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Preface
Inequalities have been extensively studied for at least a couple of centuries. Cauchy was among the
first of the mathematicians who had major contributions in this literature. But it was probably not
until Hardy et al.1 we understood that it could be possible to study inequalities in a more systematic
way. Since then a good number of books have discussed different aspects of inequalities for example,
Beckenbach and Bellman.2

Objectives
• Dis

1G. H. Hardy et al.
1934 Inequalities, Cambridge University Press, isbn: 0-521-35880-9.

2Edwin F. Beckenbach and Richard Bellman
1983 Inequalities, Springer.
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CHAPTER 1.

CLASSICAL INEQUALITIES

1.1 Introduction

Let us start with the most fundamental inequality.

x2 ≥ 0 (1.1)

The first author calls it the mother of all inequality. Equality occurs if and only if x = 0. We can
extend it for n variables.

x21 +…+ x2n ≥ 0 (1.2)

Equality occurs if xi = 0 for all 1 ≤ i ≤ n. We immediately get some useful results substituting x
with appropriate expressions. Substituting x with a− b, we get

(a− b)2 ≥ 0
a2 + b2 ≥ 2ab

This is true for any real numbers a, b and equality occurs if a = b. If a, b are positive, then replacing
a and b by

√a and
√
b respectively, we get

a+ b ≥ 2
√
ab

⟺ √a
b +√b

a ≥ 2

⟺ x+ 1
x ≥ 2

where x = a
b . This can be generalized to the following result.

Theorem 1 (Arithmetic-Geometric Inequality). Let a1,… , an be positive real numbers. Then
a1 +…+ an

n ≥ n
√a1⋯an

⟺ a1 +…+ an ≥ n n
√a1⋯an

⟺ (
a1 +…+ an

n )
n
≥ a1⋯an
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We will show a classical proof of this result here. The proof is due to Cauchy.1 Later in Section 1.5,
Section 2.3 we will show more proofs.

Proof.

Note the following.

a+ b
2

≥
√
ab

Now, a+b
2 is the arithmetic mean of a and b. On the right side,

√
ab is the geometric mean of a and b. So

the inequality states that the arithmetic mean of two positive real numbers is greater than or equal to
their geometric mean. We can also rewrite it as the following.

√
ab (a+ b

2
) ≥ ab

√
ab ≥ 2ab

a+ b
√
ab ≥ 2

1
a + 1

b

2ab
a+ b is the harmonic mean of a and b. So, this form of the inequality states that the geometric mean is
larger than the harmonic mean. This can be extended for three variables.

a+ b+ c
3

≥ 3
1
a + 1

b + 1
c

In fact, this result can be extensively generalized. First, we can consider n variables a1,… , an instead
of just a and b. Second, we can generalize the fact that AM ≥ GM ≥ HM. We will talk about this
generalization in Section 1.5.

Problem 1.1. If a is a real number greater than one, prove that log a+ loga e ≥ 2.

Throughout the book, if the base of logarithm is unspecified, then log a shall mean loge a. Also, try
the next problem in a similar manner.

Problem 1.2. Prove the inequality

x2
1+ x4 ≤ 1

2

Recall from the definition of e that

ex = 1+ x+ x2
2!

+ x3
3!

+…

=Σ
i≥0

xi
i!

1Aug.-Louis Cauchy
1821 Cours d’Analyse de l’école Royale Polytechnique, L’Imprimerie Royale, Debure frères, Libraires du Roi et de la Biblio-

thèque du Roi.

2
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You may also know from elementary differentiation that

lim
n→∞

(1+ 1
n )

n
= e

In other words, if xn = (1+ 1
n )

n
, then xn converges to e. However, we also have the relation that

xn ≤ xn+1. While we can prove this using induction, we will show a better proof with arithmetic-
geometric mean inequality here.

Problem 1.3. Let xn = (1+ 1
n )

n
. Prove that xn ≤ xn+1.

Solution. Apply the arithmetic-geometric mean inequality for a1 = 1, a2 = 1+ 1
n ,… , an+1 = 1+ 1

n ,

1+ (1+ 1
n )+…+ (1+ 1

n ) ≥ (n+ 1) n+1√1 ⋅ (1+ 1
n )⋯ (1+ 1

n )

n+ 2 ≥ (n+ 1)
n+1√(1+ 1

n )
n

1+ 1
n+ 1

≥ n+1√(1+ 1
n )

n

(1+ 1
n+ 1

)
n+1

≥ (1+ 1
n )

n

Note that we can generalize the idea used in this problem.

Problem 1.4. For positive real numbers x, y show that

(
x+ ny
n+ 1

)
n+1

≥ xyn

Equality occurs only for x = y.
Similarly, we can show the following.

Problem 1.5. Let yn = (1+ 1
n )

n+1
. Show that yn ≥ yn+1.

So yn is decreasing. Using the two problems above, show that 2 < e < 4. In fact, we can prove
the following using elementary means

lim
n→∞

yn = lim
n→∞

xn = e

Problem 1.6. For a positive integer n, show that

(
n+ 1
2

)
n
≥ n!

Equality occurs only for n = 1.

Solution. We use arithmetic-geometric inequality for 1, 2,… , n.

1+…+ n ≥ n n√1⋯n
n(n+ 1)

2
≥ n n√n!

n+ 1
2

≥ n√n!

Equality occurs if and only if 1 =… = n which is possible only when n = 1.

3
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Let us again go back to the mother of inequality. Setting x1 = a− b, x2 = b− c, x3 = c− a in 1.2,

(a− b)2 + (b− c)2 + (c− a)2 ≥ 0
⟺ a2 + b2 + c2 − ab− bc− ca ≥ 0

⟺ a2 + b2 + c2 ≥ ab+ bc+ ca

We could prove this using a2 + b2 ≥ 2ab repeatedly.

a2 + b2 ≥ 2ab
b2 + c2 ≥ 2bc
c2 + a2 ≥ 2ca

2(a2 + b2 + c2) ≥ 2(ab+ bc+ ca)
a2 + b2 + c2 − ab− bc− ca ≥ 0

Multiplying both sides by (a+ b+ c) and using the fact a3 + b3 + c3 − 3abc = (a+ b+ c)(a2 + b2 + c2 −
ab− bc− ca),

a3 + b3 + c3 − 3abc ≥ 0
a3 + b3 + c3 ≥ 3abc

Replacing a3, b3, c3 by u, v,w,

u+ v+ w ≥ 3 3
√
uvw (1.3)

Before we go into any theory or method of solving problems, here are some basic tactics which are used
very often for solving problems. Let x, y, z >0 be real numbers.

(i) If
1
x ≥ 1

y , then
1

x− a ≥ 1
y for a ≥ 0. Similarly,

1
x ≥ 1

y− b for b ≥ 0. They are true because

x− a ≤ x implies
1

x− a ≥ 1
x and y+ b ≥ y implies

1
y+ b ≤ 1

y .

(ii) Check if you can assume an ordering on the variables. For example, if the inequality is symmetric
or cyclic on x, y, z, you may possibly assume without loss of generality that x ≥ y ≥ z or x ≤
y ≤ z. We will discuss more on this in Section 2.2.

(iii) If you cannot assume an ordering on the variables e.g. a ≥ b ≥ c, can you assume that it has
a maximal element e.g. a = max(a, b, c)? Sometimes this helps in unexpected ways. See the
example below.

(iv) See if you can get an if and only if way of proving an inequality. We will do this very often. If
we can use if and only if (or iff ), then we are free to prove either the if part or the only if part.

(v) Check if you can get some familiar expressions with some basic manipulations such as making
the numerator or denominator equal. For example, see the transformation in 1.4. This often
helps us get a clue on what to do with the inequality.

(vi) Does some substitutions such as x = a+ b, y = b+ c, z = c+ a or x = a− b, y = b− c, z = c− a
help? One could say we used substitution in our first proof of Nesbitt’s inequality (see 1.5). Also,
see the transformation a− c = a− b+ b− c used in the example below. We will check more on
substitutions in Section 2.7.

4
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(vii) Check if the inequality holds even if you put some restrictions on it. For example, you may be
allowed to assume that one of the variables is 1 due to some scaling. We will talk about this in
Section 2.6.

(viii) Can you reduce the number of variables without any assumption? See that we have already used
it to prove a2 + b2 + c2 ≥ ab + bc + ca in a proof above. Also, see a proof of Nesbitt’s inequality
below where it is enough to prove the inequality for reduced number of variables.

(ix) Induction works great in many cases. We will use induction on many occasions.

For demonstration purposes, let us prove a2 + b2 + c2 ≥ ab+ bc+ ca again exploiting symmetry. Note
that if we let

f(a, b, c) = a2 + b2 + c2 − ab− bc− ca

then f(a, b, c) is symmetric on a, b, c. We can verify this by the fact that f(a, b, c) = f(b, a, c) = f(c, a, b)
and so on. So, without loss of generality, we assume that a ≥ b ≥ c. Then see the following.

a2 + b2 + c2 ≥ ab+ bc+ ca
a(a− b)+ b(b− c)− c(a− c) ≥ 0

a(a− b)+ b(b− c)− c(a− b+ b− c) ≥ 0
a(a− b)+ b(b− c)− c(a− b)− c(b− c) ≥ 0

(a− c)(a− b)+ (b− c)2 ≥ 0

The last inequality immediately follows from the assumption that a − c ≥ 0, a − b ≥ 0, (b − c)2 ≥ 0.
Also, note that we did not actually require the condition a ≥ b ≥ c. Just assuming a = max(a, b, c)
was enough in this case to claim that the inequality holds.

Theorem 2 (Nesbitt’s inequality). Let a, b, c be real positive numbers. Then

a
b+ c +

b
c+ a + c

a+ b ≥ 3
2

and equality occurs if and only a = b = c.

The thing about inequalities is that they can be solved in more than one ways most of the times. We
will prove this inequality along with some other classical results such as Cauchy-Schwarz inequality in
more than one ways. Some proofs will be discussed later when we develop some certain techniques. For
now, we present some proofs using what we have already developed. First, we will try to familiarize
the expression on the left side.

S = a
b+ c +

b
c+ a + c

a+ b
= a+ b+ c

b+ c − 1+ a+ b+ c
c+ a − 1+ a+ b+ c

a+ b − 1

= (a+ b+ c) ( 1
b+ c +

1
c+ a + 1

a+ b )− 3

= 1
2
(a+ b+ b+ c+ c+ a) ( 1

b+ c +
1

c+ a + 1
a+ b )− 3 (1.4)

5
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Classical proof. Setting

x = a+ b,y = b+ c, z = c+ a (1.5)

S = 1
2
(x+ y+ z) ( 1x + 1

y + 1
z )− 3

= 1
2
(1+ x

y + x
z + y

x + 1+ y
z + z

x + z
y + 1)− 3

= 3
2
+ 1

2
(
x
y + y

x + y
z + z

y + z
x + x

z )− 3

= 3
2
+ 1

2
(u+ 1

u + v+ 1
v + w+ 1

w )− 3

where u = x
y , v =

y
z ,w = z

x . Evidently, u+ 1
u ≥ 2, v+ 1

v ≥ 2,w+ 1
w ≥ 2 and we have

S ≥ 3
2
+ 1

2
(2+ 2+ 2)− 3

Thus, S ≥ 3
2 . Equality occurs if u = 1, v = 1, z = 1 or x = y = z or a = b = c.

Proof by arithmetic-harmonic mean inequality. We write the arithmetic-harmonic mean inequality for
u, v,w as below.

u+ v+ w
3

≥ 3
1
u + 1

v + 1
v

⟺ (u+ v+ w) ( 1u + 1
v + 1

w ) ≥ 9

Using this on 1.4,

S ≥ 1
2
⋅ 9− 2

Variable reduction proof. Let us clear the denominators in the original inequality.
a

b+ c +
b

c+ a + c
a+ b ≥ 3

2
⟺ 2(a3 + b3 + c3) ≥ a2b+ ab2 + b2c+ bc2 + c2a+ ca2

Notice the cyclic nature in the expression on the right side. There are 6 terms on the right side and if
we count each of a3, b3, c3 twice, there are 6 terms on the left side as well. So rearranging the inequality
above as below

(a3 + b3)+ (b3 + c3)+ (c3 + a3) ≥ (a2b+ ab2)+ (b2c+ bc2)+ (c2a+ ca2)
tells us that if we can prove x3 + y3 ≥ x2y + xy2, we will be done if we simply sum them up for
(x, y) = (a, b), (b, c), (c, a). Here, we reduced the inequality from 3 variables to 2. And fortunately, this
inequality is a lot easier to prove.

x3 + y3 ≥ x2y+ xy2

⟺ x(x2 − y2)− y(x2 − y2) ≥ 0
⟺ (x− y)(x2 − y2) ≥ 0
⟺ (x− y)2(x+ y) ≥ 0

The last inequality is evidently true.

6
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Proof using arithmetic-geometric mean inequality. Using 1.3,

(a+ b)+ (b+ c)+ (c+ a) ≥ 3 3√(a+ b)(b+ c)(c+ a)

1
a+ b + 1

b+ c +
1

c+ a ≥ 3 3√ 1
(a+ b)(b+ c)(c+ a)

We can use this observation on 1.4 and get the following.

S ≥ 1
2
⋅ 3 3√(a+ b)(b+ c)(c+ a) ⋅ 3 3√ 1

(a+ b)(b+ c)(c+ a) − 2

≥ 9
2
− 2 = 3

2

This again proves the inequality.

Anović and Pećarić2 proves the following generalization of Nesbitt’s inequality.

Theorem 3 (Generalization of Nesbitt’s inequality). Let x, y, z be positive real numbers and

M =max {
x

y+ z + 2(y+ z)
2x+ y+ z ,

y
z+ x + 2(z+ x)

2y+ z+ x ,
z

x+ y + 2(x+ y)
2z+ x+ y}

m =min {
x

y+ z + 2(y+ z)
2x+ y+ z ,

y
z+ x + 2(z+ x)

2y+ z+ x ,
z

x+ y + 2(x+ y)
2z+ x+ y}

Then
x

y+ z + y
z+ x + z

x+ y ≥M ≥m ≥ 3
2

We have already showed that a+b ≥ 2
√
ab which is a special case of the arithmetic-geometric mean

inequality. Let us consider the following question. We are given four positive real numbers a, b, c, d
such that S = a+ b = c+ d. Which of the products between ab and cd is the smaller one?

4ab = (a+ b)2 − (a− b)2

=S2 − (a− b)2

4cd = (c+ d)2 − (c− d)2

=S2 − (c− d)2

As we can see here, the sign in 4ab?4cd (? to be replaced by one of >,<,≥,≤) will be dictated by
which of the differences a− b, c−d is smaller. Since x2 ≥ 0, if (a− b)2 < (c−d)2, we have 4ab >4cd.
Now, consider the product a1⋯an. We want to see how the product changes as ai varies with respect
to ̄a = a1+…+an

n .
If all the ai are equal to each other, then we have nothing to check. Otherwise, there are at least two

positive integers i and j such that ai and aj are not equal to ̄a. Moreover, one of them is greater than ̄a
and the other is smaller than ̄a because all of them cannot be greater (or smaller) than ̄a. Without loss

2S. Ivelić Bra Anović and Josip Pećarić
2011 “Generalizations of converse Jensen’s inequality and related results”, Journal of Mathematical Inequalities, no. 1, pp. 43-

60, doi: 10.7153/jmi-05-06.
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of generality, assume that a1, a2 are those two numbers and a1 = ̄a− h, a2 = ̄a+ k. Now, consider two
other positive numbers c and d which keeps the sum fixed, for example c = ̄a, d = ̄a+ k− h. We have

cd = ̄a( ̄a+ k− h)
= ̄a2 + ̄ak− ̄ah

a1a2 = ( ̄a− h)( ̄a+ k)
= ̄a2 + ̄ak− ̄ah− hk
= cd− hk < cd

a1a2⋯an < cd⋯an
This basically tells us that we can increase the product further if there are other ai which are not equal
to ̄a and the product is maximum when all ai is equal to ̄a.
Problem 1.7. Show that for a positive integer n,

n! > (
n
4
)
n

We can easily prove this with induction. This can be improved to n! > (
n
3
)
n
. In fact, we can prove

the following.

n! > (
n
e )

n

This is another nice result. For example, setting n = 2019,

2019! > 6732019

We can even bound n! from both sides with the next result.

Problem 1.8. For a positive integer n, prove the inequality

e (n+ 1
e )

n+1

>n! > (
n
e )

n

Equality is not possible because on both sides we have non-integers.

Problem 1.9. Let x, y, z be positive real numbers. Prove that

2
x+ y + 2

y+ z + 2
z+ x ≥ 9

x+ y+ z
Solution.

A function f is non-decreasing (resp. increasing) on the interval I if for any a, b ∈ I, (a − b)(f(a) −
f(b)) ≥ 0 (resp. (a − b)(f(a) − f(b)) > 0). Similarly, f is non-increasing (resp. decreasing) on the
interval I if for any a, b ∈ I, (a− b)(f(a)− f(b)) ≤ 0 (resp. (a− b)(f(a)− f(b)) <0). If either of these
two conditions apply for f, then f is a monotone function. We say that f is monotonic. Note that the
slope between any two points (a, f(a)) and (b, f(b)) is m = f(a)−f(b)

a−b and the quantity we have used for the
definition is

(a− b)(f(a)− f(b)) = (a− b)2 f(a)− f(b)
f(a)− f(b)

= (a− b)2m

8
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So, the sign of this quantity is the same as the sign of the slope m.
A sequence (an) is non-decreasing if ai ≤ ai+1 for all i ∈ ℕ. (an) is strictly increasing if ai < ai+1.

Similarly, (an) is non-increasing if ai ≥ ai+1 for all i. (an) is strictly decreasing if ai > ai+1. If (an) is
either increasing or decreasing, then (an) is a monotone sequence. We say that (an) is monotonic.
Theorem 4 (Abel formula). Let (an) and (bn) be two sequences of real numbers. If ck = b1 +…+ bk for
1 ≤ k ≤ n, then

a1b1 +…+ anbn = (a1 − a2)c1 + (a2 − a3)c2 +…+ (an−1 − an)cn + ancn
Proof.
Theorem 5 (Abel’s Inequality). Let (an) and (bn) be two sequences of real numbers such that b1 ≥… ≥
bn ≥ 0. For 1 ≤ k ≤ n, define

sk = a1 +…+ ak
m = min

1≤i≤n
(si)

M = max
1≤i≤n

(si)

Then we have

mb1 ≤ a1b1 +…+ anbn ≤Mb1
Proof. Write the sum a1b1 +…+ anbn as the following.

a1b1 +…+ anbn = s1b1 + (s2 − s1)b2 +…+ (sn − sn−1)bn
= s1(b1 − b2)+ s2(b2 − b3)+…+ sn−1(bn−1 − bn)+ snbn

Using m ≤ si ≤M,

m(b1 − b2) ≤ s1(b1 − b2) ≤M(b1 − b2)
⋮

m(bn−1 − bn) ≤ sn−1(bn−1 − bn) ≤M(bn−1 − bn)

We additionally have mbn ≤ snbn ≤Mbn. Summing these inequalities together,

m(b1 − b2 + b2 − b3 +…+ bn−1 − bn)+ mbn ≤ s1(b1 − b2)
+…+ sn−1(bn−1 − bn)+ snbn
≤M(b1 − b2 + b2 − b3 +…
+ bn−1 − bn)+Mbn

mb1 ≤ a1b1 +…+ anbn ≤Mb1
This proves the inequality.

1.2 Warm Up Problems

Try the following problems as warm up exercises.

9
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Problem 1.10. For real numbers x, y, prove that

|x+ y| ≤ |x|+ |y|
||x|− |y|| ≤ |x+ y|

(|x|− |y|)2 ≤ |x2 − y2|

When does equality occur in the last inequality?

The first inequality in this problem is also known as the triangle inequality.

Problem 1.11. Prove Jordan’s inequality.

2
π ≤ sinθ

θ <1

for 0 < |θ| < π
2 .

