− ωj
= 2n+ n

(
2n
n

)
. (2)

The relations (1) and (2) give the desired identity.

Problem 13. For every integer p ≥ 0, there are real numbers a0, a1, . . . , ap
with ap �= 0 such that

cos 2pα = a0 + a1 sin
2 α+ · · ·+ ap · (sin2 α)p, for all α ∈ R.

Solution. For p = 0, take a0 = 1. If p ≥ 1, let z = cosα+ i sinα and observe
that

z2p = cos 2pα+ i sin 2pα,

z−2p = cos 2pα− i sin 2pα,

and

cos 2pα =
z2p + z−2p

2
=

1

2
[(cosα+ i sinα)2p + (cosα− i sinα)2p].

Using the binomial expansion, we obtain

cos 2pα =

(
2p
0

)
cos2p α−

(
2p
2

)
cos2p−2 α sin2 α+ · · ·+(−1)p

(
2p
2p

)
sin2p α.

Hence cos 2pα is a polynomial of degree p in sin2 α, so there are
a0, a1, . . . , ap ∈ R such that

cos 2pα = a0 + a1 sin
2 α+ · · ·+ ap sin

2p α for all α ∈ R,

with

ap =

(
2p
0

)
−
(
2p
2

)
(−1)p−1 +

(
2p
4

)
(−1)p−2 + · · ·+

(
2p
2p

)
(−1)p

= (−1)p
((

2p
0

)
+

(
2p
2

)
+ · · ·+

(
2p
2p

))
�= 0.
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Problem 14. Let

x =

44∑

n=1

cosn6

44∑

n=1

sinn6

.

What is the greatest integer that does not exceed 100x?

(1997, AIME Problem 11)

Solution 1. We have

x =

44∑

n=1

cosn◦

44∑

n=1

sinn◦
=

cos 1 + cos 2 + . . .+ cos 44

sin 1 + sin 2 + . . .+ sin 44

=
cos(45− 1) + cos(45− 2) + . . .+ cos(45− 44)

sin 1 + sin 2 + . . .+ sin 44
.

Using the identity

sin a+ sin b = 2 sin
a+ b

2
cos

a− b

2
⇒

sinx+ cosx = sinx+ sin(90− x)

= 2 sin 45 cos(45− x) =
√
2 cos(45− x),

the expression of x reduces to

x =

(
1√
2

)(
(cos 1 + cos 2 + . . .+ cos 44) + (sin 1 + sin 2 + . . .+ sin 44)

sin 1 + sin 2 + . . .+ sin 44

)

=

(
1√
2

)(
1 +

cos 1 + cos 2 + . . .+ cos 44

sin 1 + sin 2 + . . .+ sin 44

)
,

x =

(
1√
2

)
(1 + x),

1√
2
= x

(√
2− 1√
2

)

,

x =
1√
2− 1

= 1 +
√
2.

Therefore,
�100x� = �100(1 +

√
2)� = 241.
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Solution 2. For a slight variant of the above solution, note that

44∑

n=1

cosn+

44∑

n=1

sinn =

44∑

n=1

sinn+ sin(90− n)

=
√
2

44∑

n=1

cos(45− n) =
√
2

44∑

n=1

cosn,

44∑

n=1

sinn = (
√
2− 1)

44∑

n=1

cosn.

This is the ratio we are looking for. The number x reduces to
1√
2− 1

=
√
2 + 1, and

�100(
√
2 + 1)� = 241.

Solution 3. Consider the sum

44∑

n=1

cisn◦, where cis t = cos t+i sin t. The frac-

tion is given by the real part divided by the imaginary part. By de Moivre’s
theorem with geometric series, the sum can be written

−1 +

44∑

n=0

cisn◦ = −1 +
cis45◦ − 1

cis1◦ − 1

= −1 +

√
2

2
− 1 +

i
√
2

2
cis1◦ − 1

= −1 +

(√
2

2
− 1 +

i
√
2

2

)

(cis(−1◦)− 1)

(cos 1◦ − 1)2 + sin2 1◦

=−1+

(√
2

2
−1

)

(cos 1◦−1)+

√
2

2
sin 1◦+ i

((

1−
√
2

2

)

sin 1◦+
√
2

2
(cos 1◦− 1)

)

2(1− cos 1◦)

= −1

2
−

√
2

4
− i

√
2

4
+

sin 1◦
(√

2

2
+ i

(

1−
√
2

2

))

2(1− cos 1◦)
.

Using the tangent half-angle formula, this becomes

(

−1

2
+

√
2

4
[cot(1/2◦)− 1]

)

+ i

(
1

2
cos(1/2◦)−

√
2

4
[cot(1/2◦) + 1]

)

.
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Dividing the two parts and multiplying each part by 4, we see that the
fraction is

−2 +
√
2[cot(1/2◦)− 1]

2 cot(1/2◦)−
√
2[cot(1/2◦) + 1]

.

Although computing an exact value for cot(1/2◦) in terms of radicals would
be difficult, it is clear that the value, whatever it is, is really large!

So treat it as though it were ∞. The fraction is approximated by

√
2

2−
√
2
=

√
2(2 +

√
2)

2
= 1 +

√
2 ⇒ �100(1 +

√
2)� = 241.

Problem 15. Prove that

n∑

k=0

(
n

k

)
cos[(n− k)x+ ky] =

(
2 cos

x− y

2

)n
cosn

x+ y

2

for all positive integers n and all real numbers x and y.

(Mathematical Reflections, 2009)

Solution. The real number

n∑

k=0

(
n

k

)
cos[(n−k)x+ky] is the real part of the

complex number

Z =
n∑

k=0

(
n

k

)
ei((n−k)x+ky) =

n∑

k=0

(
n

k

)
(eix)n−k(eiy)k,

where eit = cos t+ i sin t.
From the binomial theorem, we have Z = (eix + eiy)n which can be

rewritten as

Z =
(
ei

x+y
2

(
ei

x−y
2 + e−ix−y

2

))n
=

(
2 cos

x− y

2

)n
eni

x+y
2 .

Thus, the real part of Z is also

(
2 cos

x− y

2

)n
cosn

x+ y

2
,

and the result follows.

Problem 16. Let k be a fixed positive integer and let

S(j)
n =

(
n

j

)
+

(
n

j + k

)
+

(
n

j + 2k

)
+ . . . , j = 0, 1, . . . , k − 1.
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Prove that

(
S(0)
n + S(1)

n cos
2π

k
+ . . .+ S(k−1)

n cos
2(k − 1)π

k

)2

+

(
S(1)
n sin

2π

k
+ S(2)

n sin
4π

k
+ . . .+ S(k−1)

n sin
2(k − 1)π

k

)2
=
(
2 cos

π

k

)2n
.

(Mathematical Reflections, 2010)

Solution. Let Z+ = N ∪ {0} and

Dj = {j +mk | m ∈ Z+ and j +mk ≤ n}.

Then S
(j)
n =
∑

p

(
n

p

)
and

k−1⋃

j=0

Dj = {0, 1, 2, . . . , n}. Let

a =

k−1∑

j=0

S(j)
n cos

2jπ

k
,

b =

k−1∑

j=0

S(j)
n sin

2jπ

k
,

ε = cos
2π

k
+ i sin

2π

k

k−1∑

j=0

S(j)
n

(
cos

2π

k
+ i sin

2π

k

)j
.

Then εk = 1 and

a+ ib =

k−1∑

j=0

S(j)
n cos

2jπ

k
+ i

k−1∑

j=0

S(j)
n cos

2jπ

k

=

k−1∑

j=0

S(j)
n

(
cos

2jπ

k
+ i sin

2jπ

k

)
=

k−1∑

j=0

S(j)
n εj =

k−1∑

j=0

∑

p∈Dj

(
n

p

)
εp

=
∑

p∈Dj

(
n

p

)
εp =

n∑

p=1

(
n

p

)
εp = (1 + ε)n =

(
1 + cos

2π

k
+ i sin

2π

k

)n

=
(
2 cos

π

k

(
cos

π

k
+ i sin

π

k

))n
=
(
2 cos

π

k

)n (
cos

π

k
+ i sin

π

k

)n
.



342 6 Answers, Hints, and Solutions to Proposed Problems

Hence

|a+ib| =
∣∣
∣
(
2 cos

π

k

)n (
cos

π

k
+ i sin

π

k

)n∣∣
∣ =
∣∣
∣
(
2 cos

π

k

)n∣∣
∣
∣∣
∣
(
cos

π

k
+ i sin

π

k

)n∣∣
∣

=
∣
∣
∣
(
2 cos

π

k

)∣∣
∣
n ∣∣
∣
(π
k
+ i sin

π

k

)∣∣
∣
n

=
∣
∣
∣
(
2 cos

π

k

)∣∣
∣
n

.

Therefore,

a2 + b2 =
(
2 cos

π

k

)2n
.

Problem 17.

(a) Let z1, z2, z3, z4 be distinct complex numbers of zero sum, having equal ab-
solute values. Prove that the points with complex coordinates z1, z2, z3, z4
are the vertices of a rectangle.

(b) Let x, y, z, t be real numbers such that sinx+ sin y+ sin z + sin t = 0 and
cosx+ cos y + cos z + cos t = 0. Prove that for every integer n,

sin(2n+ 1)x+ sin(2n+ 1)y + sin(2n+ 1)z + sin(2n+ 1)t = 0.

(Romanian Mathematical Olympiad—District Round, 2011)

Solution.

(a) The equality z1 + z2 + z3 + z4 = 0 implies z1 + z2 + z3 + z4 = 0, and
furthermore,

1

z1
+

1

z2
+

1

z3
+

1

z4
= 0, (1)

for |z1| = |z2| = |z3| = |z4| �= 0.
Suppose z1 + z2 = −z3 − z4 �= 0. The relation (1) gives z1z2 = z3z4, so
{z1, z2} = {−z3,−z4}. On the other hand, if z1+z2 = 0, then z3+z4 = 0.
In both cases, the numbers z1, z2, z3, z4 form two pairs of equal sum,
whence the conclusion.

(b) Let z1 = cosx+ i sinx, z2 = cos y + i sin y, z3 = cos z + i sin z, and z4 =
cos t+ i sin t to get z1 + z2 + z3 + z4 = 0 and |z1| = |z2| = |z3| = |z4| = 1.
As before, the numbers z1, z2, z3, z4 form two pairs of opposite numbers,
so the same goes for numbers z2n+1

1 , z2n+1
2 , z2n+1

3 , z2n+1
4 . Therefore,

z2n+1
1 + z2n+1

2 + z2n+1
3 + z2n+1

4 = 0,

implying the claim.
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6.2.6 More on the nth Roots of Unity

Problem 11. For all positive integers k, define

Uk = {z ∈ C|zk = 1}.

