

IES SALMEDINA

Matemáticas II 2º Bach

PRUEBA DE EVALUACIÓN: Unidad 9. PARTE I.

27 Abril, 2023

Marahaa re amusaa	
Nombre y grupo:	

Relación de ejercicios con C.Eval. y calificaciones										
Criterios de evaluación	evaluación 3.3									
Apartado	a)	b)	c)	d)	e)	f)	g)	h)		
Calificación por apartado	/1	/1	/1	/1	/1'5	/1′5	/1'5	/1′5		
Calificación por criterios										

Elija una de las dos opciones.

OPCIÓN A

1. Resuelve las siguientes integrales:

(a)
$$\int xe^{-x^2}dx =$$

(b)
$$\int \frac{1}{3x^2 + 3} dx =$$

(c)
$$\int \frac{\sqrt{x}}{1+x} dx =$$

(d)
$$\int \frac{dx}{x(\ln x)^3} =$$

(e)
$$\int x \cos(3x) dx =$$

(f)
$$\int \frac{arcsen(x)}{x^2} dx =$$

(g)
$$\int \frac{2x^2 + 3}{x^3 - 2x^2 + x} dx =$$

(h)
$$\int \frac{\cos^3(x)}{\sin^2(x)} dx =$$

OPCIÓN B

1. Resuelve las siguientes integrales:

(a)
$$\int x^3 + 2e^x + 3dx =$$

(b)
$$\int \sin(\ln x) \cdot \frac{1}{x} dx =$$

(c)
$$\int \frac{\sin(3x)}{3 + \cos(3x)} dx =$$

(d)
$$\int \frac{e^x}{\sqrt{1 - e^{2x}}} dx =$$

(e)
$$\int x^2 \ln(x) dx =$$

(f)
$$\int \frac{1}{x^3 - 2x^2 + x} dx =$$

(g)
$$\int \frac{x^2 + 6}{(x-1)^2(x-2)} dx =$$

(h)
$$\int \sin^2(x) \cos^5(x) dx =$$