Problem 1.12. Prove Redheffer’s inequality.

sinθ
θ ≥ π2 −θ2

π2 +θ2

The two inequalities above are not derived from each other. Also, you may have to put a bit of extra
effort to prove them. Use calculus if that gives a faster solution.

Problem 1.13 (IMO 1960). For which real value of x does the inequality

4x2
(1−

√
1+ 2x)2

<2x+ 9

hold?

1.3 Cauchy-Schwarz Inequality and Improvements

Cauchy-Schwarz inequality also known as Cauchy-Bunyakovsky-Schwarz inequality is among the most
important results for solving problems.

Theorem 6 (Cauchy-Bunyakovsky-Schwarz inequality). Let n be a positive integer, a1,… , an and b1,… , bn
be real numbers. Then

(a21 +…+ a2n)(b21 +…+ b2n) ≥ (a1b1 +…+ anbn)2 (1.6)

(
n

Σ
i=1

a2i ) (
n

Σ
i=1

b2i ) ≥ (
n

Σ
i=1

aibi)
2

and equality holds if and only if a1
b1 =⋯= an

bn .

10
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The reason why it is also called Cauchy-Bunyakovsky-Schwarz inequality is that the analog of this
inequality for integrals

(
b

∫
a
f(x)g(x)dx)

2

≤ (
b

∫
a
f2(x)dx) ⋅ (

b

∫
a
g2(x)dx) (1.7)

appeared in the Mémoire Bunyakovsky3 for the first time. This Mémoire was published by the Im-
perial Academy of Sciences of St. Petersburg in Bunyakovsky.4 Steele5 states that Bunyakovsky
(1804–1889) had studied in Paris with Cauchy, and he was quite familiar with Cauchy’s work on in-
equalities; so much so that by the time he came to write his Mémoire, Bunyakovsky was content to refer to
the classical form of Cauchy’ inequality for finite sums simply as well-known.

This theorem has many proofs and even more applications. We will see later in Section 2.1 how
powerful just a special case of this inequality can be. Let us start with a proof that is probably the
most elegant one. Before we show proofs, we will introduce a notation for shortening the Cauchy-
Bunyakovsky-Schwarz inequality. Let two vectors (think of a vector as an ordered list of numbers) be
a = (a1,… , an) and b = (b1,… , bn). The numbers a1,… , an inside the vector a can be called elements of
a. So, a has n elements and so does b. Denote by ⟨a, b⟩ the inner product of a and b defined as

⟨a, b⟩ = a1b1 +…+ anbn

Then the theorem can be stated as

⟨a, b⟩2 ≤ ⟨a, a⟩ ⋅ ⟨b, b⟩

The inner product has some interesting properties. Note that the mother of inequality in Equation 1.2
can be stated as

⟨x,x⟩ ≥ 0

for any x = (x1,… , xn) where xi is a real number. Similarly, define y = (y1,… , yn). Then we have the
following.

(i) ⟨x,x⟩ = 0 if and only if x = 0 i.e. x = (0,… , 0).

(ii) For any real number α, ⟨αx,y⟩ =α⟨x,y⟩.

(iii) ⟨x,y⟩ = ⟨y,x⟩.

(iv) For z = (z1,… , zn), ⟨x,y+ z⟩ = ⟨x,y⟩ + ⟨x, z⟩.

(v) x+ y = (x1 + y1,… , xn + yn).
3Viktor Yakovlevich Bunyakovsky

1846 Foundations of the mathematical theory of probabilities, Imperial Academy of Sciences of St. Petersburg, p. 495, doi:
http://books.e-heritage.ru/book/10070419, Page 4.

4Viktor Yakovlevich Bunyakovsky
1859 “Sur quelques inégalités concernant les intégrales ordinaires et les intégrales aux différences finies”, Mémoires de l’Acad.

de St.-Pétersbourg, 7th ser., vol. i, no. 9, pp. 1-18.
5John Michael Steele

2010 The Cauchy-Schwarz master class: an introduction to the art of mathematical inequalities, Cambridge University Press,
Page 10.
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For convenience, we can also define xr as

xr = (xr1,… , xrn)
for a real number r. Let us generalize this notation further. Let m be a positive integer. Then for
x = (x1,… , xn), define

‖x‖m = ⟨x,… ,x⏟
m times

⟩ 1
m

= m√xm1 +…+ xmn
For m = 2, we will simply write ‖x‖ instead of ‖x‖2 just like we write

√x instead of 2
√x. So we can

write Cauchy-Bunyakovsky-Schwarz inequality in a more compact form.

‖a‖ ⋅ ‖b‖ ≥ ⟨a, b⟩
This notion can be generalized even further for arbitrary real numbers. For a real number p, define

‖x‖p = p√xp1 +…+ xpn
This is often called the Lp norm for the vector x. Furthermore, we can define the addition or subtraction
between two vectors as

a± b = (a1± b1,… , an± bn)
ma = (ma1,… ,man)

These notations will help us shorten some long inequalities later. We will see the benefit of these
notations shortly in Hölder’s inequality and Minkowski’s Inequality. Let us see the proofs now.

Proof by vector. Consider two vectors a = (a1,… , an), b = (b1,… , bn) and their modulus

‖a‖ =√a21 +…+ a2n

‖b‖ =√b21 +…+ b2n
If θ is the minimum angle between them, from the rule of dot product we get

a ⋅ b = a1b1 +…+ anbn
‖a‖ ⋅ ‖b‖ ⋅ cosθ = a1b1 +…+ anbn

cosθ = a1b1 +…+ anbn
√a21 +…+ a2n√b21 +…+ b2n

Since −1 ≤ cosθ ≤ 1, after squaring we get

cos2 θ ≤ 1

(
a1b1 +…+ anbn

√a21 +…+ a2n√b21 +…+ b2n
)
2

≤ 1

⟺ (a21 +…+ a2n)(b21 +…+ b2n) ≥ (a1b1 +…+ anbn)2

Equality occurs if and only cosθ = 1 or when a and b are parallel. In other words, when we have
a1
b1

=… = an
bn

12
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Classical proof by Schwarz. Consider the quadratic polynomial

P(x) =
n

Σ
i=1

(aix− bi)2

= x2
n

Σ
i=1

a2i − 2x
n

Σ
i=1

aibi +
n

Σ
i=1

b2i

=Ax2 − Bx+ C

where A =Σn
i=1 a

2
i ,B = 2Σn

i=1 aibi,C =Σn
i=1 b

2
i . Setting xi → aix− bi in 1.2, we see that P(x) ≥ 0.

Then the discriminant of P must be ≤ 0.

B2 − 4AC ≤ 0
4(a1b1 +…+ anbn)2 − 4(a21 +…+ a2n)(b21 +…+ b2n) ≤ 0

⟺ (a21 +…+ a2n)(b21 +…+ b2n) ≥ (a1b1 +…+ anbn)2

Equality occurs if and only if P(x) = 0 for some x. Then

x = b1
a1

=⋯= bn
an

Proof by arithmetic-geometric mean. We use the notations from the proof above. If A = 0 or B = 0,
then the inequality is an identity. So, assume that A,B ≠ 0. Note the following.

a21
A + b21

B ≥ 2
a1b1√
AB

⋮
a2n
A + b2n

B ≥ 2
anbn√
AB

Summing them together,

a21
A + b21

B +…+ a2n
A + b21

B ≥ 2
a1b1 +…+ anbn√

AB
a21 +…+ a2n

A + b21 +…+ b2n
B ≥ 2

a1b1 +…+ anbn√
AB

1+ 1 ≥ 2
a1b1 +…+ anbn√

AB
AB ≥ (a1b1 +…+ anbn)

2

Again, equality holds if and only if ai
A = bi

B or ai
bi =

A
B = c, a constant for all i.

Proof using the mother of inequality. Let xi = ai
A , yi =

bi
B for 1 ≤ i ≤ n. We have

n

Σ
i=1

x2i =
n

Σ
i=1

y2i = 1

13
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Rewrite the inequality as

x1y1 +…+ xnyn ≤ 1
⟺ 2(x1y1 +…+ xnyn) ≤ 2
⟺ 2(x1y1 +…+ xnyn) ≤ x21 +…+ x2n + y21 +…+ y2n

⟺ (xi − yi)2 +…+ (xn − yn)2 ≥ 0

This is obviously true.

Proof using sequences. Define the sequence (Sn) as

Dn = a1b1 +…+ anbn
An = a21 +…+ a2n
Bn = b21 +…+ b2n
Sn =D2

n − AnBn

We want to show that Sn ≤ 0. See the following.

D2
n+1 − D2

n = (Dn + an+1bn+1)2 − D2
n

= 2an+1bn+1Dn + a2n+1b2n+1

An+1Bn+1 − AnBn = (An + a2n+1)(Bn + b2n+1)− AnBn
= a2n+1Bn + b2n+1An + a2n+1b2n+1

Sn+1 − Sn =D2
n+1 − An+1Bn+1 − D2

n + AnBn
= 2an+1bn+1Dn + a2n+1b2n+1

− a2n+1Bn − b2n+1An − a2n+1b2n+1

= 2an+1bn+1Dn − a2n+1Bn − b2n+1An
= 2an+1bn+1(Dn−1 + anbn)− a2n+1(Bn−1

+ b2n+1)− b2n+1(An−1 + a2n+1)
= 2an+1bn+1Dn−1 + 2an+1bn+1anbn − a2n+1Bn−1

− a2n+1b2n − b2n+1An−1 − a2n+1b2n
= 2an+1bn+1Dn−1 − a2n+1Bn−1

− b2n+1An−1 − (an+1bn − anbn+1)2

⋮
=− ((an+1bn − anbn+1)2 +…+ (an+1b1 − a1bn+1)2)

Clearly, Sn+1 − Sn ≤ 0, so

Sn+1 ≤Sn ≤⋯S1 = 0

This proves the inequality.

The fact about Sn+1 − Sn also proves the Lagrange Identity.

(
n

Σ
i=1

a2i ) (
n

Σ
i=1

b2i )− (
n

Σ
i=1

aibi)
2

= Σ
1≤i<j≤n

(aibj − ajbi)2

14
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This equation immediately proves the theorem but it is not quite obvious how the identity follows unless
someone knows it beforehand. For this reason, some people also call this the Lagrange inequality but
we will stick with Cauchy-Schwarz.

Gram’s inequality is a very nice generalization of Cauchy-Bunyakovsky-Schwarz inequality.

Theorem 7 (Gram’s inequality). Let x1 = (x11,… , x1n),… ,xn = (xn1,… , xnn) be vectors with n elements.
Then

|⟨x1,x1⟩ … ⟨x1,xn⟩
…

⟨xn,x1⟩ … ⟨xn,xn⟩| ≥ 0

Equality occurs if and only if there are real numbers a1,… , an such that all of them are not zero at the
same time and

a1x1 +…+ anxn = 0

where 0 is the zero vector with every element 0.

This result is very intuitive to say the least. Note that we get Cauchy-Bunyakovsky-Schwarz in-
equality for n = 2 since

|⟨x,x⟩ ⟨x,y⟩
⟨y,x⟩ ⟨y,y⟩| ≥ 0

⟺ ⟨x,x⟩ ⋅ ⟨y,y⟩ − ⟨x,y⟩ ⋅ ⟨y,x⟩ ≥ 0

implies Cauchy-Bunyakovsky-Schwarz inequality due to the fact ⟨x,y⟩ = ⟨y,x⟩. The condition of equal-
ity in Gram’s inequality is linear dependence. Let x1,… ,xn be some vectors with n elements. Then they
are linearly dependent if and only if there are real numbers a1,… , an not all zero such that

a1x1 +…+ anxn = 0

If such a1,… , an do not exist, that is the condition is satisfied only when a1 = … = an = 0, then
x1,… ,xn are linearly independent.

1.4 Complex Numbers

We may occasionally need complex numbers. So we provide a brief introduction here. A complex
number z is defined as

z = x+ iy

where x, y are real numbers and i is the imaginary unit such that i2 =−1. We call x the real component
and y the complex component of z. Complex numbers follow the same properties as vectors which we
established in Section 1.3. That is for two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2,

z1± z2 = (x1± x2)+ i(y1± y2)
⟨z1, z2⟩ = x1x2 + y1y2

15
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Here ⟨z1, z2⟩ is the dot product of z1 and z2. We define an additional operation ⋅ as

z1 ⋅ z2 = x1y2 − x2y1

The modulus of z is similar to L2 norm.

|z| =√x2 + y2

We have the following property.

|z1z2| = |z1| ⋅ |z2|

For a complex number z = x+ iy, the conjugate of z is defined as

̄z = x− iy

So, we have z ̄z = |z|2 = | ̄z|2. The argument of z is defined as

arg(z) = tan (
y
x )

You can think of it as the angle the point (x, y) creates with the positive X axis and the origin.

Problem 1.14. Prove the triangle inequality for complex numbers.

|z1 + z2| ≤ |z1|+ |z2|

This inequality can be generalized as the following.

|z1 +…+ zn| ≤ |z1|+…+ |zn|

When does equality occur?

1.5 Bernoulli and Power Mean Inequality

TheBernoulli inequality is a well known result and it has some nice consequences. Wementioned earlier
that we will show more proofs of arithmetic-geometric mean inequality. We will show one such proof
here using this inequality.

Theorem 8 (Bernoulli’s inequality). Let n be a positive integer and x >−1 be a real number. Then

(1+ x)n ≥ 1+ nx

This inequality can be generalized as the following result.

Theorem 9 (Generalized Bernoulli inequality). Let x1,… , xn > −1 be real numbers such that either
all are positive or all are negative. Then

(1+ x1)⋯ (1+ xn) > 1+ x1 +…+ xn

16
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Let a1,… , an be positive real numbers. Then the generalized mean or power mean of order r is defined
as

𝔐r(a1,… , an) = (
ar1 +…+ arn

n )
1
r

Note that the arithmetic mean of a1,… , an is actually 𝔐1(a1,… , an). Similarly, the harmonic mean is
𝔐−1(a1,… , an). Moreover, 𝔐0(a1,… , an) is the geometric mean which we show below.

We may omit the numbers a1,… , an and just call it 𝔐r instead of 𝔐r(a1,… , an) if the context is
clear. An even better way to denote this would be using 𝔐r(a) where a = (a1,… , an).

𝔐r(a) =
‖a‖r
r
√n

We can also denote the arithmetic, geometric and harmonic means of a by 𝔄(a),𝔊(a) and ℌ(a) respec-
tively. The notations 𝔐,𝔄,𝔊,ℌ are inspired by Hardy et al.6

Next, we show that 𝔊(a) is the geometric mean.

𝔊(a) = lim
r→0

(
ar1 +…+ arn

n )

1
r

Then we can write arithmetic-geometric-harmonic mean inequality as 𝔄(a) ≥ 𝔊(a) ≥ ℌ(a). This is
generalized in the next result.

Theorem 10 (Power mean inequality). If r, s are real numbers such that r ≤ s, then for a vector a,
min{a} ≤𝔐r(a) ≤𝔐s(a) ≤max{a}

Equality occurs if and only if r = s.
This inequality can be extended further with the notion of what we call weighted means. Let ω =

(w1,… ,wn) be a vector of non-negative real numbers such that w1 + … + wn = 1. Then the weighted
arithmetic mean of the real numbers a1,… , an is

𝔄(a,ω) =w1a1 +…+ wnan
In general, the weighted power mean of order r is

𝔐r(a,ω) = (w1ar1 +…+ wnarn)
1
r

If the context is clear on what the weights are, then we may omit the weight from the notation and
simply write𝔐r(a). Let us call ω a weight vector if w1,… ,wn ≥ 0 and w1+…+wn = 1. We can convert
almost any vector of non-negative real numbers into a weight vector. If τ = (t1,… , tn) is an arbitrary
vector not all elements zero, then

ω = (
t1

t1 +…+ tn
,… , tn

t1 +…+ tn
)

is a weight vector. The power mean inequality applies to weighted means as well.

Theorem 11 (Weighted Power Mean Inequality). Let a and ω be vectors with n elements. Then for real
numbers r, s such that r ≤ s,

min{a} ≤𝔐r(a,ω) ≤𝔐s(a,ω) ≤max{a}

A special case of this is the weighted arithmetic-geometric mean inequality.
w1a1 +…+ wnan ≥ aw1

1 ⋯awnn (1.8)
6Hardy et al., Inequalities cit.
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1.6 Hölder, Minkowski’s Inequality

Theorem 12 (Generalized Hölder’s Inequality). Let x1,… ,xn be vectors of n positive real numbers and
ω be a weight vector. Then

𝔊 (
n

Σ
i=1

xi,ω) ≥
n

Σ
i=1

𝔊(xi,ω)

Equality occurs if any two of the vectors are proportional.

This is not exactly the Hölder’s inequality to be precise. This inequality can be specified as Gener-
alized Hölder’s inequality which appears in Minkowski.7 And Hölder8 proved Hölder’s inequality
for which we need to define conjugates. Two real numbers u and v are conjugate if

1
u + 1

v = 1

Theorem 13 (Hölder’s inequality). Let u > 1 be a real number and v be the conjugate of u. If α, β are
complex numbers,

⟨α, β⟩ ≤ ‖α‖u ⋅ ‖β‖v
Equality occurs if αu and βv are proportional.

Hölder’s inequality can be proved with the help of Young.9

Theorem 14 (Young’s inequality). Let a, b be positive real numbers and u, v be conjugates. Then

ab ≤ au
u + bv

v
Razminia10 presents another proof of Generalized Hölder’s Inequality. The next result is usually

known as the converse of Hölder’s inequality.

Theorem 15 (The converse of Hölder’s inequality). Let a and b be vectors of positive real numbers, u
and v be conjugates. If B is a positive real number, then a necessary and sufficient condition that

n

Σ
i=1

aui ≤A

7Hermann Minkowski
1968 Geometrie der Zahlen, Johnson Reprint Corporation, Page 117.

8O. Hölder
1889 “Ueber einen Mittelwertsatz”, German, Gött. Nachr., vol. mdccclxxxix, pp. 38-47.

9William Henry Young
1912 “On classes of summable functions and their Fourier Series”, Proceedings of the Royal Society of London. Series A,

Containing Papers of a Mathematical and Physical Character, vol. lxxxvii, no. 594, pp. 225-229, doi: 10.1098/rspa.
1912.0076.

10K. Razminia
2019 “Hölder’s inequality revisited”, The Mathematical Gazette, vol. ciii, no. 558, pp. 512-514, doi: 10.1017/mag.2019.117.
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is that

⟨a, b⟩ ≤ u√A v√B

holds for all positive real numbers b1,… , bn such that
n

Σ
i=1

bvi ≤B

Ljapunov11 proves the next theorem.

Theorem 16 (Ljapunov’s inequality). Let x,y be two vectors of n positive real numbers and ω be a weight
vector. If r, s, t are positive real numbers such that r > s > t,

⟨x,ys⟩r−t ≤ ⟨x,yt⟩r−s ⋅ ⟨x,yr⟩s−t

Note that Generalized Hölder’s Inequality is a generalization of Cauchy-Bunyakovsky-Schwarz in-
equality. We can even prove the Arithmetic-Geometric Inequality from Generalized Hölder’s Inequality
in the following way.

a1 +…+ an
n ≥ n

√a1⋯an
⟺ (a1 +…+ an)n ≥ nna1⋯an

This follows from Generalized Hölder’s Inequality if we set xi = x and ω = ( 1n ,… , 1
n ). Minkowski12

proves the following result.

Theorem 17 (Minkowski’s Inequality). Let x1,… ,xn be vectors of n positive real numbers, ω be a weight
vector and r ≠ 1 be a real number. Then

𝔐r (
n

Σ
i=1

xi,ω){≥
n
Σ
i=1

𝔐r(xi,ω) if r <1

≤
n
Σ
i=1

𝔐r(xi,ω) otherwise

1.7 Rearrangement and Chebyshev Inequalities

Two sequences (an) and (bn) are similarly sorted if and only for any i and j, we have

(ai − aj)(bi − bj) ≥ 0

(an) and (bn) are oppositely sorted if the inequality is reversed.