Prove that for every pair of integers m and n with 0 < m < n, we have

U1 ∪ U2 ∪ · · · ∪ Um ⊂ Un−m+1 ∪ Un−m+2 ∪ · · · ∪ Un.

(Romanian Mathematical Regional Contest “Grigore Moisil,” 1997)

Solution. Let p = 1, 2, . . . ,m and let z ∈ Up. Then zp = 1.
Note that n−m+1, n−m+2, . . . , n are m consecutive integers, and since

p ≤ m, there is an integer k ∈ {n − m + 1, n − m + 2, . . . , n} such that p
divides k.

Let k = k′p. It follows that zk = (zp)k
′
= 1, so z ∈ Uk ⊂ Un−m+1 ∪

Un−m+2 ∪ . . . ∪ Un, as claimed.

Remark. An alternative solution can be obtained from the fact that

(an − 1)(an−1 − 1) · · · (an−k+1 − 1)

(ak − 1)(ak−1 − 1) · · · (a− 1)

is an integer for all positive integers a > 1 and n > k.

Problem 12. Let a, b, c, d, α be complex numbers such that |a| = |b| �= 0
and |c| = |d| �= 0. Prove that all roots of the equation

c(bx+ aα)n − d(ax+ bα)n = 0, n ≥ 1,

are real numbers.

Solution. Rewrite the equation as

(
bx + aα

ax + bα

)n
=

d

c
.

Since |c| = |d|, we have

∣
∣
∣∣
d

c

∣
∣
∣∣ = 1. Consider

d

c
= cos t+ i sin t, t ∈ [0, 2π).

It follows that
bxk + aα

axk + bα
= uk, (1)
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where

uk = cos
t+ 2kπ

n
+ i sin

t+ 2kπ

n
, k = 0, 1, . . . , n− 1.

The relation (1) implies that

xk =
bαuk − aα

b− auk
, k = 0, 1, . . . , n− 1.

To prove that the roots xk, k = 0, n− 1 are real numbers, it suffices to show
that xk = xk for all k = 0, 1, . . . , n− 1.

Set |a| = |b| = r. Then

xk =
bαuk − aα

b− auk

=
r2

b · α · 1
uk

− r2

a · α
r2

b − r2

a · 1
uk

=
αa− bαuk

auk − b
= xk, k = 0, n− 1,

as desired.

Problem 13. Suppose that z �= 1 is a complex number such that zn = 1, n ≥
1. Prove that

|nz − (n+ 2)| ≤ (n+ 1)(2n+ 1)

6
|z − 1|2.

(Crux Mathematicorum, 2003)

Solution. Differentiating the familiar identity

n∑

k=0

zk =
xn+1 − 1

x− 1

with respect to x, we get

n∑

k=1

kxk−1 =
nxn+1 − (n+ 1)xn + 1

(x− 1)2
.

Multiplying both sides by x and differentiating again, we arrive at

n∑

k=1

k2xk−1 = g(x),

where

g(x) =
n2xn+2 − (2n2 + 2n− 1)xn+1 + (n+ 1)2xn − x− 1

(x − 1)3
.
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Taking x = z and using |z| = 1 (which we were given), we obtain

|g(z)| ≤
n∑

k=1

k2|z|k−1 =
n(n+ 1)(2n+ 1)

6
. (1)

On the other hand, taking into account that zn = 1, z �= 1, we get

g(z) =
n(nz 2 − 2(n+ 1)z + n+ 2)

(z − 1)3
=

n(nz − (n+ 2))

(z − 1)2
. (2)

From (1) and (2), we therefore conclude that

|nz − (n+ 2)| ≤ (n+ 1)(2n+ 1)

6
|z − 1|2.

Problem 14. Let M be a set of complex numbers such that if x, y ∈ M ,

then
x

y
∈ M . Prove that if the set M has n elements, then M is the set of

the nth roots of 1.

Solution. Setting x = y ∈ M yields 1 =
x

y
∈ M . For x = 1 and y ∈ M , we

obtain
1

y
= y−1 ∈ M .

If x and y are arbitrary elements of M , then x, y−1 ∈ M , and consequently,

x

y−1
= xy ∈ M.

Let x1, x2, . . . , xn be the elements of set M and take at random an ele-
ment xk ∈ M,k = 1, n. Since xk �= 0 for all k = 1, n, the numbers
xkx1, xkx2, . . . , xkxn are distinct and belong to the set M , whence

{xkx1, xkx2, . . . , xkxn} = {x1, x2, . . . , xn}.

Therefore, xkx1 · xkx2 · · ·xkxn = x1x2 · · ·xn, and hence xn
k = 1; that is, xk

is an nth root of 1.
The number xk was arbitrary; hence M is the set of the nth roots of 1, as

claimed.

Problem 15. A finite set A of complex numbers has the following property:
z ∈ A implies zn ∈ A for every positive integer n.

(a) Prove that
∑

z∈A

z is an integer.

(b) Prove that for every integer k, one can choose a set A that satisfies the
above condition and

∑

z∈A

z = k.

(Romanian Mathematical Olympiad—Final Round, 2003)
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Solution.

(a) We will denote by S(X) the sum of the elements of a finite setX . Suppose
0 �= z ∈ A. Since A is finite, there exist positive integers m < n such
that zm = zn, whence zn−m = 1. Let d be the smallest positive integer k
such that zk ∈ 1. Then 1, z, z2, . . . , zd−1 are distinct, and the dth power
of each is equal to 1; therefore, these numbers are the dth roots of unity.

This shows that A\{0} =
m⋃

k=1

Unk
, where Up = {z ∈ C|zp = 1}. Since

S(Up) = 0 for p ≥ 2, S(U1) = 1 and Up ∩ Uq = U(p,q), we get

S(A) =
∑

k

S(Unk
)−
∑

k<l

S(Unk
∩ Unl

)

+
∑

k<l<s

S(Unk
∩ Unl

∩ Uns) + · · · = an integer.

(b) Suppose that for some integer k there exists A =
m⋃

k=1

Unk
such that

S(A) = k. Let p1, p2, . . . , p6 be the distinct primes that are not divisors
of any nk. Then

S(A ∪ Up1) = S(A) + S(Up1)− S(A ∩ Up1) = k − S(U1) = k − 1.

Also,
S(A ∪ Up1p2p3 ∪ Up1p4p5 ∪ Up2p4p6 ∪ Up3p5p6)

= S(A) + S(Up1p2p3) + S(Up1p4p5) + S(Up2p4p6) + S(Up3p5p6)

−S(A ∩ Up1p2p3)− · · ·+ S(A ∩ Up1p2p3 ∩ Up1p4p5)

+ · · · − S(A ∩ Up1p2p3 ∩ Up1p4p5 ∩ Up2p4p6 ∩ Up3p5p6)

= k + 4 · 0− 4S(U1)−
6∑

k=1

S(Upk
) + 10S(U1)− 5S(U1) + S(U1)

= k − 4 + 10− 5 + 1 = k + 2.

Hence, if there exists A such that S(A) = k, then there exist B and C such
that S(B) = k − 1 and S(C) = k + 2. The conclusion now follows easily.

Problem 16. Let n ≥ 3 be an odd integer. Evaluate

n−1
2∑

k=1

sec
2kπ

n
.

(Mathematical Reflections)
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Solution. We will prove that

n−1
2∑

k−1

sec
2kπ

n
=

⎧
⎪⎨

⎪⎩

n− 1

2
, if n ≡ 1 (mod 4)

−n+ 1

2
, if n ≡ 3 (mod 4)

Let Tn denote Chebyshev’s polynomial of the first kind of degree n, which is
defined by the formula

Tn(cos θ) = cos(nθ).

Since T ′
n(cos θ) = n sin(nθ)/ sin θ, we conclude that

{cos(kπ/n) : 1 ≤ k ≤ n− 1}

are the n− 1 distinct zeros of T ′
n, which is then of degree n− 1. This proves

that there exists a constant λ such that

T ′
n(X) = λ

∏

1≤k<n

(X − cos(kπ/n)),

and consequently,

T ′′
n (X)

T ′
n(X)

=

n−1∑

k=1

1

X − cos(kπ/n)
.

Noting that cos
kπ

n
= cos

(n− k)π

n
, we see that

T ′′
n (X)

T ′
n(X)

=
1

2

n−1∑

k=1

(
1

X − cos(kπ/n)
+

1

X + cos(kπ/n)

)

=
n−1∑

k=1

X

X2 − cos2(kπ/n)
,

so
T ′′
n (X)

T ′
n(X)

=
n−1∑

k=1

2X

2X2 − 1− cos(2kπ/n)
,

and by substituting X = cos θ, we get that

T ′′
n (cos θ)

T ′
n(cos θ)

=
n−1∑

k=1

2 cos θ

cos(2θ)− cos(2kπ/n)
.

On the other hand, from T ′
n(cos θ) = n sin(nθ)/ sin θ, we see that

−(sin θ)
T ′′
n (cos θ)

T ′
n(cos θ)

= n cot(nθ)− cot θ.
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Therefore, we conclude that

n−1∑

k=1

1

cos(2θ)− cos(2kπ/n)
=

1

2 sin2 θ
− n cot(nθ)

sin(2θ)
,

and for odd n, this is equivalent to

n−1
2∑

k=1

1

cos(2kπ/n)− cos(2θ)
=

n cot(nθ)

2 sin(2θ)
− 1

4 sin2 θ
.

In particular, taking θ = π/4, we obtain

n−1
2∑

k=1

1

cos(2kπ/n)
=

n cot(nπ/4)− 1

2
=

n(−1)(n−1)/2 − 1

2
,

which is the desired conclusion.

Problem 17. Let n be an odd positive integer and let z be a complex number
such that z2n−1 − 1 = 0. Evaluate

n−1∏

k=0

(
z2

k

+
1

z2k
− 1

)
.

(Mathematical Reflections)

Solution. Let

Zn =

n−1∏

k=0

(
z2

k

+
1

z2k
− 1

)
.

We have that

(z +
1

z
+ 1)Zn =

(
z2 +

1

z2
+ 1

)(
z2 +

1

z2
− 1

)
. . .

(
z2

n−1

+
1

z2n−1 + 1

)

=

(
z2

n

+
1

z2n
+ 1

)
.

However, from the given condition, we have that z2
n

= z. Finally,

(
z +

1

z
+ 1

)
Zn =

(
z +

1

z
+ 1

)
.

Hence Zn = 1.

Problem 18. The expression sin 2◦ sin 4◦ sin 6◦ . . . sin 90◦ is equal to
p
√
5/250, where p is an integer. Find p.
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Solution 1. All trigonometric arguments are in degrees. Notice that

sin(90x) = Im[(cosx+ i sinx)90]

=

45∑

n=0

(−1)n
(

90

2n+ 1

)
sin2n+1(x) cos90−2x+1(x)

= sin(x) cos(x)

44∑

n=0

(
90

2n+ 1

)
sin2n(x)[sin2(x) − 1]44−n.