11Aleksandr Michajlovič Ljapunov
1901 “Nouvelle forme du théorème sur la limite de probabilité”, ”Mémoires de l’Académie impériale des sciences de Saint-

Pétersbourg, vol. Série VIII, Tome. 12, http://www.sudoc.fr/170960269.
12Minkowski, Geometrie der Zahlen cit., Page 115− 117.
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Theorem 18 (Chebyshev inequality). Let (an) and (bn) be two similarly sorted sequences. Then

(
1
n

n

Σ
i=1

ai) ⋅ (
1
n

n

Σ
i=1

bi) ≤
1
n

n

Σ
i=1

aibi

Sasser and Slater13 shows the following result that gives a necessary and sufficient condition
for Chebyshev inequality to hold for two sequences (an) and (bn).
Theorem 19 (Sasser’s theorem).

Seitz14 proved the following result which combines Cauchy-Schwarz and Chebyshev inequality.

Theorem 20 (Seitz inequality). Let (xn), (yn), (zn), (un) be sequences of real numbers and aij be a real
number for 1 ≤ i, j ≤ n. If for all i < j and r < s, the conditions

|xi xj
yi yj| ⋅ |zr zs

ur us| ≥ 0 and

|ari arj
asi asj | ≥ 0

hold, then we have
n
Σ
i,j=1

aijxizj
n
Σ
i,j=1

aijxiuj
≥

n
Σ
i,j=1

aijyizj
n
Σ
i,j=1

yiuj

1.8 Convexity, Jensen and Popoviciu’s Inequality

A function f ∶ I → ℝ is called Jensen convex on some interval I = [a, b] if for any x, y ∈ I,

f (x+ y
2

) ≤ f(x)+ f(y)
2

f is Jensen concave if −f is Jensen convex. Similarly, a sequence of real numbers (an) is Jensen convex if

2an ≤ an−1 + an+1

holds for n ∈ ℕ. This concept of convexity was formally introduced first by Jensen.15 Jensen also
proved the following result.

13D.w. Sasser and M.l. Slater
1967 “On the inequality Σxiyi ≥ 1

n ΣxiΣyi and the van der Waerden permanent conjecture”, Journal of Combinatorial
Theory, vol. iii, no. 1, pp. 25-33, doi: 10.1016/s0021-9800(67)80012-7.

14Jiřé Seitz
1936 “Une remarque aux inégalités”, Aktuárské vědy, vol. vi, no. 4, pp. 167-171.

15Johan Ludwig William Valdemar Jensen
1905 “On konvexe funktioner og uligheder mellem middlvaerdier”, Nyt. Tidsskr. for Math., vol. 16B, pp. 49-69; Johan

Ludwig William Valdemar Jensen
1906 “Sur les fonctions convexes et les inégalités entre les valeurs moyennes”, Acta Math., vol. xxx, pp. 175-193, doi: 10.

1007/bf02418571.
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Theorem 21. Let w1,… ,wn be non-negative rational numbers in the interval I such that w1+…+wn = 1
and f be a Jensen convex function on I. Then

f(w1x1 +…+ wnxn) ≤w1f(x1)+…+ wnf(xn)

But the idea itself was not completely new. Hölder16 proved Theorem 21 under the condition that
f can be differentiated at least twice and f″(x) ≥ 0. Ironically, this is exactly the convexity condition
from calculus point of view.

Let f be a convex function. For a vector x, let f(x) be the vector (f(x1),… , f(xn)).

Theorem 22 (Weighted Jensen’s inequality). Let f be a convex function. For a vector x of real numbers
in the domain of f and a weight vector ω,

f (𝔄(x,ω)) ≤𝔄(f(x),ω)

Theorem 23 (Petrovic’s Inequality). Let f be a convex function and (xn) be a sequence of positive real
numbers. Then

f(x1)+…+ f(xn) ≤ f(x1 +…+ xn)+ (n− 1)f(0)

Theorem 24 (Huygen’s inequality). Let x be a vector with n elements and ω be a weight vector. Then
n

∏
i=1

(1+ xi) ≥𝔊(x)

Note that this is just a special case of Hölder’s inequality.

Theorem 25 (Popoviciu’s inequality). Let f be a convex function in the interval [a, b]. For any x, y, z ∈
[a, b],

f (x+ y+ z
3

)+ f(x)+ f(y)+ f(z)
3

≥ (f (x+ y
2

)+ f (y+ z
2

)+ f (z+ x
2

))

16Hölder, “Ueber einen Mittelwertsatz” cit.
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CHAPTER 2.

TRADITIONAL PRINCIPLES

2.1 Engel Form of Cauchy-Schwarz

We mentioned earlier that there is a particular case of Cauchy-Schwarz inequality which is very useful
for solving problems. It is known as Engel form of Cauchy-Schwarz. Some people also call it Titu’s
lemma or T2’s lemma. This name became popular among the USA students who attended the IMO
training camp after a lecture given by Titu Andreescu at Math Olympiad Summer Program (MOSP)
at Georgetown University in June, 2001. Even though it is a direct consequence of Cauchy-Schwarz
inequality, it can be proven independently as well. Conversely, Cauchy-Schwarz inequality can be
proven using this result.

Theorem 26 (Engel form of Cauchy-Schwarz). Let a1,… , an, b1,… , bn be real numbers. Then
a21
x1

+…+ a2n
x1

≥ (a1 +…+ an)2
x1 +…+ xn

(2.1)

Some writers such as Bellman and Mitrinovitch1 also call this Bergström’s inequality due to
Bergström.2

Proof using Cauchy-Schwarz. Use Cauchy-Schwarz inequality on
a1√x1

,… , an√xn
; √x1,… ,√xn

We get

(
a21√x12

+…+ a2n√xn2
) (
√x1

2 +…+√xn
2) ≥ (

a1√x1
√x1 +…+ an√xn

√xn)
2

= (a1 +…+ an)2

1Richard Bellman
1955 “Notes on Matrix Theory–IV (An Inequality Due to Bergstrom)”, The American Mathematical Monthly, vol. lxii, no. 3,

p. 172, doi: 10.2307/2306621; D. S. Mitrinovitch
1959 “Equivalence of two sets of inequalities”, The Mathematical Gazette, vol. xliii, no. 344, pp. 126-126, doi: 10.2307/

3610201.
2H Bergström

1949 “A triangle-inequality for matrices”, Den Elfte Skandinaviske Matematikerkongress, Trondheim, pp. 264-267.

https://doi.org/10.2307/2306621
https://doi.org/10.2307/3610201
https://doi.org/10.2307/3610201
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This proves the theorem.

Proof by induction. We will use induction to prove 2.1. The inequality is trivial for n = 1. For n = 2,

a2
x + b2

y ≥ (a+ b)2
x+ y

⟺ a2y+ b2x
xy ≥ a2 + 2ab+ b2

x+ y
⟺ a2xy+ b2x2 + a2y2 + b2xy ≥ a2xy+ 2abxy+ b2xy

⟺ (ay− bx)2 ≥ 0

This is obviously true. Now, assume that the claim is true for

We get a very useful result as a corollary of this result.

Theorem 27. Let a1,… , an, b1,… , bn be real numbers. Then

a21
b21

+…+ a2n
b2n

≥ (
a1 +…+ an
b1 +…+ bn

)
2

Proof. By Engel form of Cauchy-Schwarz,

a21
b21

+…+ a2n
b2n

≥ (a1 +…+ an)2
b21 +…+ b2n

≥ (a1 +…+ an)2
(b1 +…+ bn)2

The last inequality follows from the fact that b21 +…+ b2n ≤ (b1 +…+ bn)2.

Another result that is similar to Engel form of Cauchy-Schwarz is a special case of the Beckenbach
inequality.

Theorem 28. Let x1,… , xn and y1,… , yn be positive real numbers. Then

n
Σ
i=1

x2i
n
Σ
i=1

xi
+

n
Σ
i=1

y2i
n
Σ
i=1

yi
≥

n
Σ
i=1

(xi + yi)2

n
Σ
i=1

(xi + yi)

We will start with another proof of Nesbitt’s inequality with the Engel form of Cauchy-Schwarz.
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Nesbitt inequality using Engel form. We will use the fact that a2 + b2 + c2 ≥ ab+ bc+ ca.

S = a
b+ c +

b
c+ a + c

a+ b

= a2
ab+ ca + b2

bc+ ab + c2
ca+ bc

≥ (a+ b+ c)2
ab+ ca+ bc+ ab+ ca+ bc

= (a+ b+ c)2
2(ab+ bc+ ca)

= a2 + b2 + c2 + 2(ab+ bc+ ca)
ab+ bc+ ca

= a2 + b2 + c2
2(ab+ bc+ ca) + 1

≥ 1
2
+ 1 = 3

2

Let us use this inequality to solve some problems.

Problem 2.1. Let n be a positive integer and a1,… , an; b1,… , bn be positive real numbers. Show that

(a1b1 +…+ anbn) (
a1
b1

+…+ an
bn

) ≥ (a1 +…+ an)2

Solution. By Engel form of Cauchy-Schwarz,

a1
b1

+…+ an
bn

= a21
a1b1

+…+ a2n
anbn

≥ (a1 +…+ an)2
a1b1 +…+ anbn

⟺ (a1b1 +…+ anbn) (
a1
b1

+…+ an
bn

) ≥ (a1 +…+ an)2

Remark. In order to apply the Engel form, we often need transformations like a/b = a2/b2. Sometimes
we will divide the odd power into an even one and send the remaining one in the denominator, for
example,

a2n+1

b = (an)2

b
a

so that we can then apply it. We will demonstrate these ideas in the following problems.

Problem 2.2. For positive real numbers a, b, c, prove that

a
b+ 2c +

b
c+ 2a + c

a+ 2b ≥ 1
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Solution. We again resort to the same trick.

a
b+ 2c +

b
c+ 2a + c

a+ 2b = a2
ab+ 2ca + b2

bc+ 2ab + c2
ca+ 2bc

≥ (a+ b+ c)2
3(ab+ bc+ ca)

= a2 + b2 + c2 + 2(ab+ bc+ ca)
3(ab+ bc+ ca)

≥ ab+ bc+ ca+ 2(ab+ bc+ ca)
3(ab+ bc+ ca)

In the last line, we used a2 + b2 + c2 ≥ ab+ bc+ ca which is well known by now.

Problem 2.3. Let x, y, z be positive real numbers. Prove that

2
x+ y + 2

y+ z + 2
z+ x ≥ 9

x+ y+ z

Solution. This is again a similar problem.

2
x+ y + 2

y+ z + 2
z+ x = 4

2(x+ y) +
4

2(y+ z) +
4

2(z+ x)

≥ (2+ 2+ 2)2

2(x+ y+ y+ z+ z+ x)

= 36
4(x+ y+ z)

= 9
x+ y+ z

Problem 2.4. Let x, y, z be positive real numbers. Prove that

x2
(x+ z)(x+ y) +

y2
(y+ x)(y+ z) +

z2
(z+ y)(z+ x) ≥

3
4
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Solution. First, see that (x+z)(x+y) = x2+xy+zx+yz. Next, we applyEngel form of Cauchy-Schwarz.
x2

(x+ z)(x+ y) +
y2

(y+ x)(y+ z) +
z2

(z+ y)(z+ x)

= x2
x2 + xy+ zx+ yz + y2

y2 + yz+ xy+ zx + z2
z2 + zx+ yz+ xy

≥ (x+ y+ z)2
x2 + y2 + z2 + 3(xy+ yz+ zx)

= 3
4
(

4(x+ y+ z)2
3(x2 + y2 + z2 + 2(xy+ yz+ zx)+ xy+ yz+ zx) )

= 3
4
(

3(x+ y+ z)2 + (x+ y+ z)2
3((x+ y+ z)2 + xy+ yz+ zx) )

= 3
4
(
3(x+ y+ z)2 + x2 + y2 + z2 + 2(xy+ yz+ zx)

3(x+ y+ z)2 + 3(xy+ yz+ zx) )

≥ 3
4
(
3(x+ y+ z)2 + 3(xy+ yz+ zx)
3(x+ y+ z)2 + 3(xy+ yz+ zx) )

= 3
4
⋅ 1 = 3

4
Thus, the inequality is proved.

Problem 2.5 (IMO Shortlist 1993). For positive real numbers a, b, c and d, prove that
a

b+ 2c+ 3d + b
c+ 2d+ 3a + c

d+ 2a+ 3b + d
a+ 2b+ 3c ≥

2
3

Solution. Writing

a
b+ 2c+ 3d = a2

ab+ 2ca+ 3ad
and applying Engel form of Cauchy-Schwarz, we get

S = a
b+ 2c+ 3d + b

c+ 2d+ 3a + c
d+ 2a+ 3b + d

a+ 2b+ 3c

= a2
ab+ 2ca+ 3ad + b2

bc+ 2bd+ 3ab + c2
cd+ 2ca+ 3bc +

d2

ad+ 2bd+ 3cd

≥ (a+ b+ c+ d)2
4ab+ 4bc+ 4ca+ 4ad+ 4bd+ 4cd

= 2
3
(

3(a+ b+ c+ d)2
8(ab+ bc+ ca+ ad+ bd+ cd) )

= 2
3
(

3(a+ b+ c+ d)2
4 ((a+ b+ c+ d)2 − (a2 + b2 + c2 + d2))

)

= 2
3
(
4(a+ b+ c+ d)2 − (a+ b+ c+ d)2
4(a+ b+ c+ d)2 − 4(a2 + b2 + c2) )

By Cauchy-Bunyakovsky-Schwarz inequality,
(a2 + b2 + c2 + d2)(12 + 12 + 12 + 12) ≥ (a+ b+ c+ d)2

⟺ −4(a2 + b2 + c2 + d2) ≤−(a+ b+ c+ d)2

⟺ 4(a+ b+ c+ d)2 − 4(a2 + b2 + c2 + d2) ≤ 4(a+ b+ c+ d)2 − (a+ b+ c+ d)2

27



§2. Traditional Principles Masum Billal

Thus, we have S ≥ 2
3 ⋅ 1 = 2

3 .
Problem 2.6 (IMO 1995, problem 2). Let a, b, c be positive real numbers such that abc = 1. Prove
that

1
a3(b+ c) +

1
b3(c+ a) +

1
c3(a+ b) ≥

3
2

Solution. Write
1

a3(b+ c) =
1
a2

a(b+ c)
and apply Engel form of Cauchy-Schwarz.

1
a3(b+ c) +

1
b3(c+ a) +

1
c3(a+ b) =

1
a2

a(b+ c) +
1
b2

b(c+ a) +
1
c2

c(a+ b)

≥
(
1
a + 1

b + 1
c )

2

ab+ ca+ bc+ ab+ ca+ bc

=
(
ab+ bc+ ca

abc )
2

2(ab+ bc+ ca)

= ab+ bc+ ca
2

≥ 3 3
√
ab ⋅ bc ⋅ ca

2

=
3 3√(abc)2

2

= 3
2

Here, we get ab+ bc+ ca ≥ 3 3
√
ab ⋅ bc ⋅ ca by Arithmetic-Geometric Inequality.

Problem 2.7 (Tournament of the Towns, 1998). Let a, b, c be positive real numbers. Prove that

a3
a2 + ab+ b2 + b3

b2 + bc+ c2 + c3
c2 + ca+ a2 ≥ a+ b+ c

3
Solution. We again make the numerator a square using

a3
a2 + ab+ b2 = a4

a3 + a2b+ ab2
Then

a3
a2 + ab+ b2 + b3

b2 + bc+ c2 + c3
c2 + ca+ a2 = a4

a3 + a2b+ ab2 + b4
b3 + b2c+ bc2 + c4

c3 + c2a+ ca2

≥ (a2 + b2 + c2)2
a3 + b3 + c3 + ab(a+ b)+ bc(b+ c)+ ca(c+ a)

= (a2 + b2 + c2)2
(a+ b+ c)(ab+ bc+ ca)

= a2 + b2 + c2
a+ b+ c
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The last line follows since a2 + b2 + c2 ≥ ab+ bc+ ca. Then the conclusion follows because by Cauchy-
Bunyakovsky-Schwarz inequality,

(a2 + b2 + c2)(12 + 12 + 12) ≥ (a+ b+ c)2

⟺ a2 + b2 + c2
a+ b+ c ≥ a+ b+ c

3

2.2 The Buffalo Way

The buffalo way is a bashing method of solving inequality problems. It usually exploits symmetry or
cyclic property and involves tedious calculations, so it is not always elegant. Nonetheless it is a useful
tool. The idea is to assume something like a ≤ b ≤ c without losing any generality, specially when
there is symmetry. In general, we want to assume that

a1 ≤ a2 ≤⋯≤ an
a2 = a1 + b1

⋮
an = a1 + bn

We can also assume the following.

a2 = a1 + c1
a3 = a2 + c2

= a1 + c1 + c2
⋮

an = an−1 + cn−1

= a1 + c1 +…+ cn−1

where c1,… , cn−1 ≥ 0. Out of these two forms, the latter is actually a consequence of the former one
and is usually the more used one. We will see a few problems that implement this technique.

Problem 2.8. Prove that for two non-negative reals x, y

x+ y ≥ 2
√xy

Solution. Since the inequality is symmetric on x and y, we can assume without loss of generality that
x ≤ y. Let y = x+ k.

x+ y ≥ 2
√xy

⟺ 2x+ k ≥ 2√x(x+ k)
⟺ 4x2 + 4xk+ k2 ≥ 4x2 + 4xk

⟺ k2 ≥ 0

which is evident.
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Try proving the case n = 3 of arithmetic-geometric mean inequality with this technique. You will
understand why we said this is often a tedious technique.

Problem 2.9.

x+ y+ z ≥ 3 3
√xyz

Let us also prove the following using buffalo way.

Problem 2.10. Let a, b, c >0 be real numbers. Prove that

a2 + b2 + c2 ≥ ab+ bc+ ca

Solution. Assume that a ≤ b ≤ c and b = a+ x, c = a+ x+ y where x, y ≥ 0.

a2 + (a+ x)2 + (a+ x+ y)2 ≥ a(a+ x)+ (a+ x)(a+ x+ y)+ (a+ x+ y)a
⟺ 3a2 + 2x2 + y2 + 4ax+ 2xy+ 2ay ≥ 3a2 + x2 + 4ax+ 2ay+ 2xy

⟺ x2 + y2 ≥ 0

This is again true.

Problem 2.11. Let a, b, c ≥ 0 be real numbers such that a ≤ b ≤ c. Prove that

(a+ b)(c+ a)2 ≥ 6abc

Solution. Since a ≤ b ≤ c, let b = a+ x, c = a+ x+ y.

(2a+ x)(2a+ x+ y)2 ≥ 6a(a+ x)(a+ x+ y)
⟺ (2a+ x)(4a2 + x2 + y2 + 4ax+ 4ay+ 2xy) ≥ 6a(a2 + 2ax+ x2 + ay+ xy)

⟺ 8a3 + 12a2x+ 8a2y+ 6ax2 + 8axy+ 2ay2 + x3 + 2ax2 + xy2 ≥ 6a3 + 12a2 + 6ax2 + 6a2y+ 6axy
⟺ 2a3 + 2a2y+ 2axy+ 2ay2 + x3 + 2x2y+ xy2 ≥ 0

This evidently true.

Now, we will prove Nesbitt’s inequality using the first form of the buffalo way.

Proof of Nesbitt’s inequality by the buffalo way. Let x ≤ y ≤ z and y = x + a, z = y + b with a ≥
0, b ≥ 0. We are required to prove that

x
y+ z + y

z+ x + z
x+ y ≥ 3

2

Let us express each variable as a parameter of a single variable.

y− a
2y+ b + y

2y+ b− a + y+ b
2y− a ≥ 3

2

⟺ y− a
2y+ b − 1

2
+ y

2y+ b− a − 1
2
+ y+ b

2y− a − 1
2
≥ 0

⟺ 1
2
(
2y− 2a− 2y− b

2y+ b + 2y− 2y− b+ a
2y+ b− a + 2y+ 2b− 2y+ a

2y− a ) ≥ 0

⟺ −2a+ b
2y+ b + a− b

2y+ b− a + 2b+ a
2y− a ≥ 0
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The last inequality actually holds because of the following:

2b+ a
2y− a + a− b

2y+ b− a − 2a+ b
2y+ b ≥ 2b+ a

2y+ b− a + a− b
2y+ b− a − 2a+ b

2y+ b

≥ 2a+ 2b
2y+ b− a − 2a+ b

2y+ b

≥ 2a+ 2b
2y+ b − 2a+ b

2y+ b
= a

2y+ b
which is obviously at least 0. Here, we have used the facts that 1

x ≥ 1
y implies 1

x−u ≥ 1
y and 1

x ≥ 1
y+v for

u, v ≥ 0.

The next inequality is a nice application of the buffalo way.

Problem 2.12. Let x, y, z >0 be real numbers such that no two are equal. Show that,

1
(x− y)2 + 1

(y− z)2 + 1
(z− x)2 ≥ 4

xy+ yz+ zx
Solution. The expression on the left is symmetric on x, y, z. Without loss of generality, assume that
x ≤ y ≤ z and y = x+ a, z = x+ a+ b.

1
a2 + 1

b2 + 1
(a+ b)2 ≥ 4

x(x+ a)+ (x+ a)(x+ a+ b)+ (x+ a+ b)x

= 4
x2 + xa+ x2 + 2ax+ a2 + bx+ ab+ x2 + xa+ bx

≥ 4
3x2 + 4xa+ 2xb+ ab+ a2

Note that there is no x on the left side of the inequality. So, we can use x >0 to get rid of it.

3x2 + 4xa+ 2xb+ ab+ a2 >ab+ a2
4

3x2 + 4xa+ 2xb+ ab+ a2 < 4
ab+ a2

So, we are done if we can prove the following.

1
a2 + 1

b2 + 1
(a+ b)2 ≥ 4

ab+ a2

= 4
a(b+ a)

This is not a trivial inequality. We have to show that this actually holds.

1
a2 + 1

b2 − 2
a(b+ a) +

1
(a+ b)2 ≥ 2

a(b+ a)

⟺ 1
b2 + (

1
a − 1

a+ b )
2

≥ 2
a(a+ b)

⟺ 1
b2 + (

b
a(a+ b) )

2

≥ 2
a(a+ b)

⟺ 1
b2 + b2

a2(a+ b)2 ≥ 2
a(a+ b)
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The last inequality is true by arithmetic-geometric mean inequality since

1
b2 + b2

a2(a+ b)2 ≥ 2√ 1
b2 ⋅ b2

a2(a+ b)2

= 2
a(a+ b)

Solve the next problem as an exercise.

Problem 2.13. For all real x, y, z ≥ 0, prove that

x3 + y3 + z3
x2y+ y2z+ z2x ≥Σ x

y+ z − 1

2.3 Majorization and Symmetric Sums

Let x and y be two vectors of n real numbers. We say that x dominates or majorizes y if

x1 ≥ x2 ≥… ≥ xn
y1 ≥ y2 ≥… ≥ yn

x1 +…+ xn = y1 +…+ yn
x1 +…+ xk ≥ y1 +…+ yk

for 1 ≤ k ≤ n − 1. If x dominates y (resp. y is dominated by x), then we write x ≻ y (resp. y ≺ x).
For example, (4, 0, 0) ≻ (3, 1, 0) ≻ (2, 2, 0). The vectors x and y need not be monotonic because we can
just sort them into monotonic vectors.

We will also introduce the cyclic and symmetric polynomials and notations juxtaposed with them.
The expression x2 + y2 + z2 is symmetric whereas x2y + y2z + z2x is cyclic but not symmetric because
y2x+ z2y+ x2z ≠ x2y+ y2z+ z2x. A symmetric polynomial in the variables x1,… , xn should remain
same regardless of the order in which the variables are used. So f(x1,… , xn) is symmetric if f remains
invariant for all permutations of x1,… , xn in the expression unlike the cyclic example we just saw. For
example, xy+ yz+ zx is symmetric and so is xyz. And a

b + b
c + c

a is cyclic but not symmetric. We can
use the cyclic and symmetric notations to represent the expressions in a short form. Here are some
demonstrations.

a2 + b2 + c2 =Σ
cyc

a2

a2b+ b2c+ c2a =Σ
cyc

a2b

xy+ yz+ zx =Σ
cyc

xy

Note that even though the expression xy+ yz+ zx and a2 + b2 + c2 are symmetric, we do not consider
them symmetric polynomial sums in this notation. A symmetric polynomial sum should have all n!
terms in the sum since it is symmetric on all n! permutations of the variables in it. Even if there can be
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duplicates, the total number of terms should still remain n!. For this reason, this sum is often denoted
by

Σ ! or Σ
σ

where σ indicates that the sum is taken over all possible permutations. Here are some examples.

Σ
sym

a2 = 2(a2 + b2 + c2)

Σ !x2y = x2y+ y2x+ y2z+ z2y+ z2x+ x2z

Σ
σ

x3y = x3y+ x3z+ y3z+ y3x+ z3x+ z3y

Let x and a be vectors with n elements. We write

F(x, a) = xa11 ⋯xann
T(x, a) =Σ !F(x, a)

=Σ
sym

F(x, a)

=Σ !xa11 ⋯xann

We will explain it a little bit more. Say, we want to find the symmetric polynomials of the type x3y for
the variables x, y, z. Write it as x3y1z0. Now, we fix the powers 3, 1, 0 in their respective places and let
x, y, z run through the permutations. Then we get

x3y1z0 + x3z1y0 + y3z1x0 + y3x1z0 + z3x1y0 + z3y1x0

See that this is exactly what we got in the last line of

Σ
σ

x3y

Some authors write this notation as

T[a](x) =T[a1,… , an](x1,… , xn)

Simply T[a] =T[a1,… , an] is used if it is clear what x is.

T[1, 0,… , 0] = (x1 +…+ xn)(n− 1)!

T [
1
n ,… , 1n] = n! n

√x1⋯xn

Then for a vector of positive real numbers x, we can write the arithmetic-geometric mean inequality as

T[1, 0,… , 0] ≥T [
1
n ,… , 1n]

We can also define mean values based on the symmetric polynomials. We call

𝔐[a](x) = T[a](x)
n!
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the symmetrical mean. For example,

𝔐[1, 0…, 0] = (n− 1)!
n! (a1 +…+ an)

=𝔄(a)

𝔐[
1
n ,… , 1n] =

n!
n!a

1
n
1 ⋯a

1
nn

=𝔊(a)

So, the symmetrical mean is a generalization of 𝔄 and 𝔊. While we are talking about symmetric sums,
we should consider the next identity.

(x+ a1)⋯ (x+ an) = xn + (n1)x
n−1D1 + (n2)x

n−2d2 +…+ (nn)Dn

where Dk is the sum of products of a1,… , an taken k at the same time. If Sk is the coefficient of xn−k in
the expansion, then

Sk = (ni )Dk

Theorem 29 (Newton’s inequality). For 1 ≤ i ≤ n− 1, we have

D2
i ≥Di−1Di+1

Theorem 30 (Maclaurin’s inequality). With the same notation as Newton’s inequality,

D1 ≥√D2 ≥… ≥ n√Dn

2.4 Karamata’s Inequality

Karamata3 proves the next theorem regarding convex functions when one vector majorizes another.

Theorem 31 (Karamata’s inequality). Let f be a convex function and a and b be two vectors such that
a ≻ b. Then

n

Σ
i=1

f(ai) ≥
n

Σ
i=1

f(bi)

The next result first appeared at the forum Art of Problem Solving4. Daniel S. Liu showed this as
a separate result but it also follows from Karamata’s inequality.
Theorem 32 (Reverse rearrangement inequality). Let σ be a permutation of {1,… , n} and (an), (bn) be
two similarly sorted sequences of positive real numbers. Then

(a1 + b1)⋯ (an + bn) ≤ (a1 + bσ(1))⋯ (an + bσ(n)) ≤ (a1 + bn)⋯ (an + b1)
3Jovan Karamata

1932 “Sur une inégalité rélative aux fonctions convexes”, French, Publ. Math. Univ. Belgrade, vol. i, pp. 145-148.
4https://artofproblemsolving.com/community/q2h617132p3677200
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Later this was generalized to the following result.

Theorem 33 (Generalized reverse rearrangement inequality). Let (a1),… , (am) be m similarly sorted
sequences of n positive real numbers. Then

m

∏
i=1

n

Σ
j=1

aσj(i),j ≥
m

∏
i=1

n

Σ
j=1

ai,j

2.5 The Bunching Method: Muirhead’s Inequality

Muirhead5 proves a very important result regarding symmetric sums and means. It is widely used
for solving problems, specially coupled with some other method such as The Buffalo Way. It is also
known as the bunching principle among the American students.

Theorem 34 (Muirhead’s inequality). Let x be a vector of positive real numbers and a be dominated by
b. Then

𝔐[a](x) ≤𝔐[b](x)

Paris andVencovská6 proves a generalization of this inequality but the result is of little practical
use for Olympiad purposes.

Theorem 35 (Generalization of Muirhead’s inequality). Let x and y be two vectors of positive real
numbers such that x ≻ y. If p1,… ,pk are non-negative real numbers, then

Σ
S1∪…∪Sr={1,…,k}

Si∩Sj=ϕ

r

∏
j=1

(Σ
i∈Sj

pi)
□xj ≥ Σ

S1∪…∪Sr={1,…,k}
Si∩Sj=ϕ

r

∏
j=1

(Σ
i∈Sj

pi)
□yj

where □ in □xj denotes that in the expansion of this power, we only consider the terms with non-zero power
of pi.
Problem 2.14. Let a, b, c be positive real numbers. Prove that

a7 + b7 + c7 ≥ a4b3 + b4c3 + c4a3

Solution. Since (7, 0, 0) ≻ (4, 3, 0), by Muirhead’s inequality we have

a7b0c0 + a7c0b0 + b7c0a0 + b7a0c0 + c7a0b0 + c7b0a0 ≥ a4b3c0 + a4c3b0 + b4c3a0

+ b4a3c0 + c4a3b0 + c4b3a0

⟺ 2(a7 + b7 + c7) ≥ 2(a4b3 + b4c3 + c4a3)
⟺ a7 + b7 + c7 ≥ a4b3 + b4c3 + c4a3

5R. F. Muirhead
1902 “Some Methods applicable to Identities and Inequalities of Symmetric Algebraic Functions of n Letters”, Proceedings of

the Edinburgh Mathematical Society, vol. xxi, pp. 144-162, doi: 10.1017/s001309150003460x.
6J. B. Paris and A. Vencovská

2009 “A Generalization of Muirhead’s Inequality”, Journal of Mathematical Inequalities, no. 2, pp. 181-187, doi: 10.7153/
jmi-03-18.
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Problem 2.15. Let a, b, c be positive real numbers. Prove that

a3
bc + b3

ca + c3
ab ≥ a+ b+ c

Solution. We can rearrange the inequality into

a4 + b4 + c4
abc ≥ a+ b+ c

⟺ a4 + b4 + c4 ≥ a2bc+ b2ca+ c2ab

This follows from Muirhead’s inequality since (4, 0, 0) ≻ (2, 1, 1).

2.6 Homogenization and Normalization

2.7 Substitutions
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CHAPTER 3.

ADVANCED TECHNIQUES &
INEQUALITIES

3.1 Tangent Line Trick

The tangent line trick is a very useful trick which has been around for quite some time. Li1 demonstrates
some problems with this trick. Here, we will discuss this in detail and show how it can tackle problems.

Imagine that we are given an inequality in a1,… , an. The inequality can be divided into a sum of
expressions which is same for a1,… , an. That is it can be written as f(a1) + … + f(an) ≥ g(a1,… , an).
Now, we typically try to use Jensen’s inequality in cases like this. But in many cases, f is not convex.
Even so, we may still be able to prove something like

f(x) ≥ f( ̄a)+ (x− ̄a)f′( ̄a)
where ̄a = a1+…+an

n . Summing this for x = a1,… , an, we have

f(a1)+…+ f(an) ≥ nf( ̄a)
The motivation sort of comes from basic calculus. By wishful thinking, we may be able to prove that
the slope between the points (x, f(x)) and ( ̄a, f( ̄a)) is at least the slope of the tangent line of f(x) at
x = ̄a. This is where the name comes from. This trick is specially useful if you are given the quantity
a1 + … + an. If the expressions involved are homogeneous, then you do not even need this value. You
can use homogeneity to impose conditions such as a+ b+ c = 1. For example, see this problem.

Problem 3.1. Let a, b, c be positive real numbers. Prove that

1
a(b+ c) +

1
b(c+ a) +

1
c(a+ b) ≥

27
2(a+ b+ c)2

Solution. The inequality is homogeneous in a, b, c. So without loss of generality, we can normalize the
inequality assuming that a+ b+ c = 1. Then 0 <a, b, c <1, ̄a = 1/3 and we get the transformation

1
a(1− a) +

1
b(1− b) +

1
c(1− c) ≥

27
2

1Kin-Yin Li
2006 “Using Tangent Lines to Prove Inequalities”, Mathematical Excalibure, vol. x, no. 5, p. 1.
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We define

f(x) = 1
a(1− a)

and attempt to prove the inequality that is required by tangent line trick. Since

f′(x) = 2x− 1
x2(1− x)2

we have f(1/3) = 9/2 and f′(1/3) =−27/4. Thus, if we can prove the inequality

f(x) ≥ 9
2
− 27

4
(x− 1

3
)

we are done since we will have

f(a)+ f(b)+ f(c) ≥ 3 ⋅ f ( 1
3
)

= 27
2

So we should check if the tangent line inequality indeed holds.

1
x(1− x) ≥

9
2
− 27

4
(x− 1

3
)

⟺ 1
x(1− x) ≥

54− 81x+ 27
12

≥ 27(1− x)
4

⟺ x(1− x)2 ≤ 4
27

We can check if this holds. If g(x) = x(1− x)2, then

g′(x) =−2x(1− x)+ (1− x)2
= (1− x)(1− 3x)

We have g′(x) = 0 if x ∈ {1, 1/3} and

g″(x) =−3(1− x)− (1− 3x)
= 6x− 4

Since 0 <x <1 and g″(1) = 2 >0, g″(1/3) = −2 <0, we have that g(x) is maximum at x = 1/3
in the interval (0, 1). Thus,

x(1− x)2 ≤ 1
3
(1− 1

3
)
2

= 27
4

We are finally done.
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Remark. Tangent line is a neat trick but it may always not be pretty. But before you go all in, you can
easily check if the desired inequality follows from

f(a1)+…+ f(an) ≥ nf( ̄a)

or not. If it does, there is a good chance that f(x) ≥ f( ̄a)+ (x− ̄a)f′( ̄a) holds as well. Another indication
that this might work is that equality occurs for a1 = … = an = ̄a. In order to avoid calculation with
fractional values, we could also assume a1 + … + an = n for normalization so ̄a = 1. Also, we may
sometimes have to deal with ≤ instead of ≥. Let us see an example of this type below.

Problem 3.2. Given positive real numbers a, b, c such that a+ b+ c ≥ 3. Prove that

1
a2 + b+ c +

1
a+ b2 + c +

1
a+ b+ c2 ≤ 1

Solution. We have equality in the case a = b = c = 1. So, we may be optimistic that tangent line trick
will work here. Using b+ c ≥ 3− a,

1
a2 + b+ c +

1
a+ b2 + c +

1
a+ b+ c2 ≤ 1

a2 + 3− a + 1
b2 + 3− b + 1

c2 + 3− c

So we are done if we can prove that

1
a2 + 3− a + 1

b2 + 3− b + 1
c2 + 3− c ≤ 1

Let

f(x) = 1
x2 + 3− x

We have that

f′(x) = 1− 2x
(x2 + 3− x)2

Since f(1) = 1/3 and f′(1) =−1/9, we need to prove the tangent line inequality

f(x) ≤ 1
3
− 1

9
(x− 1)

⟺ 1
x2 + 3− x ≤ 4− x

9
⟺ 5x2 + 3− 7x− x3 ≥ 0
⟺ x3 − 5x2 + 7x− 3 ≤ 0

We can see that (x− 3) is a factor of this polynomial. So we can factor it easily.

⟺ x2(x− 3)− 2x(x− 3)+ x− 3 ≤ 0
⟺ (x− 3)(x2 − 2x+ 1) ≤ 0

⟺ (3− x)(x− 1)2 ≥ 0

This is obviously true. And summing up the tangent line inequality, we get the conclusion.
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Problem 3.3 (USAMO 2003). Let a, b, c be positive real numbers. Prove that

(2a+ b+ c)2
2a2 + (b+ c)2 + (2b+ c+ a)2

2b2 + (c+ a)2 + (2c+ a+ b)2
2c2 + (a+ b)2 ≤ 8

Solution. Due to homogeneity, we can assume that 0 <a, b, c < 1 and a+ b+ c = 1 without loss of
generality. Then we are required to prove

(1+ a)2
2a2 + (1− a)2 + (1+ b)2

2b2 + (1− b)2 + (1+ c)2
2c2 + (1− c)2 ≤ 8

We can see that equality occurs for a = b = c = 1/3. Define

f(x) = (1+ x)2
2x2 + (1− x)2

= (1+ x)2
3x2 − 2x+ 1

The tangent line inequality in this case is

f(x) ≤ f( ̄a)+ (x− ̄a)f′( ̄a)

where

f′(x) = 2(3x2 − 2x+ 1)(1+ x)− 2(1+ x)2(3x− 1)
(3x2 − 2x+ 1)2

= 2(1+ x)
3x2 − 2x+ 1

− 2(1+ x)2(3x− 1)
(3x2 − 2x+ 1)2

We have f(1/3) = 8/3 and f′(1/3) = 4 so if we can prove that

f(x) ≤ 8
3
+ 4 (x− 1

3
)

= 4(3x+ 1)
3

for 0 <x <1, then the inequality follows.

f(x) ≤ 4(3x+ 1)
3

⟺ (1+ x)2
3x2 − 2x+ 1

≤ 12x+ 3
3

⟺ 36x3 − 15x2 − 2x+ 1 ≥ 0
⟺ (3x− 1)2(4x+ 1) ≥ 0

This is obviously true. So, we have the inequality.
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3.2 Schur-Vornicu-Mildorf Inequality

Hardy et al.2 states the following as Schur’s inequality.

Theorem 36 (Schur’s inequality). Let n be a positive integer. If a, b, c are positive real numbers, then

an(a− b)(a− c)+ bn(b− c)(b− a)+ cn(c− a)(c− b) ≥ 0

Barnard and Child3 states this theorem for n ≤−1 as well. Hardy et al.4 mentions this result
in connection with the following result.

Theorem 37. Consider a vector of positive real numbers x such that no two elements are equal. If v ≥ 0
and δ >0, then

𝔐[v+ 2δ, 0, 0, a4,…]− 2𝔐[v+ δ, δ, 0, a4,…]+𝔐[v, δ, δ, a4,…] ≥ 0

for a vector of non-negative real numbers a.

It was Issai Schur who informed Hardy et al.5 that Theorem 37 does not follow from Muirhead’s
inequality but from Schur’s inequality if we set n = v

δ . So Theorem 36 is accredited to Schur follow-
ing Neville, Oppenheim, Watson, and Wright.6 Schur’s inequality and its reverse have been
generalized in many ways. For example, Guha7 proves the following result.