Then
sin(90x)

sin(x) cos(x)
= P (sin(x))

is a polynomial in sin(x) of degree 88, and it has roots at

sin(x) = ± sin(2◦),± sin(4◦), . . . ,± sin(88◦),

so it follows that these are exactly the roots of the polynomial. Observe that
the constant term of P (x) is 90, while the leading term has coefficient

44∑

n=0

(
90

2n+ 1

)
=

(1 + 1)90 − (1 − 1)90

2
= 289.

It follows that

90

289
=

44∏

n=−44,n	=0

sin(2n) = (−1)44

(
44∏

n=1

sin(2n)

)2

,

and thus

sin(90)

44∏

n=1

sin(2n) =

√
45

288
=

3
√
5

244
.

Then p = 3 · 26 = 192.

Solution 2. Let ω = cos
2π

90
+ i sin

2π

90
. We have

45∏

n=1

sin(2n) =

45∑

n=1

ωn − 1

2iωn/2
.

By the symmetry of the sine (and the fact that sin(90) = 1),

45∏

n=1

sin(2n) =

89∏

n=46

sin(2n),
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so ∣
∣
∣
∣
∣

45∏

n=1

sin(2n)

∣
∣
∣
∣
∣

2

=

89∑

n=1

|ωn − 1|
2

=
90

289
,

where we have used the usual geometric-series sum for roots of unity. The
product is clearly positive and real, so it is equal to

√
45

244
=

3
√
5

244
;

hence p = 3 · 26 = 192.

Problem 19. The polynomial P (x) = (1 + x+ x2 + . . .+ x17)2 − x17 has 34
complex roots of the form

zk = rk[cos(2πak) + i sin(2πak)], k = 1, 2, 3, . . . , 34,

with 0 < a1 ≤ a2 ≤ a3 ≤ . . . ≤ a34 < 1 and rk > 0. Given that a1 + a2 +
a3 + a4 + a5 = m/n, where m and n are relatively prime positive integers,
find m+ n.

(2004 AIME I, Problem 13)

Solution. We see that the expression for the polynomial P is very difficult
to work with directly, but there is one obvious transformation to make, sum
the geometric series:

P (x) =

(
x18 − 1

x− 1

)2
− x17 =

x36 − 2x18+1 + 1

x2 − 2x+ 1
− x17

=
x36 − x19 − x17 + 1

(x− 1)2
=

(x19 − 1)(x17 − 1)

(x− 1)2
.

This expression has roots at every 17th root and 19th root of unity other
than 1. Since 17 and 19 are relatively prime, this means that there are no
duplicate roots. Thus, a1, a2, a3, a4, a5 are the five smallest fractions of the

form
m

19
or

n

17
for m,n > 0.

Now,
3

17
and

4

19
can both be seen to be larger than any of

1

19
,
2

19
,
3

19
,
1

17
,
2

17
, so these latter five are the numbers we want to add:

1

19
+

2

19
+

3

19
+

1

17
+

2

17
=

6

19
+

3

17
=

6 · 17 + 3 · 1
17 · 19 =

159

323
,

and so the answer is 159 + 323 = 482.

Problem 20. The sets A = {z : z18 = 1} and B = {w : w48 = 1} are both
sets of complex roots of unity. The set C = {zw : a ∈ A and w ∈ B} is also
a set of complex roots of unity. How many distinct elements are in C?
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Solution 1. The least common multiple of 18 and 48 is 144, so define

n = cos
2π

144
+ i sin

2π

144
.

We can write the numbers of the set A as {n8, n18, . . . , n144} and of the set
B as {n3, n6, . . . , n144}. Now, nx can yield at most 144 different values. All
solutions for zw will be in the form of n8k1+3k2 .

Note that 8 and 3 are relatively prime, and it is well known that for two
relatively prime integers a, b, the largest number that cannot be expressed as
the sum of multiples of a, b is ab− a− b. For 3, 8, this is 13; however, we can
easily see that the numbers 145 to 157 can be written in terms of 3, 8. Since
the exponents are of roots of unity, they reduce modulo 144, so all numbers
in the range are covered. Thus the answer is 144.

Solution 2. The 18th and 48th roots of 1 can be found by de Moivre’s

theorem. They are cis

(
2k1π

18

)
and cis

(
2k2π

48

)
respectively, where cis θ =

cos θ+i sin θ and k1 and k2 are integers from 0 to 17 and 0 to 47, respectively:

zw = cis

(
k1π

9
+

k2π

24

)
= cis

(
8k1π + 3k2π

72

)
.

Since the trigonometric functions are periodic with period 2π, there are at
most 72 · 2 = 144 distinct elements in C. As above, all of these will work.

Problem 21. Let n ≥ 3 be an integer and z = cos
2π

n
+ i sin

2π

n
. Consider

the sets
A = {1, z, z2, . . . , zn−1}

and
B = {1, 1 + z, 1 + z + z2, . . . , 1 + z + . . .+ zn−1}.

Determine A ∩B.

(Romanian Mathematica Olympiad—District Round, 2008)

Solution. Clearly, 1 ∈ A ∩B. Let w ∈ A ∩B, w �= 1. As a member of B,

w = 1 + z + . . .+ zk =
1− zk+1

1− z

for some k = 1, 2, . . . , n− 1. Since w ∈ A, we get

|w| = 1 and |1− zk+1| = |1− z|.

The latter equality yields

sin
(k + 1)π

n
= sin

π

n
, or

(k + 1)π

n
= π − π

n
,
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which implies k = n− 2, so

w =
1− 1

z
1− z

= −1

z
.

because w ∈ A, we must have wn = 1, which means that n has to be even.

So the answer is A ∩B = {1} for odd n, and A ∩B =

{
1,−1

z

}
for even n.

6.2.7 Problems Involving Polygons

Problem 12. Prove that there exists a convex 1990-gon with the following
two properties:

(a) all angles are equal;
(b) the lengths of the sides are the numbers 12, 22, 32, . . . , 19892, 19902 in

some order.

(31st IMO)

Solution. Suppose that such a 1990-gon exists and let A0, A1, . . . , A1989 be

its vertices. The sides AkAk+1, k = 0, 1, . . . , 1989 define the vectors
−−−−−→
AkAk+1,

which can be represented in the complex plane by the numbers

zk = nkw
k, k = 0, 1, . . . , 1989,

where w = cos
2π

1990
+ i sin

2π

1990
. Here A1990 = A0, and n0, n1, . . . , n1989

represents a permutation of the numbers 12, 22, . . . , 19902.

Because
1989∑

k=0

−−−−−→
AkAk+1 = 0, the problem can be restated as follows: find a

permutation (n0, n1, . . . , n1989) of the numbers 12, 22, . . . , 19902 such that

1989∑

k=0

nkw
k = 0.

Observe that 1990 = 2 ·5 ·199. The strategy is to add vectors after a suitable
grouping of 2, 5, 199 vectors such that these partial sums can be directed
toward a suitable result.

To begin, let us consider the pairing of numbers

(12, 22), (32, 42), . . . , (19882, 19892)
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and assign these lengths to pairs of opposite vectors respectively:

(wk, wk+995), k = 0, . . . , 994.

By adding the obtained vectors, we obtain 995 vectors of lengths

22 − 12 = 3; 42 − 32 = 7; 62 − 52 = 11; . . . ; 19892 − 19882 = 3979,

which divide the unit circle of the complex plane into 995 equal arcs.
Let B0 = 1, B1, . . . , B994 be the vertices of the regular 995-gon inscribed

in the unit circle. We intend to assign the lengths 3, 7, 11, . . . , 3979 to the

unit vectors
−−→
OB0,

−−→
OB1, . . . ,

−−→
OB994 such that the sum of the obtained vectors

is zero.
We divide 995 lengths into 199 groups of size 5:

(3, 7, 11, 15, 19), (23, 27, 31, 35, 39), . . . , (3963, 3967, 3971, 3975, 3979).

Let ζ = cos
2π

5
+ i sin

2π

5
, ω = cos

2π

199
+ i sin

2π

199
be the primitive roots of

unity of order 5 and 199, respectively. Let P1 be the pentagon with vertices 1,
ζ, ζ2, ζ3, ζ4. Then we rotate P1 about the origin O with coordinates through

angles θk =
2kπ

199
, k = 1, . . ., 198, to obtain new pentagons P2, . . . ,P198,

respectively. The vertices of Pk+1 are ωk, ωkζ, ωkζ2, ωkζ3, ωkζ4, k = 0, . . .,
198. We assign to unit vectors defined by the vertices Pk of the respective
lengths (Fig. 6.7)

2k + 3, 2k + 7, 2k + 11, 2k + 15, 2k + 19(k = 0, . . . , 198).

Figure 6.7.
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Thus, we have to evaluate the sum

198∑

k=0

[(2k+3)ωk+(2k+7)ωkζ+(2k+11)ωkζ2+(2k+15)ωkζ3+(2k+19)ωkζ4]

=
198∑

k=0

2kωk(1 + ζ + ζ2 + ζ3 + ζ4) + (3 + 7ζ + 11ζ2 + 15ζ3 + 19ζ4)
198∑

k=0

ωk.

Since 1+ ζ + ζ2 + ζ3 + ζ4 = 0 and 1+ω+ω2 + · · ·+ω198 = 0, it follows that
the sum equals zero.

Problem 13. Let A and E be opposite vertices of a regular octagon. Let an
be the number of paths of length n of the form (P0, P1, . . . , Pn), where
Pi are vertices of the octagon, and the paths are constructed using the rule
P0 = A, Pn = E, Pi and Pi+1 are adjacent vertices for i = 0, . . . , n − 1,
and Pi �= E for i = 0, . . . , n− 1.

Prove that a2n−1 = 0 and a2n = 1√
2
(xn−1 − yn−1), for all n = 1, 2, 3, . . .,

where x = 2 +
√
2 and y = 2−

√
2.

(21st IMO)

Solution. It is convenient to take a regular octagon inscribed in a circle and
label its vertices as follows:

A = A0, A1, A2, A3, A4 = E,A−3, A−2, A−1.