Theorem 38 (Guha’s inequality). Let a, b, c, u, v,w be positive real numbers such that for a real number
p,

p√a+ p√c ≤ p√b (3.1)
p+1
√
u+ p+1

√
w ≤ p+1

√
v (3.2)

If p >0, then

ubc− vca+ wab ≥ 0 (3.3)

2Hardy et al., Inequalities cit., Page 64.
3S. Barnard and J. M. Child

2018 Higher Algebra, New Academic Science, Page 217.
4Hardy et al., Inequalities cit.
5Ibid.
6E. H. Neville

1956 “Schur’s inequality”, The Mathematical Gazette, vol. xl, no. 333, pp. 216-216, doi: 10.2307/3608826; A. Oppenheim
1958 “2739. Generalisations of Schur’s inequality”, The Mathematical Gazette, vol. xlii, no. 339, pp. 35-35, doi: 10.2307/

3608352; G. N. Watson
1956 “A trivial inequality”, The Mathematical Gazette, vol. xl, no. 334, pp. 288-288, doi: 10.2307/3609631; G.N. Watson
1955 “Schur’s Inequality”, The Mathematical Gazette, vol. xxxix, no. 329, pp. 207-208, doi: 10.2307/3608749; E. M.

Wright
1956 “A generalisation of Schur’s inequality”,TheMathematical Gazette, vol.xl, no. 333, pp. 217-217, doi: 10.2307/3608827.

7U. C. Guha
1962 “Inequalities leading to generalisations of Schur’s inequality”, The Mathematical Gazette, vol. xlvi, no. 357, pp. 227-

229, doi: 10.2307/3614027.
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If −1 <p <0, then 3.3 is reverse. If p <−1, then 3.1 and 3.2 need to be reversed. Equality occurs
if and only if

ap+1

up = bp+1

vp = cp+1

wp

Oppenheim and Davies8 proves the following result which can be thought as the reverse of
Schur’s inequality.

Theorem 39. Let n ≥ 3 be an integer and a1,… , an be real numbers. Then
n

Σ
i=1

(xi − x1)⋯ (xi − xi−1) ⋅ (xi − xi+1)⋯ (xi − xn) ≥ 0

holds for all real numbers x1,… , xn such that x1 ≥… ≥ xn if

{ a1 ≥ 0; a2 ≤ (a
1
2
1 + a

1
2
3 )

2
; a3 ≥ 0 if n = 3

a2 ≤ a1; (−1)n(an−1 − an) ≥ 0; (−1)k+1ak ≥ 0 if n ≥ 4

where 1 ≤ k ≤ n− 1 and k ∉ {2, n− 1}.

We will first mention a notable generalization of Schur’s inequality.

Theorem 40 (Schur-Vornicu-Mildorf inequality). Let a, b, c be three real numbers and x, y, z be non-
negative real numbers. Then

x(a− b)(a− c)+ y(b− c)(b− a)+ z(c− a)(c− b) ≥ 0

holds if one of the following conditions hold:

(1) a ≥ b ≥ c and x ≥ y.

(2) a ≥ b ≥ c and z ≥ y.

(3) a ≥ b ≥ c and x+ z ≥ y.

(4) a, b, c are non-negative, a ≥ b ≥ c and ax ≥ by.

(5) a, b, c are non-negative, a ≥ b ≥ c and cz ≥ by.

(6) a, b, c are non-negative, a ≥ b ≥ c and ax+ cz ≥ by.

(7) x, y, z are lengths of a triangle.

(8) x, y, z are square of lengths of a triangle.

(9) ax, by, cz are the lengths of a triangle.

(10) There is a convex function f on the interval I such that x = f(a), y = f(b), z = f(c) for non-negative
real numbers a, b, c ∈ I.

8A. Oppenheim and Roy O. Davies
1964 “Inequalities of Schur’s Type”, The Mathematical Gazette, vol. xlviii, no. 363, pp. 25-27, doi: 10.2307/3614303.
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Vornicu9 generalized this result to the following.

Theorem 41 (Vornicu-Schur inequality). Let a, b, c; x, y, z be real numbers such that a ≥ b ≥ c and
either x ≥ y ≥ z or z ≥ y ≥ x. Let k be a positive integer f be a non-negative real valued convex or
monotonic function. Then

f(x)(a− b)k(a− c)k + f(y)(b− c)k(b− a)k + f(z)(c− a)k(c− b)k ≥ 0

We can easily verify that Schur’s inequality follows from Vornicu-Schur inequality by setting x =
a, y = b, z = c, k = 1 and f(m) =mn.

3.3 Radon’s Inequality

Radon10 proves the following generalization of Engel form of Cauchy-Schwarz inequality.

Theorem 42 (Radon’s Inequality). Let b1,… , bn be positive real numbers and a1,… , an;m be non-negative
real numbers. Then

am+1
1
bm1

+…+ am+1
n
bmn

≥ (a1 +…+ an)m+1

(b1 +…+ bn)m

Beckenbach11 proves a similar result. For a vector of positive real numbers a and a real number
r, let us define

ℜr(a) =

n
Σ
i=1

ari
n
Σ
i=1

ar−1
i

Note that this is actually a weighted arithmetic mean of a with the weight vector

ω = (
ar−1
1

n
Σ
i=1

ar−1
i

,… , ar−1
n

n
Σ
i=1

ar−1
i

)

This is also a generalization of arithmetic, geometric and harmonic means. We get the usual arithmetic
and harmonic means if we set r = 1 and −1 respectively. r = 1

2 gives us the geometric mean for n = 2.

Theorem 43 (Beckenbach’s inequality). Let r be a real number. Then

ℜr(a+ b){≤ℜr(a)+ ℜr(b) if 1 ≤ r ≤ 2
≥ℜr(a)+ ℜr(b) if 0 ≤ r ≤ 1

Equality occurs if and only if r = 1 or a is proportional to b.
9Valentin Vornicu

2003 Olimpiada de matematica: de la provocare la experienta, GIL Publishing House, vol. v.
10Johann Radon

1913 “Über die absolut additiven Mengenfunktionen”, Wien. Sitz. (IIa), vol. cxxii, pp. 1295-1438.
11Edwin F. Beckenbach

1950 “A Class of Mean Value Functions”, The American Mathematical Monthly, vol. lvii, no. 1, p. 1, doi: 10.2307/2305163.
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Yang12 proves the following generalization of Radon’s Inequality.

Theorem 44 (Generalized Radon’s Inequality). Let b1,… , bn be positive real numbers and

a1,… , an; r, s

be non-negative real numbers such that r ≥ s+ 1. Then

ar1
bs1

+…+ arn
bsn

≥ (a1 +…+ an)r
nr−s−1(b1 +…+ bn)n

Yongtao et al.13 proves the equivalence between some well known inequalities.

Theorem 45 (Equivalence of inequalities). The following inequalities are mutually equivalent.

i. Bernoulli’s inequality

ii. The weighted arithmetic-geometric mean inequality

iii. Hölder’s inequality

iv. The weighted power mean inequality

v. Minkowski’s inequality

vi. Radon’s inequality

3.4 Smoothing and Isolated Fudging

In many inequalities of the form

f(x1,… , xn) ≥ a

for some real number a, we may be able to establish the property that f assumes smaller values when the
difference between two variables xi and xj decreases. In such cases, we can use the fact that f assumes
the smallest value when x1 = … = xn. This is known as the smoothing principle. Recall that we used
a similar argument for arithmetic-geometric mean inequality when we replaced the product a1a2 by
̄a( ̄a+ k− h) where a1 = ̄a− h and a2 = ̄a+ k.
12Kechang Yang

2002 “A Note and Generalization of a Fractional Inequality”, Journal of Yueyang Normal University (Natural Science Edition),
vol. xv, no. 4, pp. 9-11, doi: https://caod.oriprobe.com/articles/18339537/A_Note_and_Generalization_of_a_
Fractional_Inequali.htm.

13Li Yongtao et al.

2018 “A note on the proofs of generalized Radon inequality”, Mathematica Moravica, vol. xxii, no. 2, pp. 59-67, doi: 10.
5937/matmor1802059l.
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Problem 3.4 (USA 1996). Let a0,… , an be real numbers in the interval (0, π2 ). If

tan (a0 −
π
4
)+…+ tan (an −

π
4
) ≥ n− 1

prove that

tan a0⋯ tan an ≥ nn+1

Solution. If xi = tan (ai − π
4 ) so −1 <xi <1 and

xi =
tan ai − 1
1+ tan ai

= yi − 1
1+ yi

where yi = tan ai. Then

yi =
1+ xi
1− xi

3.5 The UVW/PQR/ABC Method

The UVW method was popularized by Rozenberg.14 It has also been known as the ABC method
or the PQR method although it is unclear what exactly the origin of this method is. Although some
people believe it was originated at Vietnamwhere it was called the ABC (Abstract concreteness) method.
Currently, Knudsen15 is the most popular version of this technique but at the core, they all use the
same idea. We will try to explain this method as clearly as possible with examples.

Consider an inequality in three variables a, b, c ∈ ℝ. If the expression is symmetric on a, b, c, then
the initial idea of PQR method was to write

a+ b+ c = p
ab+ bc+ ca = q

abc = r

so that a, b, c are the roots of the equation

x3 − px2 + qx− r = 0

14Michael Rozenberg

2011 “uvw–Method in Proving Inequalities”, Math. Ed., vol. 59-60, no. 3-4, pp. 6-14, doi: http://www.mathnet.ru/php/
archive.phtml?wshow=paper&amp;jrnid=mo&amp;paperid=194&amp;option_lang=eng.

15Mathias Tejs Knudsen

n.d. “The UVW-method”, Art of problem solving (), doi: https://artofproblemsolving.com/community/q2h278791p15
07763, https://artofproblemsolving.com/community/q2h278791p1507763.
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However, nowadays the most popular way to convert these is to write

a+ b+ c = 3u
ab+ bc+ ca = 3v2

abc = w3

Hence, the name UVW. While working with such transformations, be careful not to assume v2 ≥ 0 by
default. We have to consider the case where v2 is negative as well. We do not know for sure that a, b, c
are all positive unless it is stated specifically. However, the following result is very nice when they are
indeed positive. We will use the notations as stated above throughout this section and the names of the
following theorems follow Knudsen.16

Theorem 46 (The Idiot Theorem). If a, b, c ≥ 0, then u ≥ v ≥ w.

Proof. Using a2 + b2 + c2 ≥ ab+ bc+ ca and a+ b+ c ≥ 3 3
√
abc, we immediately see that

(a+ b+ c)2 ≥ 3(ab+ bc+ ca)

which implies 9u2 ≥ 9v2 or u2 ≥ v2 and u ≥ w. For proving v ≥ w, we can use arithmetic-harmonic
mean inequality

3
1
a + 1

b + 1
c

≤ 3
√
abc

⟺ 3abc
ab+ bc+ ca ≤ 3

√
abc

⟺ ab+ bc+ ca ≥ 3 3√(abc)2

⟺ 3v2 ≥ 3w2

This proves the theorem.

Theorem 47 (The UVW theorem). Let u, v,w be numbers such that u, v2,w3 are real numbers. Then
there exists real numbers a, b, c such that

a+ b+ c = 3u
ab+ bc+ ca = 3v2

abc = w3

if and only if u2 ≥ v2 and

3uv2 − 2u3 − 2√(u2 − v2)3 ≤w3 ≤ 3uv2 − 2u3 + 2√(u2 − v2)3

For proving this theorem, we will need the following result first.

Theorem 48. a, b, c are real numbers if and only if (a− b)(b− c)(c− a) is a real number.
16Ibid.
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Proof. The if part is obvious. So we will focus on the only if part. If (a− b)(b− c)(c−a) is not real, then
a, b, c are not real either. Clearly, a, b, c are the roots of x3 − 3ux2 + 3vx− w3 = 0 by Vieta’s formulas.
If one of the roots is complex, say a, then another of b, c is complex, say b. Moreover, we must have
a = z and b = ̄z for some complex number z since complex roots can appear only in conjugates. Then

(a− b)(b− c)(c− a) = (z− ̄z)( ̄z− c)(c− z)

Letting z = u+ iv for some u, v ∈ ℝ, we have ̄z = u− iv and

(a− b)(b− c)(c− a) =−2iv(u− c+ iv)(u− c− iv)
=−2iv ((u− c)2 + v2)

This is obviously a complex number, so the claim is true unless v = 0 which cannot hold since z ∉ ℝ.

Proof of The UVW theorem. For any x ∈ ℝ, we have x2 ≥ 0. By (48), a, b, c ∈ ℝ implies that (a −
b)(b− c)(c− a) ∈ ℝ and so (a− b)2(b− c)2(c− a)2 ∈ ℝ. Then

(a− b)2(b− c)2(c− a)2 ≥ 0
⟺ 27 (−(w3 − (3uv2 − 2u3))2 + 4(u2 − v2)3) ≥ 0

⟺ 4(u2 − v2)3 ≥ (w3 − (3uv2 − 2u3))2

⟺ 2√(u2 − v2)3 ≥ |w3 − (3uv2 − 2u3)|

This proves the theorem.

Theorem 49 (The positivity theorem). a, b, c are non-negative real numbers if and only if u, v2,w3 are
non-negative real numbers.
Proof. The if part is obvious, so we prove the only if part. So we should prove that if any of a, b, c are
negative, then at lest one of u, v2,w3 is negative. It is easy to see that w3 = abc is negative if one or
three of a, b, c are negative. So, we are left with the case where two of a, b, c are negative. Without loss
of generality, assume that a and b are negative whereas c is non-negative. Let a =−x, b =−y so that

a+ b+ c = 3u
c− x− y = 3u

ab+ bc+ ca = 3v2
= xy− c(x+ y)

From this we can show that at least one of u or v has to be negative. Otherwise, if both u and v are
non-negative, then c− x− y ≥ 0 and xy− c(x+ y) ≥ 0. But this leads to a contradiction since

xy ≥ c(x+ y)
≥ (x+ y)2
≥ 2xy

by Arithmetic-Geometric Inequality.
Theorem 50 (Tej’s theorem). Let a, b, c be non-negative real numbers. Then we have the following:

1. If at least one value of w3 exists for fixed u and v2 corresponding to a, b, c, then w3 has a global
maximum and minimum (see Global maximum and minimum). This maximum value is achieved
when at least two of a, b, c are equal. The minimum value is achieved when two of a, b, c are equal or
when one of them is 0.
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2. If at least one value of v2 exists for fixed u and w3 corresponding to a, b, c, then v2 has a global
maximum and minimum. This maximum value is achieved when at least two of a, b, c are equal. The
minimum value is achieved when two of a, b, c are equal or when one of them is 0.

3. If at least one value of u exists for fixed v2 and w3 corresponding to a, b, c, then u has a global
maximum and minimum. This maximum value is achieved when at least two of a, b, c are equal. The
minimum value is achieved when two of a, b, c are equal or when one of them is 0.

Theorem 51. Every symmetric inequality of degree at most 5 has to be proved only for a1 = a2 or
an = 0.

Proof. Using Elementary polynomials,

3.6 Mixing Variables Technique

Hung17

3.7 Separation

We prove the arithmetic-geometric inequality yet again. Assume that x1⋯xn = 1 and we want to show
that

x1 +…+ xn ≥ n

Assume that the result is valid for n and we want to prove it for n + 1. Without loss of generality, we
can assume that x1 ≤ 1 and x2 ≥ 1. Otherwise, xi ≥ 1 for all i implies that xi = 1 which makes the
inequality trivially true.

(1− x1)(x2 − 1) ≤ 0
⟹ x1 + x2 ≥ 1+ x1x2

Then we have the following by induction.

x1 +…+ xn+1 ≥ 1+ x1x2 + x3⋯xn+1

≥ 1+ n

The trick here is to separate the variables in terms of which side of 1 they are on. It is almost the
same as being on the same or different sides of a line a point is. See the following problem for a better
explanation.

17Pham Kim. Hung
2007 Secrets in inequalities, GIL Publishing House.
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Problem 3.5. Let a, b, c be positive real numbers. Prove that

a2 + b2 + c2 + 2abc+ 1 ≥ 2(ab+ bc+ ca)

Solution. By the pigeonhole principle, at least two of a, b, c are on the same side of 1. Without loss of
generality, assume that a and b are on the same side of 1. Then

(a− 1)(b− 1) ≥ 0
⟹ ab ≥ a+ b− 1

Then we have

a2 + b2 + c2 + 2abc+ 1 ≥ a2 + b2 + c2 + 2c(a+ b− 1)+ 1
= (c− 1)2 + a2 + 2ca+ 2bc+ b2
≥ 0+ 2ab+ 2bc+ 2ca

Problem 3.6 (USAMO 2001, problem 3). Let a, b, c be positive real numbers such that

a2 + b2 + c2 + 2abc = 4

Prove that,

0 ≤ ab+ bc+ ca− abc ≤ 2

Solution.

Problem 3.7. Let a, b, c be real numbers. Prove that

4(1+ a2)(1+ b2)(1+ c2) ≥ 3(a+ b+ c)2

Solution. Again, we can assume without loss of generality that ab+ 1 ≥ a+ b.

(1+ a2)(1+ b2) = 1+ a2 + b2 + a2b2

≥ 1+ a2 + b2 + (a+ b− 1)2

= 2(1+ a2 + b2)+ 2(ab− a− b)

3.8 Flipping

Sometimes we face inequalities that give us the wrong signs after using some common techniques. We
can consider subtracting or dividing some expression to reach the desired form. Let us see how to do
that using the following problems.

Problem 3.8. Let x1,… , xn be real numbers such that x1 +…+ xn = n. Prove that,

1
x21 + 1

+…+ 1
x2n + 1

≥ n
2
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Solution. First, see that x2 + 1 ≥ 2x gives us

1
x2i + 1

≤ 1
2xi

This is the opposite sign of what we want to show. One idea to flip the signs is to send the expressions
on the other side like this.

1
x21 + 1

+…+ 1
x2n + 1

+ n ≥ n
2
+ n

⟺ n ≥ n
2
+ (1− 1

x21 + 1
)+…+ (1− 1

x2n + 1
)

⟺ n
2
≥ x21

x21 + 1
+…+ x2n

x2n + 1

This is evident since

1
x2i + 1

≤ 1
2xi

⟺ x2i
x2i + 1

≤ xi
2

Summing over 1 ≤ i ≤ n, we get

x21
x21 + 1

+…+ x2n
x2n + 1

≤ x1 +…+ xn
2

= n
2

Problem 3.9 (PuMaC 2014). Let a, b, c be positive real numbers such that a2 + b2 + c2 = 3. Prove
that

1
a3 + 2

+ 1
b3 + 2

+ 1
c3 + 2

≥ 1

Solution. We again have a similar situation here. Using Arithmetic-Geometric Inequality, we get a3 +
1+ 1 ≥ 3a so

1
a3 + 2

≤ 1
3a

Let us use the same strategy as the example right above.

1
a3 + 2

+ 1
b3 + 2

+ 1
c3 + 2

+ 3 ≥ 1+ 3

⟺ 3 ≥ 1+ (1− 1
a3 + 2

)+ (1− 1
b3 + 2

)+ (1− 1
c3 + 2

)

⟺ 2 ≥ a3 + 1
a3 + 2

+ b3 + 1
b3 + 2

+ c3 + 1
c3 + 2

We are still facing a problem that the constants in the numerators of each expressions are not vanishing.
The reason behind it is the constant 2 which is not fully canceled out. In order to completely cancel it
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out, we need to subtract the expression from 1/2 instead of 1.

1
a3 + 2

+ 1
b3 + 2

+ 1
c3 + 2

+ 3
2
≥ 1+ 3

2

⟺ 3
2
≥ 1+ (

1
2
− 1

a3 + 2
)+ (

1
2
− 1

b3 + 2
)+ (

1
2
− 1

c3 + 2
)

⟺ 1
2
≥ a3

2(a3 + 2)
+ b3

2(b3 + 2)
+ c3

2(c3 + 2)

⟺ 1 ≥ a3
a3 + 2

+ b3
b3 + 2

+ c3
c3 + 2

This is again something we can work on.

1
a3 + 2

≤ 1
3a

⟺ a3
a3 + 2

≤ a3
3a

Summing over,

a3
a3 + 2

+ b3
b3 + 2

+ c3
c3 + 2

≤ a2 + b2 + c2
3

This is exactly what we wanted.

Remark. This can be generalized to the following using the same technique. If a1,… , an are positive
real numbers such that a21 +…+ a2n = n,

1
a31 + 2

+…+ 1
a3n + 2

≥ n
3

Problem 3.10 (IMO 2005, problem 3). Let x, y, z be real numbers such that xyz ≥ 1. Prove that

x5 − x2
x5 + y2 + z2 + y5 − y2

x2 + y5 + z2 + z5 − z2
x2 + y2 + z5 ≥ 0

Solution. Rearrange the inequality as

x5 − x2
x5 + y2 + z2 + y5 − y2

x2 + y5 + z2 + z5 − z2
x2 + y2 + z5 ≥ 0

⟺ x5 − x2
x5 + y2 + z2 + y5 − y2

x2 + y5 + z2 + z5 − z2
x2 + y2 + z5 + 3 ≥ 3

⟺ (1− x5 − x2
x5 + y2 + z2 )+ (1− y5 − y2

x2 + y5 + z2 )+ (1− z5 − z2
x2 + y2 + z5 ) ≤ 3

⟺ x2 + y2 + z2
x5 + y2 + z2 + x2 + y2 + z2

x2 + y5 + z2 + x2 + y2 + z2
x2 + y2 + z5 ≤ 3

Now, there is no obvious way to use something like Cauchy-Bunyakovsky-Schwarz inequality or Engel
form of Cauchy-Schwarz here. And it looks like the denominators are supposed to be in place of the
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numerators. So, we will try to accomplish that.

x5 + y2 + z2 = x4
1
x

+ y4
y2 + z4

z2

≥ (x2 + y2 + z2)2
1
x + y2 + z2

⟺ x2 + y2 + z2
x5 + y2 + z2 ≤

1
x + y2 + z2

x2 + y2 + z2

So we have

1
x + y2 + z2

x2 + y2 + z2 +
x2 + 1

y + z2

x2 + y2 + z2 +
x2 + y2 + 1

z
x2 + y2 + z2 ≤ yz+ y2 + z2

x2 + y2 + z2 + x2 + zx+ z2
x2 + y2 + z2 + x2 + y2 + xy

x2 + y2 + z2

= 2(x2 + y2 + z2)+ xy+ yz+ zx
x2 + y2 + z2

≤ 2(x2 + y2 + z2)+ x2 + y2 + z2
x2 + y2 + z2

This gives us the desired inequality.

Problem 3.11 (APMO 1991, problem 3). Let a1,… , an, b1,… , bn be positive real numbers such that

a1 +…+ an = b1 +…+ bn

Show that

a21
a1 + b1

+…+ a2n
an + bn

≥ a1 +…+ an
2

Solution. See the following.

a21
a1 + b1

+…+ a2n
an + bn

≥ a1 +…+ an
2

⟺ a21
a1 + b1

+…+ a2n
an + bn

+ a1 +…+ an
2

≥ a1 +…+ an

⟺ a1 +…+ an
2

≥ (a1 −
a21

a1 + b1
)+…+ (an −

a2n
an + bn

)

= a1b1
a1 + b1

+…+ anbn
an + bn

⟺ a1 +…+ an ≥
2a1b1
a1 + b1

+…+ 2anbn
an + bn

⟺ 1
2
(a1 + b1 +…+ an + bn) ≥

2a1b1
a1 + b1

+…+ 2anbn
an + bn

⟺ a1 + b1
2

+…+ an + bn
2

≥ 2a1b1
a1 + b1

+…+ 2anbn
an + bn
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The last inequality is evidently true since 2ab
a+b is the harmonic mean of a and b. Then we can use the

following to verify the inequality.

a+ b
2

≥ 2ab
a+ b

3.9 Neutralizing Denominators

3.10 Dumbassing

3.11 The Equal Variable Method

Cîrtoaje18

3.12 Probability in Inequality

18Vasile Cîrtoaje
2007 “The Equal Variable Method”, J. Inequal. Pure Appl. Math., vol. viii, no. 1, pp. 1-21, doi: https://www.emis.de/

journals/JIPAM/article828.html#.
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CHAPTER 4.

PRACTICE PROBLEMS

We will pose various types of problems here. The problems will not be sorted in any particular order.
There will be no categorization and similar problems will not be put together. We did not provide
practice problems per section or chapter because in real contest, you will have no way of knowing what
technique or theorem to use. This is why we demonstrated some problems while discussing a particular
concept but did not add any extra problems. Here, you are free to use any method necessary to solve
the problems.

Problem 4.1. Let a, b, c be positive real numbers. Prove that

(a3 + 2)(b3 + 2)(c3 + 2) ≥ (a+ b+ c)3

Solution. Rearrange the inequality as

(a3 + 13 + 13)
1
3 (13 + b3 + 13)

1
3 (13 + 13 + c3) 1

3 ≥ (a31313)
1
3 + (13b313)

1
3 + (1313c3)

1
3

which is obviously true by Generalized Hölder’s Inequality.
Problem 4.2. Let a, b be positive real numbers such that a+ b = 1. Prove that

1
a2 + 1

b2 ≥ 8

Solution. Using Generalized Hölder’s Inequality on (a+ b), (a+ b), ( 1
a2 + 1

b2 ),

(a+ b) 1
3 (a+ b) 1

3 (
1
a2 + 1

b2 )
1
3

≥ (a ⋅ a ⋅ 1
a2 )

1
3

+ (b ⋅ b ⋅ 1
b2 )

1
3

Problem 4.3. Let a, b, c be positive real numbers such that a+ b+ c = 1. Prove that

4a3 + 9b3 + 36c3 ≥ 1

Notice that 4, 9, 36 are square numbers while a+ b+ c is also 1. This along with the terms like 4a3 tells
us to somehow cancel the factors 4, 9, 36 so that we can use the fact that

(a3)
1
3 + (b3)

1
3 + (c3)

1
3 = 1

Fortunately, we also have 1
2 + 1

3 + 1
6 = 1 so using Generalized Hölder’s Inequality,

(
1
2
+ 1

3
+ 1

6
)
1
3

(
1
2
+ 1

3
+ 1

6
)
1
3

(4a3 + 9b3 + 36c3)
1
3 ≥

(
1
2
⋅ 1
2
⋅ 4a3)

1
3

+ (
1
3
⋅ 1
3
⋅ 9b3)

1
3

+ (
1
6
⋅ 1
6
⋅ 36c3)

1
3

This proves the claim.
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CHAPTER 5.

CONTEST PROBLEMS

Inequalities have been a part of the mathematical contests for a long time. We have borrowed a lot of
problems from these prominent contests. Here is a list of the contests (in no particular order):

• International Mathematical Olympiad (IMO)

• Asian Pacific Mathematical Olympiad (APMO)

• Belarusian National Olympiad (BrNO)

• Bulgarian National Olympiad (BuNO)

• China Mathematical Olympiad (ChMO)

• United States of America Mathematical Olympiad (USAMO)

• Singapore Mathematical Olympiad (SgMO)

• Balkan Mathematical Olympiad (BkMO)

• Abel’s Mathematical Contest (Norwegian Mathematical Olympiad) (AMC)

• Austrian-Polish Competition (APC)

• British Mathematical Olympiad (BMO)

• Azerbaĳan National Olympiad (AzNO)

• Taiwan National Olympiad (TNO)

• Romania National Olympiad (RNO)

• Albania Mathematical Olympiad (AlMO)

• Poland Mathematical Olympiad (PMO)

• Mediterranean Mathematical Olympiad (MMO)

• Albania-Balkan Mathematical Olympiad (ABMO)

• Brazil National Olympiad (BNO)

• Iranian Mathematical Olympiad (IrMO)
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The contests appear in this chapter alphabetically. Problems within a region are ordered based on
which year they appeared. In most countries, mathematical Olympiads are followed by team selection
tests. However, for better categorization and abbreviation, we have not separated problems based on
whether they appeared on a team selection test or national Olympiad. We simply put all the problems
under the same region. See Dušan et al.1 for a reference to the IMO problems (at least up to 2009).
See DongPHD and Suugaku2 for a reference to the APMO problems, although we should warn the
reader that the full book is not written in LATEX for some reason.

Recall that for a vector a = (a1,… , an), the arithmetic, geometric and harmonicmeans are𝔄(a),𝔊(a),ℌ(a)
and 𝔐r(a) is the power mean of order r. For another vector b, ⟨a, b⟩ is the inner product of a and b. The

Lp norm of a is p√ap1 +…+ apn .

5.1 ABMO

Problem 5.1 (Team Selection Test 2014, problem 1). Prove that for an integer n > 2, the following
inequality holds:

1
n+ 1

(1+ 1
3
+…+ 1

2n− 1
) > 1

n (
1
2
+…+ 1

2n )

Solution.

Problem 5.2 (Team Selection Test 2010, problem 4). Let a, b, c be the sides of a triangle and k be a
real number. Prove that

a3 + b3 + c3 <k(a+ b+ c)(ab+ bc+ ca)

holds for k = 1. Find the smallest value of k such that the inequality holds.

5.2 AlMO

Problem 5.3 (Albania Team Selection Test 2013, problem 2). Let a, b, c, d be positive real numbers.
Prove that x = 3 is the minimal value for which the following inequality holds:

ax + bx + cx + dx ≥ 1
a + 1

b + 1
c + 1

d
1Djukić Dušan et al.

2011 The IMO compendium: a collection of problems suggested for the International Mathematical Olympiads: 1959-2009,
Springer.

2DongPHD and Suugaku
2009 APMO 1989− 2009 Problems and Solutions, vnmath.com.
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Problem 5.4 (Albania Team Selection Test 2012, problem 1). Find the greatest value of the expression

1
x2 − 4x+ 9

+ 1
y2 − 4y+ 9

+ 1
z2 − 4z+ 9

where x, y, z are non-negative real numbers such that x+ y+ z = 1.

5.3 AMC

Problem 5.5 (2014 Norwegian Mathematical Olympiad, problem 1). Let x, y be non-negative real
numbers. Show that

x2 + y2 + 1 ≤√(x3 + y+ 1)(y3 + x+ 1)

Problem 5.6 (2013 Norwegian Mathematical Olympiad, problem 1). Find all real numbers a such
that

3x2 + y2 ≥−ax(x+ y)

holds for all real numbers x, y.
Problem 5.7 (NorwegianMathematical Olympiad 2012, problem 4). Let x, y be positive real numbers.
Show that

(1+ x
y )

3
+ (1+ y

x )
3
≥ 16

Problem 5.8 (Norwegian Mathematical Olympiad 2010, problem 2). Let x be a real number such
that 0 <x <1. Show that

x2
1− x + (1− x)2

x ≥ 1

Problem 5.9 (Norwegian Mathematical Olympiad 2009, problem 4). Show that

(
2010
2009

)
2009

>2

Problem 5.10 (Norwegian Mathematical Olympiad 2008, problem 3). (i) Let x, y be positive real
numbers such that x+ y = 2. Show that

1
x + 1

y ≤ 1
x2 + 1

y2

(ii) Let x, y, z be real numbers such that x+ y+ z = 2. Show that

1
x + 1

y + 1
z + 4

9
≤ 1

x2 + 1
y2 + 1

z2
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Problem 5.11 (Norwegian Mathematical Olympiad 2006, problem 2). (i) Let a, b be real non-negative
numbers. Show that

a+ b ≥ a2 + b2
2

+
√
ab

(ii) Let a, b be real numbers in the interval [0, 3]. Show that

a2 + b2
2

+
√
ab ≥ (a+ b)2

2

Problem 5.12 (Norwegian Mathematical Olympiad 2005, problem 4). (a) Let a, b, c be real positive
numbers. Show that

(a+ b)(a+ c) ≥ 2√abc(ab+ bc+ ca)

(b) Let a, b, c be real numbers such that

ab+ bc+ ca >a+ b+ c >0

Problem 5.13 (Norwegian Mathematical Olympiad 2003, problem 2). Let a1,… , an be n positive
integers. Show that

n

Σ
i=1

a3i ≥ (
n

Σ
i=1

ai)
2

Problem 5.14 (Norwegian Mathematical Olympiad 2002, problem 2). Let n ≥ 2 be a positive integer
and x1,… , xn, y1,… , yn be positive real numbers such that

x1 +…+ xn ≥ x1y1 +…+ xnyn

Show that

x1 +…+ xn ≤
x1
y1

+…+ xn
yn

Problem 5.15 (Norwegian Mathematical Olympiad 2000, problem 2). Let a, b, c, d be non-negative
real numbers such that a+ b+ c+ d = 4. Show that

√
a+ b+ c+

√
b+ c+ d+

√
c+ d+ a+

√
d+ a+ b ≥ 6

Problem 5.16 (Norwegian Mathematical Olympiad 1999, problem 1). If a, b, c, d, e are real numbers,
prove that

a2 + b2 + c2 + d2 + e2 ≥ a(b+ c+ d+ e)

Problem 5.17 (Norwegian Mathematical Olympiad 1995, problem 4). Let xi, yi be positive real num-
bers for 1 ≤ i ≤ n. Prove that

(
n

Σ
i=1

(xi + yi)2) (
1

Σn
i=1 xiyi

) ≥ 4n2
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Problem 5.18 (Norwegian Mathematical Olympiad 1994, problem 3). Let x1,… , x1994 be positive real
numbers. Prove that

(
x1
x2

)
x1
x2 ⋯ (

x1993
x1994

)
x1994
x1993 ≥ (

x1
x2

)
x2
x1 ⋯ (

x1993
x1994

)
x1994
x1993

Problem 5.19 (Norwegian Mathematical Olympiad 1993, problem 1). 1. Let a, b, c be sides of a tri-
angle. Prove that

a
b+ c +

b
c+ a + c

a+ b <2

Problem 5.20 (Norwegian Mathematical Olympiad 1993, problem 2). Let a, b, c, d are real numbers
such that b < c <d. Prove that

(a+ b+ c+ d)2 >8(ac+ bd)

5.4 APC

Problem 5.21 (APC 2006, problem 5). Prove that for all positive integer n and positive real numbers
a, b, c, the following inequality holds:

an+1

an + an−1b+…+ bn + bn+1

bn + bn−1c+…+ cn−1 + cn+1

cn + cn−1 +…+ an ≥ a+ b+ c
n+ 1

Problem 5.22 (APC 2005, problem 3). Let a0,… , an be real numbers such that

(a) 0 = a0 ≤… ≤ an
(b) For 0 ≤ i < j ≤ n, aj − ai ≤ j− i

Prove that
n

Σ
i=0

a2i ≥
n

Σ
i=0

a3i

Problem 5.23 (APC 2005, problem 10). Determine all pairs of non-negative integers (k, n) such that
the following inequality holds for all positive real numbers x, y:

1+ yn
xk ≥ (1+ y)n

(1+ x)k

Problem 5.24 (APC 2003, problem 8). Given real numbers x1 ≥… ≥ x2003 ≥ 0. Show that

xn1 − xn2 +…+ xn2003 ≥ (x1 − x2 +…+ x2003)n

for any positive integer n.
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Problem 5.25 (APC 2001, problem 3). Let a, b, c be sides of a triangle. Prove that

2 ≤ a+ b
c + b+ c

a + c+ a
b − a3 + b3 + c3

abc ≤ 3

Problem 5.26 (APC 2000, problem 9). Let a, b, c be non-negative real numbers such that a+b+c = 1.
Prove that

2 ≤ (1− a2)2 + (1− b2)2 + (1− c2)2 ≤ (1+ a)(1+ b)(1+ c)

Problem 5.27 (APC 1999, problem 2). Find the best possible k, l such that

k < v
v+ w + w

w+ x + x
x+ y + y

y+ z + z
z+ x < l

for all positive real numbers v,w, x, y, z.
Problem 5.28 (APC 1998, problem 1). Let x1, x2, y1, y2 be real numbers such that x21 + x22 ≤ 1. Prove
that

(x1y1 + x2y2 − 1)2 ≥ (x21 + x22 − 1)(y21 + y22 − 1)

Problem 5.29 (APC 1997, problem 7). Let p, q be arbitrary real numbers.

(a) Prove that p2 + q2 + 1 >p(q+ 1).

(b) Determine the largest possible b such that p2 + q2 + 1 > bp(q+ 1) for all p, q.
(c) Determine the largest possible c such that p2 + q2 + 1 > cp(q+ 1) for all integer p, q.
Problem 5.30 (APC 1995, problem 9). Prove that for all positive integers m, n and all real numbers
x, y, the following inequality holds:

(n− 1)(m− 1) (xn+m + yn+m)+ (n+ m− 1) (xnym + xmyn) ≥ nm (xn+m−1y+ yn+m−1x)

Problem 5.31 (APC 1993, problem 6). If a, b are non-negative real numbers, prove the inequality

(
√a+

√
b

2
)
2

≤ a+ 3
√
a2b+ 3

√
ab2 + b

4
≤ a+

√
ab+ b
3

≤√(
a2/3 + b2/3

2
)
3

5.5 APMO

Problem 5.32 (2018, problem 2). Let f(x) and g(x) be given by

f(x) = 1
x + 1

x− 2
+…+ 1

x− 2018

g(x) = 1
x− 1

+ 1
x− 3

+…+ 1
x− 2017

Prove that

|f(x)− g(x)| >2
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Problem 5.33 (2012, problem 5). Let n ≥ 2 be an integer and a1,… , an be real numbers such that
a21 +…+ a2n = n. Prove that

Σ
1≤i<j≤n

1
n− aiaj

≤ n
2

Problem 5.34 (2007, problem 4). Let x, y, z be positive real numbers such that
√
x+√y+√

z = 1

Prove that

x2 + yz
√2x2(y+ z)

+ y2 + zx
√2y2(z+ x)

+ z2 + xy
√2z2(x+ y)

≥ 1

Problem 5.35 (2005, problem 2). Let a, b, c be positive real numbers such that abc = 8. Prove that

a2

√(1+ a3)(1+ b3)
+ b2

√(1+ b3)(1+ c3)
+ c2

√(1+ c3)(1+ a3)
≥ 4

3

Problem 5.36 (APMO 2004, problem 5). Prove that the inequality

(a2 + 2)(b2 + 2)(c2 + 2) ≥ 9(ab+ bc+ ca)

holds for all positive real numbers a, b, c.
Problem 5.37 (APMO 2003, problem 4). Let a, b, c be the sides of a triangle with a+ b+ c = 1 and
n ≥ 2 be an integer. Show that

n√an + bn + n√bn + cn + n√cn + an <1+
n√2
2

Problem 5.38 (APMO 2002, problem 1). Let n be a positive integer and a1,… , an be a sequence of
non-negative integers. Let

An =
a1 +…+ an

n
Prove that

a1!⋯an!≥ (⌊An⌋!)n

Problem 5.39 (APMO 2002, problem 4). Let x, y, z be positive numbers such that

1
x + 1

y + 1
z = 1

Show that

√x+ yz+√y+ zx+√z+ xy ≥√xyz+√
x+√y+√

z

Problem 5.40 (APMO 1998, problem 3). Let a, b, c be positive real numbers. Prove that

(1+ a
b ) (1+

b
c ) (1+

c
a ) ≥ 2 (1+ a+ b+ c

3
√
abc

)
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Problem 5.41 (APMO 1996, problem 5). Let a, b, c be the lengths of the sides of a triangle. Prove that
√
a+ b− c+

√
b+ c− a+

√
c+ a− b ≤

√
a+

√
b+√

c

and determine when equality occurs.

Problem 5.42 (APMO 1991, problem 3). Let a1,… , an, b1,… , bn be positive real numbers such that

a1 +…+ an = b1 +…+ bn
Show that

a21
a1 + b1

+…+ a2n
an + bn

≥ a1 +…+ an
2

Solution. Engel form of Cauchy-Schwarz can be used to solve this easily.

a21
a1 + b1

+…+ a2n
an + bn

≥ (a1 +…+ an)2
a1 + b1 +…+ an + bn

= (a1 +…+ an)2
2(a1 +…+ an)

= a1 +…+ an
2

Problem 5.43 (APMO 1990, problem 2). Let a1,… , an be positive real numbers and Sk be the sum of
the products of a1,… , an taken k at a time. Show that

SkSn−k ≥ (nk)
2a1⋯an

Problem 5.44 (APMO 1989, problem 1). Let x1,… , xn be positive real numbers and

S = x1 +…+ xn
Prove that

(1+ x1)⋯ (1+ xn) ≤ 1+ S+ S2

2!
+…+ Sn

n!