We imagine a step in the path to be rotation of angle
2π

8
=

π

4
about the

center O of the circumscribed circle of the octagon. In this way, a path is a
sequence of such rotations, subject to certain conditions. If the rotation is

counterclockwise, we add the angle
π

4
. If the rotation is clockwise, we add

the angle −π

4
. The starting point is A0, which is represented by the complex

number z0 = cos 0 + i sin 0. Each vertex Ak of the octagon is represented

by zk = cos
2kπ

8
+ i sin

2kπ

8
. It is convenient to work only with the angles

2kπ

8
,−4 ≤ k ≤ 4. But these k’s are integers considered modulo 8, so that

z4 = z−4 and A4 = A−4 (Fig. 6.8).
We may associate to a path of length n, say (P0P1 · · ·Pn), an ordered

sequence (u, u2, . . . , un) of integers that satisfy the following conditions:

(a) uk = ±1 for k = 1, 2, . . . , n; more precisely, ui = ±1 if the arc (Pk−1Pk)

is
π

4
, and uk = −1 if the arc (Pk−1Pk) is −

π

4
;

(b) u1 + u2 + · · ·+ uk ∈ {−3,−2,−1, 0, 1, 2, 3} for all k = 1, 2, . . . , n− 1;
(c) u1 + u2 + · · ·+ un = ±4.
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Figure 6.8.

For example, the sequence associated with the path (A0, A−1,
A0, A1, A2, A3, A4) is (−1, 1, 1, 1, 1, 1). From now on, we consider only
sequences that satisfy (a)–(c). It is obvious that conditions (a)–(c) define
a bijective function between the set of paths and the set of sequences.

For every sequence u1, u2, . . . , un and every k, 1 ≤ k ≤ n, we call the sum
sk = u1 + u2 + · · ·+ uk a partial sum of the sequence. It is easy to see that
for each k, sk is an even number if and only if k is even. Thus, a2n−1 = 0.
Thus we have to prove the formula for even numbers. For small n, we have
a2 = 0, a4 = 2; for example, only sequences (1, 1, 1, 1) and (−1,−1,−1,−1)
of length 4 satisfy conditions (a)–(c).

In the following, we will prove a recurrence relation between the numbers
an, n even. The first step is to observe that if sn = ±4, then sn−2 = ±2.
Moreover, if (u1, u2, . . . , un−2) is a sequence that satisfies (a), (b), and
sn−2 = ±2, there are only two ways to extend it to a sequence that satis-
fies (c) as well: either the sequence (u1, u2, . . . , un−2,+1,+1) or the sequence
(u1, u2, . . . , un−2,−1,−1). So if we denote by xn the number of sequences
that satisfy (a), (b), and sn = ±2, then n is even, and an = xn−2.

Let yn denote the number of sequences that satisfy (a), (b), and sn = 0.
Then n is even, and we have the equality

yn = xn−2 + 2yn−2. (1)

This equality comes from the following constructions.
A sequence (u1, . . . , un−2) for which sn−2 = ±2 gives rise to a unique se-

quence of length n with sn = 0 by extending it either to (u1, . . . , un−2, 1, 1)
or to (u1, u2, . . . , un−1,−1,−1). Also, a sequence (u1, . . . , un−2) with
sn−2 = 0 gives rise either to the sequence (u1, . . . , un−2, 1,−1) or to



356 6 Answers, Hints, and Solutions to Proposed Problems

(u1, . . . , un−2,−1, 1). Finally, every sequence of length n with sn = 0 ends in
one of the following “terminations”: (−1,−1), (1, 1), (1,−1), (−1, 1).

The following equality is also satisfied:

xn = 2xn−2 + 2yn−2. (2)

This corresponds to the property that every sequence of length n for which
sn = ±2 can be obtained either from a similar sequence of length n − 2 by
adding the termination (1,−1) or the termination (−1, 1), or from a sequence
of length n − 2 for which sn−2 = 0 by adding the termination (1,1) or the
termination (−1,−1).

Now the problem is to derive an = xn−2 from relations (1) and (2). By
subtracting (1) from (2), we obtain xn−2 = xn − yn, for all n ≥ 4, n even.
Thus, yn−2 = xn−2 − xn−4. Substituting the last equality in (2), we obtain
the recurrence relation xn = 4xn−2 − 2xn−4, for all n ≥ 4, n even. Taking
into account that xn = an+2, we obtain the linear recurrence relation

an+2 = 4an − 2an−2, n ≥ 4, (3)

with the initial values a2 = 0, a4 = 2.
The sequence (an), n ≥ 2, n even is uniquely defined by a2 = 0, a4 = 2 and

the relation (3). Therefore, to answer the question, it is sufficient to prove

that the sequence (c2n)n≥1, c2n =
1√
2
((2+

√
2)n−1 − (2−

√
2)n−1) obeys the

same conditions. This is a straightforward computation.

Problem 14. Let A, B, C be three consecutive vertices of a regular polygon
and let us consider a point M on the major arc AC of the circumcircle.

Prove that
MA ·MC = MB2 −AB2.

Solution. Consider the complex plane with origin at the center of the poly-
gon. Without loss of generality we may assume that the coordinates of A,B,C

are 1, ε, ε2, respectively, where ε = cos
2π

n
+ i sin

2π

n
.

Let zM = cos t+ i sin t, t ∈ [0, 2π) be the coordinate of point M . From the

hypothesis, we derive that t >
4π

n
. Then

MA = |zM − 1| =
√

(cos t− 1)2 + sin2 t =
√
2− 2 cos t = 2 sin

t

2
;

MB = |zM − ε| =

√

2− 2 cos

(
t− 2π

n

)
= 2 sin

(
t

2
− π

n

)
;

MC = |zM − ε2| =

√

2− 2 cos

(
t− 4π

n

)
= 2 sin

(
t

2
− 2π

n

)
;
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AB = |ε− 1| =
√

2− 2 cos
2π

n
= 2 sin

π

n
.

We have

MB2 −AB2 = 4 sin2
(
t

2
− π

n

)
− 4 sin2

π

n

= 2

(
cos

2π

n
− cos

(
t− 2π

n

))

= −2 · 2 sin

2π

n
−
(
t− 2π

n

)

2
sin

2π

n
+

(
t− 2π

n

)

2

= 2 sin
t

2
· 2 sin

(
t

2
− 2π

n

)
= MA ·MC ,

as desired.

Problem 15. Let A1A2 · · ·An be a regular polygon inscribed in a circle C of
radius 1. Find the maximum value of

∏n
j=1 PAj , where P is an arbitrary

point on circle C.

(Romanian Mathematical Regional Contest “Grigore Moisil,” 1992)

Solution. Rotate the polygon A1A2 · · ·An so that the coordinates of its
vertices are the complex roots of unity of order n: ε1, ε2, . . . , εn. Let z be the
coordinate of point P located on the circumcircle of the polygon and note
that |z| = 1.

The equality

zn − 1 =

n∏

j=1

(z − εj)

yields

|zn − 1| =
n∏

j=1

|z − εj | =
n∏

j=1

PAj .

Since |zn − 1| ≤ |z|n + 1 = 2, it follows that the maximal value of
n∏

j=1

PA2
j

is 2 and is attained for zn = −1, i.e., for the midpoints of arcs AjAj+1, j =
1, . . . , n, where An+1 = A1.

Problem 16. Let A1A2 · · ·A2n be a regular polygon with circumradius equal
to 1 and consider a point P on the circumcircle. Prove that

n−1∑

k=0

PA2
k+1 · PA2

n+k+1 = 2n.



358 6 Answers, Hints, and Solutions to Proposed Problems

Solution. Without loss of generality, assume that points Ak have coordi-
nates εk−1 for k = 1, . . . , 2n, where

ε = cos
π

n
+ i sin

π

n
.

Let α be the coordinate of the point P, |α| = 1. We have

PAk+1 = |α− εk|

and
PAn+k+1 = |α− εn+k| = |α+ εk|,

for k = 0, . . . , n− 1. Then

n−1∑

k=0

PA2
k+1 · PA2

n+k+1 =

n−1∑

k=0

|α− εk|2 · |α+ εk|2

=

n−1∑

k=0

[(α− εk)(α− εk)][(α+ εk)(α+ εk)]

=

n−1∑

k=0

(2 − αεk − αεk)(2 + αεk + αεk)

=
n−1∑

k=0

(2− α2ε2k − α2ε2k) = 2n − α2
n−1∑

k=0

ε2k − α2 ·
n−1∑

k=0

ε2k

= 2n− α · ε̄
2n − 1

ε2 − 1
− ᾱ2 · ε

2n − 1

ε2 − 1
= 2n,

as desired.

Problem 17. Let A1A2 . . . An be a regular n-gon inscribed in a circle with
center O and radius R. Prove that for each point M in the plane of the n-gon,
the following inequality holds:

n∏

k=1

MAk ≤ (OM2 +R2)
n
2 .

(Mathematical Reflections, 2009)

Solution. Let us work in the complex plane with O as the origin and without
loss of generality, R = 1. Let

ω = cos
2π

n
+ i sin

2π

n
,
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and let the complex numbers ω, ω2, . . . , ωn, x correspond to the points
A1, A2, . . . , An,M , respectively. Then our inequality is equivalent to

n∏

k=1

|x− ωk| ≤
√

(|x|2 + 1)n.

Since ω, ω2, . . . , ωn are the roots of zn − 1 = 0, we have

n∏

k=1

|x− ωk| = |xn − 1| ≤ |x|n + 1,

by the triangle inequality. Hence it remains to show that

(|x|n + 1)2 ≤ (|x|2 + 1)n ⇔ 2|x|n ≤
n−1∑

k=1

(
n

k

)
|x|2k,

which follows from AM-GM inequality, since n ≥ 3 and

n−1∑

k=1

(
n

k

)
|x|2k ≥ n|x|2 + n|x|2n−2 ≥ 2n|x|n + 2|x|n.

Equality holds iff |x| = 0 i.e., when M ≡ O.

6.2.8 Complex Numbers and Combinatorics

Problem 11. Calculate the sum sn =
n∑

k=0

(
n
k

)2
cos kt, where t ∈ [0, π].

Solution. Let us consider the complex number z = cos t + i sin t and the

sum tn =
n∑

k=0

(
n
k

)2
sin kt . Observe that

sn + itn =
n∑

k=0

(
n
k

)2
(cos kt + i sin kt) =

n∑

k=0

(
n
k

)2
(cos t + i sin t)k.

In the product (1 + X)n(1 + zX )n = (1 + (z + 1)X + zX 2)n, we set the
coefficient of Xn equal to obtain

∑

0≤k,s≤n
k+s=n

(
n
k

)(
n
s

)
zs =

∑

0≤k,s,r≤n
k+s+r=n
s+2r=n

n!

k!s!r!
(z + 1)szr. (1)
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The above relation is equivalent to

n∑

k=0

(
n
k

)2
zk =

[n2 ]∑

k=0

(
n
2k

)(
2k
k

)
(z + 1)n−2kZk. (2)

The trigonometric form of the complex number 1 + z is given by

1 + cos t+ i sin t = 2 cos2
t

2
+ 2i sin

t

2
cos

t

2
= 2 cos

t

2

(
cos

t

2
+ i sin

t

2

)
,

since t ∈ [0, π]. From (2), it follows that

sn + itn =

[n2 ]∑

k=0

(
n
2k

)(
2k
k

) (
2 cos

t

2

)n−2k (
cos

nt

2
+ i sin

nt

2

)
;

hence

sn =

[n2 ]∑

k=0

(
n
2k

)(
2k
k

) (
2 cos

t

2

)n−2k

cos
nt

2
,

tn =

[n2 ]∑

k=0

(
n
2k

)(
2k
k

) (
2 cos

t

2

)n−2k

sin
nt

2
.