5.6 AzNO

Problem 5.45 (2020 National Olympiad, problem 3). a, b, c are positive real numbers such that a +
b+ c = 3. Prove that

Σ a2 + 6
2a2 + 2b2 + 2c2 + 2a− 1

≤ 3

Problem 5.46 (2015 National Olympiad, problem 1). Let a, b, c be positive real numbers such that
abc = 1

8 . Prove that

a2 + b2 + c2 + a2b2 + b2c2 + c2a2 ≥ 15
16
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Problem 5.47 (2016 Team Selection Test, problem 1, day 3). Let a1, a2,… be a sequence of positive
real numbers such that

ak+1 ≥
kak

a2k + k− 1

for every positive integer k. Prove that

a1 +…+ an ≥ n

for every positive integer n.

Problem 5.48 (2016 Balkan Mathematical Olympiad Team Selection Test 4, problem 1). Let a, b, c
be non-negative real numbers. Prove that

3(a2 + b2 + c2) ≥ (a+ b+ c) (
√
ab+

√
bc+√

ca)+ (a− b)2 + (b− c)2 + (c− a)2 ≥ (a+ b+ c)2

5.7 BkMO

Problem 5.49 (2019, problem 2). Let a, b, c be real numbers such that 0 ≤ a ≤ b ≤ c and a+ b+ c =
ab+ bc+ ca >0. Prove that

√
bc(a+ 1) ≥ 2

Determine when equality occurs.

Problem 5.50 (2015, problem 1). Let a, b, c be positive real numbers. Prove that

a3b6 + b3c6 + c3a6 + 3a3b3c3 ≥ abc(a3b3 + b3c3 + c3a3)+ a2b2c2(a3 + b3 + c3)

Problem 5.51 (2012, problem 2). Prove that

Σ
cyc

(x+ y)√(z+ x)(z+ y) ≥ 4(xy+ yz+ zx)

for all positive real numbers x, y, z.

Problem 5.52 (2011, problem 2). Given real numbers x, y, z such that x+ y+ z = 0. Prove that

x(x+ 1)
2x2 + 1

+ y(y+ 2)
2y2 + 1

+ z(z+ 1)
2z2 + 1

≥ 0

Problem 5.53 (2010, problem 1). Let a, b, c be positive real numbers. Prove that

a2(b− c)
a+ b + b2(c− a)

b+ c + c2(a− b)
c+ a ≥ 0
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Problem 5.54 (2008, problem 2). Is there a sequence of positive real numbers a1, a2,… such that

a1 +…+ an ≤ n2
1
a1

+…+ 1
an

≤ 2008

for all positive integer n.

Problem 5.55 (2006, problem 1). Let a, b, c be positive real numbers. Prove the inequality

1
a(b+ 1)

+ 1
b(c+ 1)

+ 1
c(a+ 1)

3
1+ abc

Problem 5.56 (2005, problem 3). Let a, b, c be positive real numbers. Prove the inequality

a2
b + b2

c + c2
a ≥ a+ b+ c+ 4(a− b)2

a+ b+ c

Problem 5.57 (2001, problem 3). Let a, b, c be positive real numbers such that a+ b+ c ≤ abc. Prove
that

a2 + b2 + c2 ≥
√
3abc

Problem 5.58 (1998, problem 2). Let n ≥ 2 be an integer and a0 < a1 < … < a2n+1 be real
numbers. Prove that

n
√a1 − n

√a2 +…+ n
√a2n+1 < n√a1 − a2 +…+ a2n+1

Problem 5.59 (1993, problem 1). Let a, b, c, d, e, f be real numbers such that a+ b+ c+ d+ e+ f = 10
and

(a− 1)2 + (b− 1)2 + (c− 1)2 + (d− 1)2 + (e− 1)2 + (f− 1)2 = 6

What is the maximum possible value of f?

5.8 BMO

Problem 5.60 (2005, Round 2, problem 3). Let a, b, c be positive real numbers. Prove that

(
a
b + b

c + c
a )

2

≥ (a+ b+ c) (1a + 1
b + 1

c )

Problem 5.61 (2007, Round 1, problem 5). For positive real numbers a, b, c, prove that

(a2 + b2 + c2)2 ≥ (a+ b+ c)(a+ b− c)(b+ c− a)(c+ a− b)

Problem 5.62 (2008, Round 1, problem 1). Find the minimum value of x2 + y2 + z2 where x, y, z are
real numbers such that x3 + y3 + z3 − 3xyz = 1.
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Problem 5.63 (2010, Round 2, problem 5). For all positive real numbers x, y, z, prove that

4(x+ y+ z)3 >27(x2y+ y2z+ z2x)

Problem 5.64 (2011, Round 2, problem 6). Let a, b, c be the sides of a triangle such that ab+bc+ca = 1.
Prove that

(a+ 1)(b+ 1)(c+ 1) <4

Problem 5.65 (2015, Round 1, problem 1). Place the following numbers in order and provide your
reasoning to do so:

334,343, 433, 443

Here, abc = a�bc� and not (ab)c which is abc.

5.9 BNO

Problem 5.66 (2011, problem 6). Let a1,… , a2011 be non-negative real numbers such that

a1 +…+ a2011 =
2011
2

Prove that

|(a1 − a2)⋯ (a2010 − a2011)(a2011 − a1)| ≤
3
√
3

16

Problem 5.67 (2009, problem 3). Let n > 3 be a positive integer and x1,… , xn be positive real
numbers. Find the value of

x1
xn + x1 + x2

+ x2
x1 + x2 + x3

+…+ xn
xn−1 + xn + x1

in terms of n.

Problem 5.68 (2008, problem 3). Let x, y, z be real numbers such that xy+yz+zx = x+y+z. Find
the minimum value of

x
x2 + 1

+ y
y2 + 1

+ z
z2 + 1

Problem 5.69 (2005, problem 2). Determine the smallest possible C such that the inequality

C (x20051 + x20053 + x20054 + x20055 ) ≥ x1x2x3x4x5 (x1251 + x1252 + x1253 + x1254 + x1255 )
16

Problem 5.70 (2001, problem 1). Show that for any positive real numbers a, b, c,

(a+ b)(a+ c) ≥ 2√abc(a+ b+ c)
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5.10 BrNO

Problem 5.71 (2018, problem 9). Let n ≥ 2 be an integer. Prove the inequality

1
2!

+…+ 2n−2

n! ≤ 3
2

Problem 5.72 (2015, Day 2, problem 1). Find all real number x ≥−1 such that the inequality

a1 + x
2

⋯ an + x
2

≤ a1⋯an + x
2

holds for all positive integer n ≥ 2 and for all real numbers a1,… , an ≥ 1.

Problem 5.73 (2014 Final Round). Find all values λ such that the inequality

a+ b
2

≥λ
√
ab+ (1− λ)√a2 + b2

2

Problem 5.74 (2014 Final Round). Prove that for all positive real numbers x and y,

1
x+ y+ 1

− 1
(x+ 1)(y+ 1)

< 1
11

Problem 5.75 (2014 Test 2). Let a, b, c be positive real numbers such that

ab+ bc+ ca ≥ a+ b+ c

Prove that

(a+ b+ c)(ab+ bc+ ca)+ 3abc ≥ 4(ab+ bc+ ca)

Problem 5.76 (2014 Test 4). Let a, b, c be positive real numbers such that a+ b+ c = 1. Prove that

a2
(b+ c)3 + b2

(c+ a)3 + c3
(a+ b)3 ≥ 9

8

Problem 5.77 (2014 Test 6). Let a, b, c be real numbers in the interval (0, 2) such that a + b + c =
ab+ bc+ ca. Prove that

a2
a2 − a+ 1

+ b2
b2 − b+ 1

+ c2
c2 − c+ 1

≤ 3

Problem 5.78 (2013 Test 3). Let n ≥ 3 be an integer and x1,… , xn be positive real numbers such that
x1⋯xn = 1. Prove that

x81
(x41 + x42)x2

+ x8n
(x4n + x41)x1

≥ n
2
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Problem 5.79 (2013 Test 7). Given positive real numbers a, b, c such that

1
ab + 1

bc +
1
ca = 1

Prove that

a2 + b2 + c2 + ab+ bc+ ca− 3
5

≥ a
b + b

c + c
a

Problem 5.80 (2012 Test 1). Let a, b, c be real numbers such that 0 <a <b < c. Prove that

a20b12 + b20c12 + c20a12 <b20a12 + c20b12 + b20a12

Problem 5.81 (2011 Round 3). Let a, b, x, y be positive real numbers such that

ab ≥ xa+ yb

Prove that
√
a+ b ≥

√
x+√y

Problem 5.82 (2011 Round 3). Let a, b, c, k, l and m be positive real numbers such that

abc ≥ ka+ lb+ mc

Prove that

a+ b+ c ≥
√
3(
√
k+

√
l+√

m)

Problem 5.83 (2011 Final Round). Let a, b, c be positive real numbers such that

a2 + b2 + c2 = 3

Prove that

a+ b+ c ≥ ab+ bc+ ca

Problem 5.84 (2011 Test 5). Let a, b, c be positive real numbers such that

a
b+ c +

b
c+ a + c

a+ b = 1+ 1
6
(
a
c + c

b + b
a )

Prove that

a3bc
b+ c +

b3ca
c+ a + c3ab

a+ b ≥ 1
6
(ab+ bc+ ca)2

Problem 5.85 (2010 Final Round). Prove that

a2
a+ b + b2

b+ c ≥
3a+ 2b− c

4

for all positive real numbers a, b and c.
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Problem 5.86 (2010 Test 1). Given non-negative real numbers a, b and c such that a + b + c = 1.
Prove that

(a2 + b2 + c2)2 + 6abc ≥ ab+ bc+ ca

Problem 5.87 (2010 Test 7). Prove that all positive real numbers x, y and z satisfy the inequality

xy + yz + zx > 1

Problem 5.88 (2010 Test 8). Let a, b, c be positive real numbers such that abc = 1. Prove that

a
b(a+ b) +

b
c(b+ c) +

c
a(c+ a) ≥

3
2

Problem 5.89 (2009 Selection and Training Session). Let a, b and c be positive real numbers. Prove
that

1
(a+ b)b + 1

(b+ c)c +
1

(c+ a)c ≥
9

2(ab+ bc+ ca)

Problem 5.90 (2008, Day 2, problem 1). Let x1,… , xn be non-negative real numbers. Prove that

x1(2x1 − x2 − x3)
x2 + x3

+…+ xn(2xn − x1 − x2)
x1 + x2

≥ 0

Problem 5.91 (2002). For any positive integers a and b, prove that

|a
√
2− b| > 1

2(a+ b)

Problem 5.92 (2002). Given positive real numbers a, b, c and d. Prove that

√(a+ c)2 + (b+ d)2 ≤√a2 + b2 +√c2 + d2 ≤√(a+ c)2 + (b+ d)2 + 2|ad− bc|
√(a+ c)2 + (b+ d)2

5.11 BuNO

Problem 5.93 (2020 Day 1, problem 2). Let b1,… , bn be non-negative integers and a0, a1,… , an be
real numbers such that b1 +…+ bn = 2 and a0 = an = 0, |ai − ai−1| ≤ bi for 1 ≤ i ≤ n. Prove that

n

Σ
i=1

(ai + ai−1)bi ≤ 2

Problem 5.94 (2018, problem 3). Prove that

(
6
5
)

√
3

> (
5
4
)

√
2
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Problem 5.95 (2016, problem 3). For positive real numbers a, b, c and d, prove that

a+
√
ab+ 3

√
abc+ 4

√
abcd

4
≤ 4√a ⋅ a+ b

2
⋅ a+ b+ c

3
⋅ a+ b+ c+ d

4

Problem 5.96 (2009, problem 6). Let a1,… , an, b1,… , bn be arbitrarily taken real numbers and c1,… , cn
be positive real numbers, then

(
n

Σ
i,j=1

aiaj
ci + cj

) (
n

Σ
i,j=1

bibj
ci + cj

) ≥ (
n

Σ
i,j=1

aibj
ci + cj

)
2

Problem 5.97 (2008, problem 3). Let n be a natural number and a1,… , an, b1,… , bn be real positive
numbers such that 0 ≤ a1 ≤… ≤ an ≤π and

|
n

Σ
i=1

bi cos kai| < 1
k

for all positive integer k. Prove that b1 =… = bn = 0.

Problem 5.98 (2007 Team Selection Test, problem 3). Let n ≥ 2 be a positive integer. Find the best
constant C(n) such that

n

Σ
i=1

xi ≥C(n) Σ
1≤j<i≤n

(2xixj +√xixj)

is true for all xi ∈ (0, 1) such that

(1− xi)(1− xj) ≥
1
4

for 1 ≤ i < j ≤ n.
Problem 5.99 (1997, problem 1). Let a, b, c be positive real numbers such that abc = 1. Prove that

1
1+ b+ c +

1
1+ c+ b + 1

1+ a+ b ≤ 1
2+ a + 1

2+ b + 1
2+ c

5.12 ChMO

Problem 5.100 (2019, problem 1). Let a, b, c, d, e ≥−1 be real numbers such that a+b+c+d+e = 5.
Find the minimum and maximum value of

(a+ b)(b+ c)(c+ d)(d+ e)(e+ a)
Problem 5.101 (2018, problem 6). Let n, k be natural numbers such that n >k and a1,… , an be real
numbers in the interval (k − 1, k). Let x1,… , xn be positive real numbers such that for any subset I of
{1, 2,… , n} with k elements,

Σ
i∈I

xi ≤Σ
i∈I

ai

Find the maximum possible value of x1⋯xn.
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Problem 5.102 (2017, problem 6). Given an integer n ≥ 2 and real numbers a, b such that 0 <a <
b. Let x1,… , xn be real numbers in the interval [a, b]. Find the maximum value of

x21
x2

+…+ x2n−1
xn

+ x2n
x1

x1 +…+ xn

Problem 5.103 (2015, problem 1). Let z1,… , zn be complex numbers such that |zi − 1| ≤ r for some
real number r ∈ (0, 1). Show that

|
n

Σ
i=1

zi| ⋅ |
n

Σ
i=1

1
zi
| ≥ n2(1− r2)

Problem 5.104 (2011, problem 1). Let a1,… , an be real numbers. Prove that

n

Σ
i=1

a2i −
n

Σ
i=1

aiai+1 ≤ ⌊n
2
⌋ (M− m)

where an+1 = a1,M =max{a1,… , an},m =min{a1,… , an}.

Problem 5.105 (2011, problem 5). Let n ≥ 4 be an integer and a1,… , an, b1,… , bn be non-negative
real numbers such that

a1 +…+ an = b1 +…+ bn >0

Find the maximum of

Σn
i=1 ai(ai + bi)

Σn
i=1 bi(ai + bi)

Problem 5.106 (2009, problem 4). Let n >3 be an integer and a1,… , an be real numbers satisfying
min{ai − aj} ≤ 1 for 1 ≤ i < j ≤ n. Find the minimum value of

n

Σ
i=1

a3i

Problem 5.107 (2008, problem 3). Let n be a positive integer and x1,… , xn, y1,… , yn be real numbers
such that

x1 ≤ x2 … ≤ xn
y1 ≥ y2 … ≥ yn

n

Σ
i=1

ixi =
n

Σ
i=1

iyi

Show that for any real number α,
n

Σ
i=1

xi⌊iα⌋ ≥
n

Σ
i=1

yi⌊iα⌋
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Problem 5.108 (2007, problem 1). Let a, b, c be complex numbers and |a + b| = m, |a − b| = n. If
mn ≠ 0, show that

max{|ac+ b|, |a+ bc|} ≥ mn√
m2 + n2

Problem 5.109 (2006, problem 1). Let a1,… , ak be real numbers such that a1 + … + ak = 0. Prove
that

max{a21 ,… , a2k} ≤
k
3
((a1 − a2)2 +…+ (ak−1 − ak)2)

Problem 5.110 (2006, problem 5). Let (an) be a sequence such that a1 = 1
2 , ak+1 =−ak + 1

2−ak . Prove
that

(
n

2(a1 +…+ an)
− 1)

n
≤ (

a1 +…+ an
n )

n
(
1
a1

− 1)⋯ (
1
an

− 1)

Problem 5.111 (2005, problem 1). Let θi ∈ (−π
2 , π2 ) for 1 ≤ i ≤ 4. Prove that, there exists a real

number x such that

cos2 θ1 cos2 θ2 − (sinθ1 sinθ2 − x)2 ≥ 0
cos2 θ3 cos2 θ4 − (sinθ3 sinθ4 − x)2 ≥ 0

if and only if

4

Σ
i=1

sin2 θi ≤ 2 (1+
4

∏
i=1

sinθi +
4

∏
i=1

cosθi)

Problem 5.112 (2004, problem 2). Let n ≥ 2 be an integer and a1,… , an are positive integers such
that a1 <… <an and

1
a1

+…+ 1
an

≤ 1

Prove that for any real number x,

(
n

Σ
i=1

1
a2 + x2 )

2

≤ 1
2

1
a1(a1 − 1)+ x2

Problem 5.113 (2003, problem 3). Let n be a positive integer. Find the smallest positive real number
λ such that for any x1,… , xn ∈ (0, π2 ),

n

∏
i=1

tan xi = 2
n
2

implies

n

Σ
i=1

cos xi ≤λ
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Problem 5.114 (2003, problem 3). Let a, b, c, d be positive real numbers such that ab + cd = 1 and
x1, x2, x3, x4, y1, y2, y3, y4 are real numbers such that

x2i + y2i = 1

for 1 ≤ i ≤ 4. Prove that

(ax1 + bx2 + cx3 + cx4)
2 + (ay4 + by3 + cy2 + dy4)1 ≤ 2 (

a2 + b2
ab + c2 + d2

cd )

Problem 5.115 (2002, problem 1). For every four pointsP1,P2,P3,P4 on the plane, find the minimum
value of

Σ1≤i<j≤4 PiPj

min
1≤i<j≤4

PiPj

Problem 5.116 (2002, problem 3). Let c be a real number such that c ∈ ( 12 , 1). Find the least real
number M such that for every integer n ≥ 2 and real numbers 0 ≤ a1 ≤… ≤ an, if

1
n

n

Σ
i=1

iai = c
n

Σ
i=1

ai

then we always have that

n

Σ
i=1

ai ≤M
m

Σ
i=1

ai

where m = ⌊cn⌋.
Problem 5.117 (1999, problem 5). Determine the maximum value of λ such that

f(x) ≥λ(x− a)3

for all non-negative real number x where

f(x) = x3 + ax2 + bx+ c

and has non-negative roots. Find the equality condition.

Problem 5.118 (1998, problem 2). Given a positive integer n > 1. Determine with proof if there
exists 2n distinct positive integers a1,… , an, b1,… , bn such that

a1 +…+ an = b1 +…+ bn

n− 1 >
n

Σ
i=1

ai − bi
ai + bi

>n− 1− 1
1998

Problem 5.119 (1998, problem 6). Let n ≥ 2 be a positive integer and x1,… , xn be real numbers such
that

n

Σ
i=1

x2i +
n−1

∏
i=1

xixi+1 = 1

For each k, find the maximum value of |xk|.
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Problem 5.120 (1997, problem 1). Let x1,… , x1997 be real numbers satisfying

− 1√
3
≤ xi ≤

1√
3

x1 +…+ x1997 =−318
√
3

Determine the maximum value of

x121 +…+ x121997
with proof.