Remark. Here we have a few particular cases of (2).

(1) If z = 1, then

n∑

k=0

(
n
k

)2
=

[n2 ]∑

k=0

(
n
2k

)(
2k
k

)
2n−2k =

(
2n
n

)
.

(2) If z = −1, then

n∑

k=0

(−1)k
(
n
k

)2
=

⎧
⎪⎨

⎪⎩

0 if n is odd,

(−1)
n
2

(
n

n/2

)

, if n is even.

(3) If z = −1

2
, then

n∑

k=0

(−1)k
(
n
k

)2
2n−k =

[n2 ]∑

k=0

(−1)k
(
n
2k

)(
2k
k

)
2k.
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Problem 12. Prove the following identities:

(1)

(
n
0

)
+

(
n
4

)
+

(
n
8

)
+ · · · = 1

4

(
2n + 2

n
2 +1 cos

nπ

4

)
.

(Romanian Mathematical Olympiad—Second Round, 1981)

(2)

(
n
0

)
+

(
n
5

)
+

(
n
10

)
+ · · ·

=
1

5

[

2n +
(
√
5 + 1)n

2n−1
cos

nπ

5
+

(
√
5− 1)n

2n−1
cos

2nπ

5

]

.

Solution.

(1) In Problem 4, consider p = 4 to obtain
(
n
0

)
+

(
n
4

)
+

(
n
8

)
+ · · · = 2n

4

(
1 + 2
(
cos

π

4

)n
cos

nπ

4

)

=
1

4

(
2n + 2

n
2 +1 cos

nπ

4

)
.

(2) Let us consider p = 5 in Problem 4. We find that

(
n
0

)
+

(
n
4

)
+

(
n
8

)
+ · · ·

=
2n

5

(
1 + 2
(
cos

π

5

)n
cos

nπ

5
+ 2

(
cos

2π

5

)n
cos

2nπ

5

)
.

Using the well-known relations

cos
π

5
=

√
5 + 1

4
and cos

2π

5
=

√
5− 1

4
,

the desired identity follows.

Problem 13. Consider the integers An, Bn, Cn defined by

An =

(
n
0

)
−
(
n
3

)
+

(
n
6

)
− · · · ,

Bn = −
(
n
1

)
+

(
n
4

)
-

(
n
7

)
+ · · · ,

Cn =

(
n
2

)
−
(
n
5

)
+

(
n
8

)
− · · · .

The following identities hold:

(1) A2
n +B2

n + C2
n −AnBn −BnCn − CnAn = 3n;

(2) A2
n +AnBn +B2

n = 3n−1.
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Solution.

(1) Let ε be a cube root of unity different from 1. We have

(1− ε)n = An +Bnε+ Cnε
2, (1− ε2)n = An +Bnε

2 + Cnε.

Hence

A2
n+B2

n+C2
n−AnBn−BnCn−CnAn = (An+Bnε+Cnε

2)(An+Bnε
2+Cnε)

= (1− ε)n(1− ε2)n = (1 − ε − ε2 + 1)n = 3n.

(2) It is obvious that An +Bn +Cn = 0. Replacing Cn = −(An +Bn) in the
previous identity, we get A2

n +AnBn + C2
n = 3n−1.

Problem 14. Let p ≥ 3 be a prime and let m, n be positive integers divisible
by p such that n is odd. For each m-tuple (c1, . . . , cm), ci ∈ {1, 2, . . . , n},
with the property that p|

m∑

i=1

ci, let us consider the product c1 · · · cm. Prove

that the sum of all these products is divisible by

(
n

p

)m
.

Solution. For k ∈ {0, 1, . . . , p − 1}, consider xk =
∑

c1 · · · cm, the sum of

all products c1 · · · cm such that ci ∈ {1, 2, . . . , n} and

m∑

i=1

ci ≡ k (mod p).

If ε = cos
2π

p
+ i sin

2π

p
, then

(ε+ 2ε2 + · · ·+ nεn)m =
∑

c1,...,cm∈{12,...,n}
c1 . . . cmεc1+···+cm =

p−1∑

k=0

xkε
k.

Taking into account the relation

ε + 2ε2 + · · ·+ nεn =
nεn+2 − (n+ 1)εn+1 + ε

(ε− 1)2
=

nε

ε− 1

(see Problem9 in Sect. 5.4 or Problem13 in Sect. 5.5), it follows that

nm

(ε− 1)m
=

p−1∑

k=0

xkε
k. (1)

On the other hand, from εp−1 + · · ·+ ε+ 1 = 0, we obtain that

1

ε− 1
= −1

p
(εp−2 + 2εp−3 + · · ·+ (p− 2)ε+ p− 1);
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hence

nm

(ε− 1)m
=

(
−n

p

)
(εp−2 + 2εp−3 + · · ·+ (p− 2)ε+ p− 1)m.

Put

(Xp−2+2Xp−3+ · · ·+(p−2)X+p−1)m = b0+b1X+ · · ·+bm(p−2)X
m(p−2),

and obtain

nm

(ε− 1)m
=

(
−n

p

)m
(y0 + y1ε+ · · ·+ yp−1ε

p−1), (2)

where yj =
∑

k≡j(mod p)

bk.

From (1) and (2), we get

x0 − ry0 + (x1 − ry1)ε+ · · ·+ (xp−1 − ryp−1)ε
p−1 = 0,

where r =

(
−n

p

)m
. From Proposition4 in Sect. 2.2.2, it follows that x0 −

ry0 = x1 − ry1 = · · · = xp−1 − ryp−1 = k. Now it is sufficient to show that
r|k. But

pk = x0 + · · ·+ xp−1 − r(y0 + · · ·+ yp−1)

= (1 + 2 + · · ·+ n)m − r(b0 + · · ·+ bm(p−2))

= (1 + 2 + · · ·+ n)m − r(1 + 2 + · · ·+ (p− 1))m,

and we obtain

pk =

(
n(n+ 1)

2

)m
− r

(
p(p− 1)

2

)m
.

Since the right-hand side is divisible by pr, it follows that r|k.

Problem 15. Let k be a positive integer and a = 4k−1. Prove that for every
positive integer n, the integer

sn =

(
n
0

)
−
(
n
2

)
a+

(
n
4

)
a2 −
(
n
6

)
a3 + · · · is divisible by 2n−1.

(Romanian Mathematical Olympiad—Second Round, 1984)

Solution. Expanding (1 + i
√
a)n by the binomial theorem and then sepa-

rating the even and odd terms, we obtain

(1 + i
√
a)n = sn + i

√
atn. (1)
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Passing to conjugates in (1), we get

(1− i
√
a)n = sn − i

√
atn. (2)

From (1) and (2), it follows that

sn =
1

2
[(1 + i

√
a)n + (1− i

√
a)n]. (3)

The quadratic equation with roots z1 = 1+ i
√
a and z2 = 1− i

√
a is z2−2z+

(a + 1) = 0. It is easy to see that for every positive integer n, the following
relation holds:

sn+2 = 2sn+1 − (1 + a)sn. (4)

Now we proceed by induction by step 2. We have s1 = 1 and s2 = 1 − a =
2 − 4k = 2(1 − 2k), and hence the desired property holds. Assume that
2n−1|sn and 2n|sn+1. From (4), it follows that 2n+1|sn+2, since 1 + a = 4k
and 2n+1|(1 + a)sn.

Problem 16. Let m and n be integers greater than 1. Prove that

∑

k1+k2+...+kn=m
k1,k2,...,kn≥0

1

k1!k2! . . . kn!
cos(k1 + 2k2 + . . .+ nkn)

2π

n
= 0.

(Mathematical Reflections, 2009)

Solution. Let L denote the left-hand side of the proposed identity. We ob-
serve that L is the real part of the complex number

Z =
∑

k1+k2+...+kn=m
k1,k2,...,kn≥0

ωk1+2k2+...+nkn

k1!k2! . . . kn!
=

∑

k1+k2+...+kn=m
k1,k2,...,kn≥0

ωk1(ω2)k2 . . . (ωn)kn

k1!k2! . . . kn!
,

where ω = cos
2π

n
+ i
∑ 2π

n
.

Now, using the multinomial theorem, we have

Z = (ω + ω2 + . . .+ ωn−1 + 1)m =

(
ωn − 1

ω − 1

)m
= 0

(since ωn = 1). Thus, L = Re(Z) = 0.

Problem 17. Given an integer n ≥ 2, let an, bn, cn be integers such that

(
3
√
2− 1)n = an + bn

3
√
2 + cn

3
√
4.

Show that cn ≡ 1 (mod 3) if and only if n ≡ 2 (mod 3).

(Romanian IMO Team Selection Test, 2013)
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Solution. The binomial expansion of ( 3
√
2− 1)n yields

cn =
∑

k≡2 (mod 3)

(−1)n−k ·2(k−2)/3

(
n

k

)
≡ (−1)n

∑

k≡2 (mod 3)

(
n

k

)
(mod 3).

Since

∑

k≡2 (mod 3)

(
n

k

)
=

1

3
((1 + 1)n + ε(1 + ε)n + ε2(1 + ε2)n)

=
1

3

(
2n + 2 cos(n+ 3)

π

3

)
,

where 1 + ε+ ε2 = 0, the condition n ≡ 2 (mod 3) may be restated as

3cn = (−1)n
(
2n + 2 cos(n+ 2)

π

3

)
≡ 3 (mod 9).

Consideration of n modulo 6 yields 3cn ≡ 3 (mod 9) if n ≡ 2 or 5 (mod 6),
and 3cn ≡ 0 (mod 9) otherwise. The conclusion follows.

6.2.9 Miscellaneous Problems

Problem 12. Solve in complex numbers the system of equations

⎧
⎨

⎩

x|y|+ y|x| = 2z2,
y|z|+ z|y| = 2x2,
z|x|+ x|z| = 2y2.

Solution. Using the triangle inequality, we have

2|z|2 = |x|y|+ y|x|| ≤ |x||y|+ |y||x|,

so |z|2 ≤ |x| · |y|. Likewise,

|y|2 ≤ |x| · |z| and |z|2 ≤ |y||x|.

Summing these inequalities yields

|x|2 + |y|2 + |z|2 ≤ |x||y|+ |y||z|+ |z||x|.

This implies that
|x| = |y| = |z| = a.
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If a = 0, then x = y = z = 0 is a solution of the system. Consider a > 0.
The system may be written as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x+ y =
2

a
z2,

y + z =
2

a
x2,

z + x =
2

a
y2,

Subtracting the last two equations gives

x− y =
2

a
(y2 − x2), i.e., (y − x)

(
y + x+

2

a

)
= 0.

Case 1. If x = y, then x = y =
z2

a
. The last equation implies

z +
z2

a
= 2

z4

a3
.

This is equivalent to

2
(z
a

)3
=

z

a
+ 1;

hence
z

a
= 1 or

z

a
=

−1± i

2
.

If z = a, then x = y = z = a is a solution of the system. If
z

a
=

−1± i

2
,

then

1 = |z
a
| = |−1± i

2
| =

√
2

2
,

which is a contradiction.

Case 2. If x+y = −2

a
, then −2

a
=

2

a
z2. We obtain z = ±i and a = |z| = 1.

Consider z = i; then

x = (x+ y)− (y + z) + z = 2z2 − 2x2 + z = −2 + i − 2x2,

or equivalently,
2x2 + x+ 2− i = 0.

Then x = i or x = −1

2
− i. Since |x| = a = 1, we have x = i. Then

y = 2x2−z = −2− i and |y| =
√
5 �= a = 1, so the system has no solution.

The case z = −i has the same conclusion.

Therefore, the solutions are x = y = z = a, where a ≥ 0 is a real number.
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Problem 13. Solve in complex numbers the following:

⎧
⎨

⎩

x(x − y)(x− z) = 3,
y(y − x)(y − z) = 3,
z(z − x)(z − y) = 3.

(Romanian Mathematical Olympiad—Second Round, 2002)

Solution. In every solution (x, y, z), we have x �= 0, y �= 0, z �= 0 and
x �= y, y �= z, z �= x. We can divide each equation by another and obtain new
equations:

x2 + y2 = yz + zx,

y2 + z2 = xy + zx, (1)

z2 + x2 = xy + yz.

By adding them, one obtains the equality

x2 + y2 + z2 = xy + yz + zx. (2)

After subtracting the second equation in (1) from the first, one obtains x +
y + z = 0. By squaring this identity, one obtains an improvement of (2):

x2 + y2 + z2 = xy + yz + zx = 0. (3)

Using (3) in (1), one obtains

x2 = zy, y2 = zx, z2 = xy, (4)

and also
x3 = y3 = z3 = xyz.

It follows that x, y, z are distinct roots of the same complex number a = xyz.
From x3 = y3 = z3 = xyz = a we obtain

x = 3
√
a, t = ε 3

√
a, z = ε2 3

√
a, (5)

where ε2 + ε+1 = 0, ε3 = 1. When we introduce the relations (5) in the first
equation of the original system, we obtain a3(1− ε)(1− ε2) = 3. Taking into
account the computation

(1− ε)(1− ε2) = 1− ε − ε2 + 1 = 3,

we have a3 = 1. Hence, we obtain, using (5), that (x, y, z) is a permutation
of the set {1, ε, ε2}.
Problem 14. Let X, Y, Z, T be four points in the plane. The segments
[XY ] and [ZT ] are said to be connected if there is some point O in the plane
such that the triangles OXY and OZT are right isosceles triangles in O.
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Let ABCDEF be a convex hexagon such that the pairs of segments [AB],
[CE], and [BD], [EF ] are connected. Show that the points A, C, D, and F
are the vertices of a parallelogram and that the segments [BC] and [EA] are
connected.

(Romanian Mathematical Olympiad—Final Round, 2002)

Solution. Suppose that the triangles OXY and OZT are oriented counter-
clockwise. Let x, y, z, t be the coordinates of the points X,Y, Z, T , and let
m be the coordinate of O. Since these are right isosceles triangles, we have
x−m = i(y−m), z−m = i(t−m). It follows that m(1− i) = x− iy = z− it.
We deduce that x− z = i(y − t).

Conversely, if x− iy = z − it, the coordinate of O is m =
x− iy

1− i
, and the

triangles OXY and OZT are right and isosceles.
Let a, b, c, d, e, f be the coordinates of the given hexagon in that order. We

can write a − ib = c − ie, b− id = e − if . It follows that a+ d = c+ f , i.e.,
ACDF is a parallelogram.

Multiplying the first equality by i, we obtain b− ic = e− ia, i.e., BC and
AE are connected.

Problem 15. Let ABCDE be a cyclic pentagon inscribed in a circle with
center O that has angles B̂ = 120◦, Ĉ = 120◦, D̂ = 130◦, Ê = 100◦. Show that
the diagonals BD and CE meet at a point belonging to the diameter AO.

(Romanian IMO, Team Selection Test, 2002)

Solution. By standard computations, we find that on the circumscribed

circle, the sides of the pentagon subtend the following arcs:
�

AB = 80◦,
�

BC =

40◦,
�

CD = 80◦,
�

DE = 20◦ and
�

EA = 140◦. It is then natural to consider all
these measures as multiples of 20◦ that correspond to the primitive 18th roots

of unity, say ω = cos
2π

18
+ i sin

2π

18
. We thus assign to each vertex, starting

from A(1), the corresponding root of unity: B(ω4), C(ω6), D(ω10), E(ω11).
We shall use the following properties of ω:

ω18 = 1, ω9 = −1, ωk = ω18−k, ω6 − ω3 + 1 = 0. (A)

We need to prove that the coordinate of the common point of the lines BD
and CE is a real number (Fig. 6.9).

The equation of the line BD is

∣
∣
∣
∣∣
∣

z z̄ 1
ω4 ω̄4 1
ω10 ω̄10 1

∣
∣
∣
∣∣
∣
= 0, (1)
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and the equation of the line CE is
∣
∣
∣
∣
∣∣

z z̄ 1
ω6 ω̄6 1
ω11 ω̄11 1

∣
∣
∣
∣
∣∣
= 0. (2)

Equation (1) can be written as follows:

Figure 6.9.

z(ω14 − ω8)− z(ω4 − ω10) + (ω12 − ω6) = 0,

or
zω8(ω6 − 1) + zω4(ω6 − 1) + ω6(ω6 − 1) = 0.

Using the properties of ω, we derive a simplified version of (1):

zω4 + z + ω2 = 0. (1′)

In the same way, (2) becomes

zω + z − ω3(ω4 − 1) = 0. (2′)

From (1′) and (2′) we obtain the following expression for z:

z =
−ω7 + ω3 − ω2

ω4 − ω
=

−ω6 + ω2 − ω

ω6
= −1 +

ω − 1

ω5
.

To prove that z is real, it will suffice to prove that it coincides with its
conjugate. It is easy to see that

ω − 1

ω5
=

ω − 1

ω5

is equivalent to
ω4 − ω5 = ω4 − ω5,

i.e., ω14 − ω13 = ω4 − ω5, which is true by the properties of ω given in (A).
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Problem 16. A function f is defined on the complex numbers by

f(z) = (a+ bi)z,

where a and b are positive numbers. This function has the property that the
image of each point in the complex plane is equidistant from that point and
the origin. Given that |a + bi| = 8 and that b2 = m/n, where m and n are
relatively prime positive integers, find m+ n.

(1999 AIME, Problem 9)

Solution 1. Suppose we pick an arbitrary point in the complex plane, say
(1, 1). According to the definition of

f(x) = f(1 + i) = (a+ bi)(1 + i) = (a− b) + (a+ b)i,

this image must be equidistant to (1, 1) and (0, 0). Thus the image must lie on

the line with slope −1 that passes through

(
1

2
,
1

2

)
, so its graph is x+ y = 1.

Substituting x = (a − b) and y = (a + b), we get 2a = 1 ⇒ a =
1

2
. By the

Pythagorean theorem, we have

(
1

2

)2
+ b2 = 82 ⇒ b2 =

255

4
,

and the answer is 259.

Solution 2. We are given that (a+bi)z is equidistant from the origin and z.
This translates to

|(a+ bi)z − z| = |(a+ bi)z|,

|z(a− 1) + bzi| = |az + bzi|,

|z||(a− 1) + bi| = |z||a+ bi|,

(a− 1)2 + b2 = a2 + b2,⇒ a =
1

2
.

Since |a+bi| = 8, a2+b2 = 64. But a =
1

2
, and thus b2 =

255

4
. So the answer

is 259.

Solution 3. Let P and Q be the points in the complex plane represented
by z and (a+ bi)z, respectively. Then |a+ bi| = 8 implies OQ = 8OP . Also,
we are given OQ = PQ, so OPQ is isosceles with base OP . Notice that
the base angle of this isosceles triangle is equal to the argument θ of the
complex number a + bi, because (a + bi)z forms an angle of θ with z. Drop
the altitude/median from Q to the base OP , and you end up with a right
triangle showing that
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cos θ =

1

2
OP

8OQ
=

1

2
|z|

8|z| =
1

16
.

Since a and b are positive, z lies in the first quadrant, and θ < π/2. Hence
by right triangle trigonometry,

sin θ =

√
255

16
.

Finally,

b = |a+ bi| sin θ = 8

√
255

16
=

√
255

2
and b2 =

255

4
,

so the answer is 259.

Problem 17. Let F (z) =
z + i

z − i
for all complex numbers z �= i, and let

zn = F (zn−1)

for all positive integers n. Given that z0 =
1

137
+ i and z2002 = a+ i, where

a and b are real numbers, find a+ b.

(2002 AIME I, Problem 12)

Solution. Integrating F we get

F (z) =
z + i

z − i
,

F (F (z)) =

z + i

z − i
+ i

z + i

z − i
− i

=
(z + i) + i(z − i)

(z + i)− i(z − i)
=

z + i+ zi+ 1

z + i− zi− 1
=

(z + 1)(i+ 1)

(z − 1)(1− i)

=
(z + 1)(i+ 1)2

(z − 1)(12 + 12)
=

(z + 1)(2i)

(z − 1)(2)
=

z + 1

z − 1
i,

F (F (F (z))) =

z + 1

z − 1
i+ i

z + 1

z − 1
i− i

=

z + 1

z − 1
+ 1

z + 1

z − 1
− 1

=
(z + 1) + (z − 1)

(z + 1)− (z − 1)
=

2z

2
= z.

From this, it follows that zk+3 = zk for all k. Thus

z2002 = z3·667+1 = z1 =
z0 + i

z0 − i
=

(
1

137
+ i

)
+ i

(
1

137
+ i

)
− i

=

1

137
+ 2i

1

137

= 1 + 274i.

Thus a+ b = 1 + 274 = 275.
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Problem 18. Given a positive integer n, it can be shown that every complex
number of the form r + si, where r and s are integers, can be uniquely ex-
pressed in the base −n + i using the integers 1, 2, . . . , n2 as digits. That is,
the equation

r + si = am(−n+ i)m + am−1(−n+ i)m−1 + . . .+ a1(−n+ i) + a0

is valid for a unique choice of nonnegative integer m and digits a0, a1, . . . , am
chosen from the set {0, 1, 2, . . . , n2}, with am �= 0. We write

r + si = (amam−1 . . . a1a0)−n+i

to denote the base-(−n+ i) expansion of r+ si. There are only finitely many
integers k + 0i that have four-digit expansions

k = (a3a2a1a0)−3+i, a3 �= 0.

Find the sum of all such k.

(1989 AIME, Problem 14)

Solution. First, we find the first three powers of −3 + i:

(−3 + i)1 = −3 + i, (−3 + i)2 = 8− 6i, (−3 + i)3 = −18 + 26i.

So we need to solve the Diophantine equation

a1 − 6a2 + 26a3 = 0 ⇒ a1 − 6a2 = −26a3.

The least possible value of the left-hand side is −54, so a3 ≤ 2. We try cases:

Case 1. a3 = 2. The only solution is (a1, a2, a3) = (2, 9, 2).
Case 2. a3 = 1. The only solution is (a1, a2, a3) = (4, 5, 1).
Case 3. a3 = 0. It is impossible for a3 to equal 0, for otherwise, we would

not have a four-digit number.

So we have the four-digit integers (292a0)−3+i and (154a0)−3+i, and we need
to find the sum of all integers k that can be expressed by one of these.

For (292a0)−3+i, we plug the first three digits in base 10 to get 30 + a0.
The sum of the integers k in that form is 345.

For (154a0)−3+i, we plug the first three digits into base 10 to get
10 + a0. Thus the sum of the integers k in that form is 145. The answer
is 345 + 145 = 490.

Problem 19. There is a complex number z with imaginary part 164 and a
positive integer n such that

z

z + n
= 4i.

Find n.

(2009 AIME, Problem 2)



6.2 Solutions to the Olympiad-Caliber Problems 373

Solution. Let z = a+ 164i. Then

a+ 164i

a+ 164i+ n
= 4i and a+ 164i = (4i)(a+ n+ 164i) = 4i(a+ n)− 656.

By comparing coefficients, equating the real terms on the leftmost and right-
most sides of the equation, we conclude that a = −656.

By equating the imaginary terms on each side of the equation, we conclude
that

164i = 4i(a+ n) = 4i(−656+ n).

We now have an equation for n:

4i(−656 + n) = 164i,

and this equation shows that n = 697.

Problem 20. Let u, v, w be complex numbers of modulus 1. Prove that one
can choose signs + and − such that

| ± u± v ± w| ≤ 1.

(Romanian Mathematical Olympiad—District Round, 2007)

Solution. Denote by uppercase letters the points having as complex coor-
dinates the corresponding lowercase letters. We have that u + v + w is the
complex coordinate of the orthocenter H of the triangle UVW .

If UVW is acute or right, we take all signs to be +, and this gives the
solution, because H is interior to UVW , and so interior to the circumcircle.

Otherwise, one angle is obtuse, say W . Then for w′ = −w, we get the
acute triangle UVW ′, reducing the problem to the first case.

Problem 21. Consider a complex number z, z �= 0 and the real sequence

an =

∣
∣
∣
∣z

n +
1

zn

∣
∣
∣
∣ , n ≥ 1.

(a) Show that if a1 > 2, then

an+1 <
an + an+2

2
, for all n ∈ N

∗.

(b) Prove that if there exists k ∈ N
∗ such that ak ≤ 2, then a1 ≤ 2.

(Romanian Mathematical Olympiad—District Round, 2010)
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Solution 1.

(a) We easily observe that

2

∣
∣
∣
∣z

n+1 +
1

zn+1

∣
∣
∣
∣ <
∣
∣
∣
∣z +

1

z

∣
∣
∣
∣ ·
∣
∣
∣
∣z

n+1 +
1

zn+1

∣
∣
∣
∣

=

∣
∣
∣∣z

n +
1

zn
+ zn+2 +

1

zn+2

∣
∣
∣∣ ≤
∣
∣
∣∣z

n +
1

zn

∣
∣
∣∣+
∣
∣
∣∣z

n+2 +
1

zn+2

∣
∣
∣∣ .

(b) Suppose for the sake of obtaining a contradiction that a1 > 2. Then (a)
implies that the sequence an+1−an is strictly increasing, so an+1−an >
a2 − a1. But

a2 =

∣∣
∣
∣z

2 +
1

z2

∣∣
∣
∣ =

∣∣
∣
∣
∣

(
z +

1

z

)2
− 2

∣∣
∣
∣
∣
≥
(
z +

1

z

)2
− 2 = a21 − 2 > a1,

and therefore, the sequence (an)n is strictly increasing. Hence ak ≥ a1 >
2 for all k, a contradiction.

Solution 2. Consider the sequence (αn)n≥1 given by

αn = zn +
1

zn
.

Extend it to the left with the term α0 = z0+
1

z0
= 2, and set α = α1. Clearly,

an = |αn|. We have

ααn =

(
z +

1

z

)(
zn +

1

zn

)

=

(
zn+1 +

1

zn+1

)
+

(
zn−1 +

1

zn−1

)
= αn+1 + αn−1

for all n ≥ 1, so the sequence (αn)n≥0 satisfies the linear recurrence relation

αn+1 = ααn − αn−1.

Then for |α| > 2, we have

an = |αn| =
∣
∣
∣
∣
αn+1 + αn−1

α

∣
∣
∣
∣ ≤

|αn+1|+ |αn−1|
|α| <

an+1 + an−1

2
,

i.e., the sequence (an)n≥0 is convex.
But then if a1 = |α| > 2 = a0, every convex sequence is (strictly) increas-

ing, since from an > an−1 follows

an+1 > 2an − an−1 = an + (an − an−1) > an,



6.2 Solutions to the Olympiad-Caliber Problems 375

and the assertion is proved by simple induction. Conversely, if there exists
k ∈ N

∗ such that ak ≤ 2, then a1 ≤ 2. Therefore, the proof of (b) comes
directly from (a), and the nature of the sequence is no longer relevant.

Problem 22. Consider the set M = {z ∈ C | |z| = 1, Rez ∈ Q}. Prove that
the complex plane contains an infinity of equilateral triangles with vertices
in M .

(Romanian Mathematical Olympiad—Final Round, 2012)

Solution. Let z = a+bi be a complex number of modulus 1 such that a ∈ Q:

a2 + b2 = 1.

An equilateral triangle having z as one vertex that will satisfy the given
condition has the other two vertices at the points z(−1/2± (i

√
3)/2).

The real parts of these numbers are −a/2 ± (b
√
3)/2. Because a ∈ Q, we

have −a/2± (b
√
3)/2) ∈ Q if and only if b

√
3 ∈ Q. Let q = b/

√
3 ∈ Q.

To conclude the solution, we have to prove that the equation

a2 + 3q2 = 1

has an infinity of solutions (a, q) ∈ Q×Q, i.e., that the equationm2+3n2 = p2

admits an infinity of solutions (m,n, p) ∈ N× N× N.
Since 3n2 = (p−m)(p+m), we look for solutions such that p−m = 3 and

p+m = n2. we have n2 = 2m+ 3, so n is odd. Putting n = 2k + 1, k ∈ N
∗,

we obtain m = 2k2 + 2k − 1 and p = 2k2 + 2k + 2. Then

a = (2k2 + 2k − 1)/(2k2 + 2k + 2), b = ((2k + 1)
√
3)/(2k2 + 2k + 2),

and z = a+ bi is of modulus 1 with a, b > 0. So the triangle with one vertex
in z is uniquely determined. Since k ∈ N is arbitrary, the conclusion follows.

Problem 23. Let (an)n≥1 be a sequence of nonnegative integers such that

an ≤ n for all n ≥ 1 and
n−1∑

k=1

cos
πak
n

= 0 for all n ≥ 2. Find a closed

formula for the general term of the sequence.

(Romanian Mathematical Olympiad—District Round, 2012)

Solution. Observe that a1 = 1 and cos
πa1
3

+ cos
πa2
3

= 0 implies a2 = 2.

Induct on n to prove that an = n, n ≥ 1. Suppose ak = k for all k =
1, 2, . . . , n− 1. The given relation can be rewritten as

cos
πan
n+ 1

= −
n−1∑

k=1

cos
πk

n+ 1
.



376 6 Answers, Hints, and Solutions to Proposed Problems

Set
z = cos

π

n+ 1
+ i sin

π

n+ 1

and observe that

z + z2 + z3 + . . .+ zn =
z − zn+1

1− z
=

1 + z

1− z
.

Use z =
1

z
to get

(
1 + z

1− z

)
= −1 + z

1− z

and hence Re
1 + z

1− z
= 0, and consequently,

n∑

k=1

cos
πk

n+ 1
= 0.

From cos
πan
n+ 1

= cos
πn

n+ 1
and an ≤ n we get an = n, as claimed.

Problem 24. Let a and b be two rational numbers such that the absolute
value of the complex number z = a+ bi is equal to 1. Prove that the absolute
value of the complex number zn = 1+z+z2+ . . .+zn−1 is a rational number
for all odd integers n.

(Romanian Mathematical Olympiad—District Round, 2012)

Solution. Set z = cos t+ i sin t, t ∈ [0, 2π), and observe that sin t, cos t are
both rational numbers. For z = 1, the claim holds. For z �= 1, write

|zn| = |1 + z + z2 + . . .+ zn−1| = |(zn − 1)/(z − 1)|.

Let n = 2k + 1, k ∈ N. Then

|(zn − 1)/(z − 1)| =
∣
∣
∣
∣sin

(2k + 1)t

2
/ sin

t

2

∣
∣
∣
∣ .

It is sufficient to prove that xk = sin
(2k + 1)t

2
/ sin

t

2
is a rational number.

Observe that xk+1 − xk = 2 cos(k + 1)t, k ∈ N and x0 = 1 ∈ Q. Since

cos(k + 1)r = Rezk+1 = Re(a+ bi)k+1 ∈ Q,

by induction we get that xk is rational for all k ∈ N.
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Antipedal triangle of point M : The triangle determined by perpendicular
lines from vertices A, B, C of triangle ABC to MA, MB, MC, respectively.
Area of a triangle: The area of triangle with vertices with coordinates
z1, z2, z3 is the absolute value of the determinant

Δ =
i

4

∣∣
∣
∣
∣
∣

z1 z1 1
z2 z2 1
z3 z3 1

∣∣
∣
∣
∣
∣
.

Area of pedal triangle of point X with respect to the triangle ABC:

area[PQR] =
area[ABC]

4R2
|xx −R2|.

where x is the coordinate of X and R is the circumradius of the triangle.
Argument of a complex number: If the polar representation of complex
number z is z = r(cos t∗ + i sin t∗), then arg(z) = t∗.
Barycenter of set {A1, . . . , An} with respect to weights m1, . . . ,mn:

The point G with coordinate zG =
1

m
(m1z1 + · · · + mnzn), where m =

m1 + · · ·+mn.
Barycentric coordinates: In triangle ABC, the unique real number
μa, μb, μc such that

zP = μaa+ μbb + μcc, whereμa + μb + μc = 1.

Basic invariants of triangle: semiperimeter s, inradius r, circumradius R.
Binomial equation: An algebraic equation of the form Zn + a = 0, where
a ∈ C

∗.
Blundon’s inequalities: The necessary and sufficient conditions for three
positive real numbers to be the semiperimeter s, the circumradius R, and
inradius r, of a triangle.
Ceva’s theorem: Let AD, BE, CF be three cevians of triangle ABC. Then
lines AD, BE, CF are concurrent if and only if

T. Andreescu and D. Andrica, Complex Numbers from A to ... Z,
DOI 10.1007/978-0-8176-8415-0, © Springer Science+Business Media New York 2014
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AF

FB
· BD

DC
· CE

EA
= 1.

Cevian of a triangle: Any segment joining a vertex to a point on the
opposite side.
Concyclicity condition: If points Mk(zk), k = 1, 2, 3, 4, are not collinear,
then they are concyclic if and only if

z3 − z2
z1 − z2

:
z3 − z4
z1 − z4

∈ R
∗.

Collinearity condition: M1(z1), M2(z2), M3(z3) are collinear if and only

if
z3 − z1
z2 − z1

∈ R
∗.

Complex coordinate of point A with Cartesian coordinates (x, y):
The complex number z = x+ yi . We use the notation A(z).

Complex coordinate of the midpoint of segment [AB]: zM =
a+ b

2
,

where A(a) and B(b).
Complex coordinates of important centers of a triangle: Consider the
triangle ABC with vertices with coordinates a, b, c. If the origin of complex
plane is in the circumcenter of triangle ABC, then:

• The centroid G has coordinate zG =
1

3
(a+ b+ c).

• The incenter I has coordinate zI =
αa+ βb+ γc

α+ β + γ
, where α, β, γ are the

side lengths of triangle ABC.
• The orthocenter H has coordinate zH = a+ b+ c.

• The Gergonne point J has coordinate zJ =
rαa+ rβb+ rγc

rα + rβ + rγ
, where

rα, rβ , rγ are the radii of the three excircles of the triangle.

• The Lemoine point K has coordinate zK =
α2a+ β2b+ γ2c

α2 + β2 + γ2
.

• The Nagel point N has coordinate

zN =
(
1− α

s

)
a+

(
1− β

s

)
b+
(
1− γ

s

)
c.

• The center O9 of nine-point circle has coordinate zO9 =
1

2
(a+ b+ c).

Complex number: A number z of the form z = a+ bi , where a, b are real
numbers and i =

√
−1.

Complex product of complex numbers a and b: a× b =
1

2
(ab− ab).

Conjugate of a complex number: The complex number z = a−bi , where
z = a+ bi .
Cyclic sum: Let n be a positive integer. Given a function f of n variables,
define the cyclic sum of variables (x1, x2, . . . , xn) as
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∑

cyc

f(x1, x2, . . . , xn) = f(x1, x2, . . . , xn) + f(x2, x3, . . . , xn, x1)

+ · · ·+ f(xn, x1, x2, . . . , xn−1).

De Moivre’s formula: For an angle α and integer n,

(cosα+ i sinα)n = cosnα+ i sinnα.

Distance between points M1(z1) and M2(z2): M1M2 = |z2 − z1|.
Equation of a circle: z · z + α · z + α · z + β = 0, where α ∈ C and β ∈ R.
Equation of a line: α · z + αz + β = 0, where α ∈ C

∗, β ∈ R and z =
x+ iy ∈ C.
Equation of a line determined by two points: If P1(z1) and P2(z2) are
distinct points, then the equation of the line P1P2 is

∣∣
∣
∣
∣
∣

z1 z1 1
z2 z2 1
z z 1

∣∣
∣
∣
∣
∣
= 0.

Euler’s formula: Let O and I be the circumcenter and incenter, respectively,
of a triangle with circumradius R and inradius r. Then

OI2 = R2 − 2Rr.

Euler line of triangle: The line determined by the circumcenter O, the
centroid G, and the orthocenter H .
Extend law of sines: In a triangle ABC with circumradius R and sides
α, β, γ the following relations hold:

α

sinA
=

β

sinB
=

γ

sinC
= 2R.

Heron’s formula: The area of triangle ABC with sides α, β, γ is equal to

area[ABC] =
√
s(s− α)(s− β)(s − γ),

where s =
1

2
(α+ β + γ) is the semiperimeter of the triangle.

Isometric transformation: A mapping f : C → C preserving the distance.
Lagrange’s theorem: Consider the points A1, . . . , An and the nonzero
real numbers m1, . . . , mn such that m = m1 + · · ·+mn �= 0. The following
relation holds for every point M in the plane:

n∑

j=1

mjMA2
j = mMG2 +

n∑

j=1

mjGA2
j ,
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where G is the barycenter of the set {A1, . . . , An} with respect to weights
m1, . . . , mn.
Modulus of a complex number: The real number |z| =

√
a2 + b2, where

z = a+ bi.
Morley’s theorem: The three points of adjacent trisectors of angles form
an equilateral triangle.
Nagel line of a triangle: The line I, G, N .
nth roots of a complex number z0: Any solution Z of the equation

Zn − z0 = 0.

nth roots of unity: The complex numbers

εk = cos
2kπ

n
+ i sin

2kπ

n
, k ∈ {0, 1, . . . , n− 1}.

The set of all these complex numbers for a given n is denoted by Un.
Orthogonality condition: If Mk(zk), k = 1, 2, 3, 4, then lines M1M2 and

M3M4 are orthogonal if and only if
z1 − z2
z3 − Z4

∈ iR∗.

Orthopolar triangles: Consider triangle ABC and points X, Y, Z situated
on its circumcircle. Triangles ABC and XY Z are orthopolar (or S-triangles)
if the Simson–Wallace line of point X with respect to triangle ABC is
orthogonal to line Y Z.
Pedal triangle of point X : The triangle determined by projections of X
on the sides of triangle A B C.
Polar representation of a complex number z = x + yi: The represen-
tation z = r(cos t∗ + i sin t∗), where r ∈ [0, ∞) and t∗ ∈ [0, 2π).
Primitive nth root of unity: An nth root ε ∈ Un such that εm �= 1 for all
positive integers m < n.
Quadratic equation: The algebraic equation ax2 + bx+ c = 0, a, b, c ∈ C,
a �= 0.

Real product of complex numbers a and b: a · b = 1

2
(ab+ ab).

Reflection across a point: The mapping sz0 : C → C, sz0(z) = 2z0 − z.
Reflection across the real axis: The mapping s : C → C, s(z) = z.
Rotation: The mapping ra : C → C, ra(z) = az, where a is a given complex
number.
Rotation formula: Suppose that A(a), B(b), C(c) and C is the rotation
of B with respect to A by the angle α. Then c = a + (b − a)ε, where ε =
cosα+ i sinα.
Similar triangles: TrianglesA1A2A3 andB1B2B3 with the same orientation
are similar if and only if

a2 − a1
a3 − a1

=
b2 − b1
b3 − b1

.
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Simson-Wallace line: For a point M on the circumcircle of triangle ABC,
the projections of M on lines BC, CA, AB are collinear.
Translation: The mapping tz0 : C → C, tz0(z) = z + z0.
Trigonometric identities:

sin2 x+ cos2 x = 1,

1 + cot2 x = csc2 x,

tan2 x+ 1 = sec2 x;

addition and subtraction formulas:

sin(a± b) = sin a cos b± cos a sin b,

cos(a± b) = cos a cos b∓ sin a sin b,

tan(a± b) =
tan a± tan b

1∓ tan a tan b
,

cot(a± b) =
cota cot b∓ 1

cota± cot b
;

double-angle formulas:

sin 2a = 2 sin a cos a =
2 tana

1 + tan2 a
,

cos 2a = 2 cos2 a− 1 = 1− 2 sin2 a =
1− tan2 a

1 + tan2 a
,

tan 2a =
2 tana

1− tan2 a
;

triple-angle formulas:

sin 3a = 3 sina− 4 sin3 a,

cos 3a = 4 cos3 a− 3 cos a,

tan 3a =
3 tana− tan3 a

1− 3 tan2
a;

half-angle formulas:

sin2
a

2
=

1− cos a

2
,

cos2
a

2
=

1 + cos a

2
,

tan
a

2
=

1− cos a

sin a
=

sin a

1 + cos a
;



382 Glossary

sum-to-product formulas:

sina+ sin b = 2 sin
a+ b

2
cos

a− b

2
,

cos a+ cos b = 2 cos
a+ b

2
cos

a− b

2
,

tana+ tan b =
sin(a+ b)

cos a cos b
;

difference-to-product formulas:

sin a− sin b = 2 sin
a− b

2
cos

a+ b

2
,

cos a− cos b = −2 sin
a− b

2
sin

a+ b

2
,

tan a− tan b =
sin(a− b)

cos a cos b
;

product-to-sum formulas:

2 sin a cos b = sin(a+ b) + sin(a− b),

2 cos a cos b = cos(a+ b) + cos(a− b),

2 sin a sin b = − cos(a+ b) + cos(a− b).

Viète’s theorem: Let x1, x2, . . . , xn be the roots of the polynomial

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

where an �= 0 and a0, a1, . . . , an ∈ C. Let sk be the sum of the products of
the xi taken k at a time. Then

sk = (−1)k
an−k

an
,

that is,

x1 + x2 + · · ·+ xn =
an−1

an
,

x1x2 + · · ·+ xixj + xn−1xn =
an−2

an
,

· · ·

x1x2 · · ·xn = (−1)n
a0
an

.



References

[1] Adler, I., A New Look at Geometry, John Day, New York, 1966.
[2] Andreescu, T., editor, Mathematical Reflections—The First Two Years, XYZ Press,

Dallas, 2011.
[3] Andreescu, T., editor, Mathematical Reflections—The Next Two Years, XYZ Press,

Dallas, 2012.
[4] Andreescu, T., Andrica, D., 360 Problems for Mathematical Contests, GIL Publishing

House, Zalău, 2003.
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[19] Andrica, D., Nguyen, K.L., A note on the Nagel and Gergonne points, Creative Math.
& Inf., 17(2008).
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