Problem 5.121 (1997, problem 6). Let (an) be a sequence of real numbers satisfying

an+m ≤ an + am
for all non-negative integers m, n. Prove that, if n ≥ m,

an ≤ma1 + (
n
m − 1) am

Problem 5.122 (1996, problem 2). Let n be a natural number. Suppose that x0 = 0 and xi > 0 for
all i ∈ {1,… , n}. If Σn

i=1 xi = 1, prove that

1 ≤
n

Σ
i=1

xi
√1+ x0 +…+ xi−1

√xi +…+ xn
< π

2

Problem 5.123 (1995, problem 1). Let n ≥ 3 be an integer and a1,… , an, b1,… , bn be real numbers
such that

a1 +…+ an = b1 +…+ bn
0 <a1 = a2,ai + ai+1 = ai+2

0 <b1 ≤ b2,bi + bi+1 ≤ bi+2

Prove that an−1 + an ≤ bn−1 + bn.
Problem 5.124 (1995, problem 5). Let a1,… , a10 distinct natural numbers such that a1 +…+ a10 =
1995. Find the minimum value of

a1a2 + a2a3 +…+ a9a10 + a10a1
Problem 5.125 (1993, problem 2). Given a positive integer k and a positive real number a. Find the
maximum value of

ak1 +…+ akr

where 1 ≤ r ≤ k and k1 +…+ kr = k.
Problem 5.126 (2019 Team Selection Test, problem 3). Let n be a positive integer and a1,… , an be
non-negative real numbers such that

a1 +…+ an = 1

Find the maximum possible value of

Σ
1≤i<j≤n

min{(i− j)2, (n+ i− j)2aiaj}
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Problem 5.127 (2019 Team Selection Test, problem 7). Let x, y, z be complex numbers such that

|x|2 + |y|2 + |z|2 = 1

Prove that

|x3 + y3 + z3 − 3xyz| ≤ 1

Problem 5.128 (2019 Team Selection Test, problem 5). Find all positive integer n such that for any
positive real numbers a, b, c, x, y, z the following conditions hold:

max{a, b, c, x, y, z} = a
a+ b+ c = x+ y+ z

abc = xyz
an + bn + cn = xn + yn + zn

Problem 5.129 (2018 Team Selection Test, problem 5). Let n, k be positive integers such that n >4k.
Find the minimum value of λ(n, k) =λ such that for any positive real numbers a1,… , an, we have

n

Σ
i=1

ai
√a2i + a2i+1 +…+ a2i+k

where an+i = ai for 1 ≤ i ≤ k.

Problem 5.130 (2018 Team Selection Test, problem 3). Let H(n) be the harmonic sum

1+ 1
2
+…+ 1

n
Prove that there exists a positive constant C such that

H(a1)+…+H(an) ≤C
√√
⎷

n

Σ
i=1

iai

for arbitrary positive integer n and positive real numbers a1,… , an.

Problem 5.131 (2017 Team Selection Test, problem 2). Let n be positive integers and x > 1 be a real
number. Prove that

n

Σ
i=1

{ix}
⌊ix⌋ <

n

Σ
i=1

1
2i− 1

where {a} and ⌊a⌋ is the decimal and integer portion of a respectively.

Problem 5.132 (2017 Team Selection Test, problem 5). Let m ≥ 2 be a positive integer and a1,… , am
be positive real numbers. Prove that

(m− 1)m−1 (xm1 +…+ xmm) ≥ (x1 +…+ xm)m − mmx1⋯xm

Find out when equality holds.

76



§5. Contest Problems Masum Billal

Problem 5.133 (2016 Team Selection Test, problem 2). Find the smallest positive real number λ such
that for any complex numbers z1, z2, z3 with |zi| <1 and z1 + z2 + z3 = 0,

|z1z2 + z2z3 + z3z1|2 + |z1z2z3|2 <λ

Problem 5.134 (2016 Team Selection Test, problem 7). Let n > 1 be an integer and α be a real
number such that 0 < α < 2 and a1,… , an, c1,… , cn be positive real numbers. For a positive real
number y, let

f(y) = (Σ
ai<y

cia2i )
1
2 + (Σ

ai>y
ciaαi )

1
α

If a positive real number x satisfies x ≥ f(y) for some positive real number y, prove that f(x) ≤ 8
1
αx.

Problem 5.135 (2015 Team Selection Test, problem 4). Let n ≥ 2 be an integer and x1, x2,… , be a
non-decreasing monotonous sequence of positive real numbers such that x1, x22 ,

x3
3 ,… is a non-increasing

monotonous sequence. Prove that

Σn
i=1 xi

n n√Σn
i=1 xi

≤ n+ 1
2 n√n!

Problem 5.136 (2014 Team Selection Test, problem 4). Let (xn) be a sequence of real numbers and
(yn) be a sequence such that y1 = x1 and for n ≥ 1,

yn+1 = xn+1 −
√√
⎷

n

Σ
i=1

x2i

Find the smallest positive real number λ such that for any (xn) and positive integer m,

1
m

n

Σ
i=1

x2i ≤
n

Σ
i=1

λn−iy2i

Problem 5.137 (2014 Team Selection Test, problem 5). Let n ≥ 2 be a positive integer. Find the
greatest constant λ(n) such that for any non-zero complex numbers z1,… , zn,

n

Σ
i=1

|zi|2 ≥λ(n) min
1≤i≤n

|zi+1 − zi|2

where zn+1 = z1.

Problem 5.138 (2013 Team Selection Test, problem 4). Let n, k > 1 be integers and a1,… , an be
non-negative real numbers such that a1 ≥… ≥ an and

a1 +…+ an = 1
c1 +…+ cm ≤mk

for any positive integer m ≤ n and non-negative real numbers c1,… , cm. Find the maximum value of

c1ak1 +…+ cnakn
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Problem 5.139 (2013 Team Selection Test, problem 17). Let n ≥ 2 be an integer and a1,… , an, b1,… , bn
be non-negative real numbers. Prove that

(
n

n− 1
)
n−1

(
1
n

n

Σ
i=1

a2i )+ (
1
n

n

Σ
i=1

b2i ) ≥
n

∏
i=1

n√a2i + b2i

Problem 5.140 (2012 Team Selection Test, problem 1). Let n be a positive integer and x1,… , xn, y1,… , yn
be complex numbers such that |xi| = |yi| for 1 ≤ i ≤ n. Let

x = 1
n

n

Σ
i=1

xi

y = 1
n

n

Σ
i=1

yi

zi = xyi − yxi − xiyi

Prove that
n

Σ
i=1

|zi| ≤ n

Problem 5.141 (2012 Team Selection Test, problem 4). Let m, n > 1 be integers and r, s are real
numbers such that r < s. Let (aij) be a m× n non-zero matrix such that aij ≥ 0. Find the maximum
value of

(Σn
j=1 (Σ

m
i=1 a

s
ij)

r
s )

1
r

(Σm
i=1 (Σ

n
j=1 a

r
ij)

s
r )

1
s

Problem 5.142 (2011 Team Selection Test, problem 6). Let n be a positive integer. Find the largest
real number λ such that for all positive real numbers x1,… , x2n satisfying

1
2n

2n

Σ
i=1

(xi + 2)n ≥
2n

∏
i=1

xi

the following inequality is also true:

1
2n

2n

Σ
i=1

(xi + 1)n ≥λ
2n

∏
i=1

xi

Problem 5.143 (2011 Team Selection Test, problem 7). Let n ≥ 3 be an integer. Find the largest
real number M such that for any positive real numbers x1,… , xn there is an arrangement y1,… , yn such
that

n

Σ
i=1

y2i
y2i+1 − yi+1yi+2 + y2i+2

≥M

where yn+2 = y2, yn+1 = y1.
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Problem 5.144 (2010 Team Selection Test, problem 1). Let n be a positive integer. The real numbers
a0,… , an, b0,… , bn satisfy ai + ai+1 ≥ 0 for 1 ≤ i ≤ 2n − 1 and a2i+1 ≤ 0 for 1 ≤ i ≤ n − 1. For any
integers p, q such that 0 ≤p ≤ q ≤ n, we have

2q

Σ
i=2p

bi >0

Prove that

2n

Σ
i=0

(−1)iaibi ≥ 0

Determine when equality holds.

Problem 5.145 (2010 Team Selection Test, problem 5). Find all positive real numbers λ such that for
all integer n ≥ 2 and all positive real numbers a1,… , an such that a1 +…+ an = n,

n

Σ
i=1

1
ai

− λ
n

∏
i=1

1
ai

≤ n− λ

Problem 5.146 (2010 Team Selection Test, problem 7). Let n ≥ 2 be an integer and a be a positive
real number. Find the smallest positive real number M(n, a) =M such that

n

Σ
i=1

1
a+ S− xi

≥M

where S =Σn
i=1 xi for any positive real numbers x1,… , xn.

Problem 5.147 (2010 Team Selection Test 2). Let n ≥ 2 be an integer and x1,… , xn be real numbers
in the interval [0, 1]. Prove that there exists real numbers a0,… , an such that

a0 + an = 0
|ai| ≤ 1

|ai − ai−1| = xi

Problem 5.148 (2009 Team Selection Test 2). Let n ≥ 2 be an integer. Find the maximum constant
λ(n) so that if a sequence of real numbers a0, a1,… satisfies 0 = a0 ≤ a1 ≤… ≤ an and for 1 ≤ i ≤ n−1,
2ai ≥ ai−1 + ai+1 then

(
n

Σ
i=1

iai)
2

≥λ(n)
n

Σ
i=1

a2i

Problem 5.149 (2009 Team Selection Test, problem 5). Let m > 1 be an integer and n be an odd
integer such that 3 ≤ n < 2m. Consider a matrix (aij) such that for any 1 ≤ j ≤ n, a1j, a2j,… , amj
is a permutation of 1, 2,… ,m and for any 1 ≤ i ≤ m and 1 ≤ j ≤ n − 1, |aij − ai(j+1)| ≤ 1. Find the
minimum value of

max
1<i<m

n

Σ
j=1

aij
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Problem 5.150 (2009 Quiz 1, problem 3). Let m, n be positive integers and x1,… , xm, y1,… , yn be
positive real numbers. Prove that

2XY
m

Σ
i=1

n

Σ
j=1

|xi − yj| ≥X2
n

Σ
i=1

n

Σ
j=1

|yi − yj|+ Y2
m

Σ
i=1

m

Σ
j=1

|xi − xj|

Problem 5.151 (2009 Quiz 5, problem 3). Let a1, a2, a3, a4 be non-negative real numbers such that
a1 + a2 + a3 + a4 = 1. Prove that

max {
4

Σ
i=1

√a2i + aiai−1 + a2i−1 + ai−1ai−2,
4

Σ
i=1

√a2i + aiai+1 + ai+1ai+2} ≥ 2

where ai+4 = ai.
Problem 5.152 (2008 Team Selection Test, problem 5). Letm, n > 1 be integers and (aij) be a non-zero
matrix of non-negative real numbers. Find the minimum and maximum value of

mΣm
i=1 (Σ

n
j=1 aij)

2 + nΣn
j=1 (Σ

m
i=1 aij)

2

(Σm
i=1Σ

n
j=1 aij)

2 + mnΣm
i=1Σ

n
j=1 a

2
ij

Problem 5.153 (2008 Team Selection Test, problem 6). Find the maximum constant M such that for
any integer n ≥ 3, there exists two sequences of positive real numbers a1,… , an and b1,… , bn satisfying

n

Σ
i=1

bi = 1

2bi ≥ bi−1 + bi+1

a2k ≥ 1+
k

Σ
i=1

aibi

and an =M.

Problem 5.154 (2008 Quiz 2 problem 3). Let z1, z2,… , z3 be complex numbers such that |zi| ≤ 1 and
ω1,ω2 are the roots of the equation

(z− z1)(z− z2)+ (z− z2)(z− z3)+ (z− z3)(z− z1) = 0

Prove that

min{|zj −ω1|, |zj −ω2} ≤ 1

Problem 5.155 (2008 Quiz 4 problem 2). Let x, y, z be positive real numbers. Prove that

xy
z + yz

x + zx
y >2 3√x3 + y3 + z3

Problem 5.156 (2008 Quiz 5, problem 2). Let n ≥ 2 be an integer and a1,… , an be real numbers not
all zero. Determine the necessary and sufficient condition so that there exists a sequence of integers
x1,… , xn which satisfies

0 <x1 <… <xn
a1x1 +…+ anxn ≥ 0
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Problem 5.157 (2008 Quiz 5, problem 3). Let n be a positive integer and x1,… , xn, y1,… , yn be real
numbers such that 0 <x1 ≤ x2

2 ≤… ≤ xn
n and 0 <yn ≤ yn−1 ≤… ≤ y1. Prove that

(
n

Σ
i=1

xiyi)
2

≤ (
n

Σ
i=1

yi) (
n

Σ
i=1

(x2i −
1
4
xixi+1) yi)

where x0 = 0.

Problem 5.158 (2007 Team Selection Test, problem 5). Let n > 1 be a positive integer and x1,… , xn
be real numbers satisfying A = |Σn

i=1 xi| ≠ 0 and B = max
1≤i≤n

|xi−xj| ≠ 0. Prove that for any n vectors

⃗⃗⃗ ⃗⃗ ⃗⃗αi in the plane, there exists a permutation k1,… , kn of the numbers 1,… , n such that

|
n

Σ
i=1

aixki ⃗⃗⃗ ⃗⃗ ⃗⃗αi| ≥
AB

2A+ B max
1≤i≤n

|αi|

Problem 5.159 (2007 Quiz 2, problem 1). Let u, v,w be positive real numbers such that

u+ v+ w+ 3
√
uvw = 4

Prove that

√uv
w +√vw

u +√wu
v ≥ u+ v+ w

Problem 5.160 (2007 Quiz 4, problem 1). Let a1,… , an be positive real numbers satisfying a1 +…+
an = 1. Prove that

(a1a2 +…+ ana1) (
a1

a22 + a2
+…+ a2n

a21 + a1
) ≥ n

n+ 1

Problem 5.161 (2007 Quiz 5, problem 3). Find the smallest constant k such that

x√x+ y + y√y+ z + z√z+ x ≤ k√x+ y+ z

Problem 5.162 (2006 Team Selection Test, problem 3). Let n be a positive integer and a1,… , an be
real numbers. Prove that there exists real numbers b1,… , bn such that ai − bi is a positive integer for
1 ≤ i ≤ n and

Σ
1≤i<j≤n

(bi − bj)2 ≤
n2 − 1
12

Problem 5.163 (2006 Team Selection Test, problem 8). Let n be a positive integer and x1,… , xn be
positive real numbers such that x1 +…+ xn = 1. Prove that

(
n

Σ
i=1

√xi) (
n

Σ
i=1

1
√1+ xi

) ≤ n2
n+ 1

Problem 5.164 (2006 Team Selection Test, problem 11). Given positive real numbers x, y, z such that
x+ y+ z = 1. Prove that

xy√xy+ yz + yz√yz+ zx + zx√zx+ xy ≤
√
2
2
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Problem 5.165 (2005 Team Selection Test, problem 4). Let a1,… , a6; b1,… , b6; c1,… , c6 be permuta-
tions of 1,… , 6. Find the minimum value of Σ6

i=1 aibici.
Problem 5.166 (2005 Quiz 1, problem 2). Let a, b, c be non-negative real numbers such that ab+ bc+
ca = 1

3 . Prove that

1
a2 − bc+ 1

+ 1
b2 − ca+ 1

+ 1
c2 − ab+ 1

≤ 3

Problem 5.167 (2005 Quiz 2, problem 3). Let a, b, c, d be positive real numbers such that abcd = 1.
Prove that

1
(1+ a)2 + 1

(1+ b)2 + 1
(1+ c)2 + 1

(1+ d)2 ≥ 1

Problem 5.168 (2004 Quiz 4, problem 2). Find the greatest positive real number k such that for any
positive real numbers a, b, c, d,

(a+ b+ c) (34(a+ b+ c+ d)5 + 24(a+ b+ c+ 2d)5) ≥ kabcd3

Problem 5.169 (2003 Quiz 1, problem 1). x, y, z are positive real numbers such that x+ y+ z = xyz.
Find the minimum value of

x7(yz− 1)+ y7(zx− 1)+ z7(xy− 1)

Problem 5.170 (2003 Quiz 2, problem 3). Let n be a positive integer and the roots of

f(z) = zn + a1zn−1 +…+ an
are z1,… , zn where a1,… , an are complex numbers. If Σn

i=1 |ai|
2 ≤ 1, then prove that Σn

i=1 |zi|
2 ≤ n.

Problem 5.171 (2003 Quiz 6, problem 1). Let n be a positive integer and a1,… , an, x be real numbers.

g(x) =
n

Σ
i=1

ai cos ix

If g(x) ≥−1 for all real number x, then prove that Σn
i=1 ai ≤ n.

Problem 5.172 (2003 Quiz 8, problem 3). Let n ≥ 2 be an integer and a1,… , an be positive real
numbers not all of which are equal such that

n

Σ
i=1

1
a2ni

= 1

Prove that

(
n

Σ
i=1

a2ni )− n2 Σ
1≤i<j≤n

(
ai
aj

−
aj
ai
)
2

>n2

Problem 5.173 (2002 Team Selection Test, problem 6). Let

f(x1, x2, x3) =−2(x31 + x32 + x33)+ 3x21(x2 + x3)+ 3x22(x3 + x1)+ 3x23(x1 + x2)− 12x1x2x3
For real numbers r, s, t, define

g(r, s, t) = max
t≤x3≤t+2

|f(r, r+ 2, x3)+ s|

Find the minimum value of g(r, s, t).
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Problem 5.174 (2001 Team Selection Test, problem 4). Let n > 3 be an integer. The real numbers
x1,… , xn+2 satisfy the condition 0 <x1 <… <xn+2. Find the minimum possible value of

(Σn
i=1

xi+1

xi
) (Σn

i=1

xi+2

xi+1
)

(Σn
i=1

xi+1xi+2

x2k+1 + xkxk+2
) (Σn

i=1

x2i+1 + xixi+2

xixi+1
)

Problem 5.175 (2001 Team Selection Test, problem 6). Find the maximum value of

max
1≤x≤3

|x3 − ax2 − bx− c|

where a, b, c runs through all real numbers.

Problem 5.176 (1999 Team Selection Test, problem 1). Let n be a positive integer and x1,… , xn be
non-negative real numbers such that x1+…+xn = 1. Find the largest possible value ofΣn

i=1(x
4
i −x5j ).

Problem 5.177 (1998 Team Selection Test, problem 3). For a fixed real number θ ∈ [0, π2 ], find the
smallest positive real number a for which

√a
cosθ +

√a
sinθ > 1

and there exists x ∈ [1−
√a
sinθ , cosθ] such that

((1− x) sinθ−√a− x2 cos2 θ)
2
+ (x cosθ−√a− (1− x)2 sinθ)

2

≤ a

Problem 5.178 (1996 Team Selection Test, problem 5). Let n ≥ 4 be an integer and α1,… ,αn, β1,… , βn
be real numbers such that Σn

i=1 α
2
i <1 and Σn

i=1 β
2
i <1.

A2 = 1−
n

Σ
i=1

α2
i

B2 = 1−
n

Σ
i=1

β2
i

W = 1
2
(1−

n

Σ
i=1

αiβi)
2

Find all real number λ such that

xn + λ(xn−1 +…+ x3 +Wx2 + ABx+ 1) = 0

only has real roots.

Problem 5.179 (1995 Team Selection Test, problem 4). Let n be a positive integer and r1,… , rn, s1,… , sn, t1,… , tn, u1,… , un, v1,… , vn
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be 5n real numbers.

R = 1
n

n

Σ
i=1

ri

S = 1
n

n

Σ
i=1

si

T = 1
n

n

Σ
i=1

ti

U = 1
n

n

Σ
i=1

ui

V = 1
n

n

Σ
i=1

vi

Prove that
n

∏
i=1

risitiuivi + 1
risitiuivi − 1

≥ (
RSTUV+ 1
RSTUV− 1

)
n

Problem 5.180 (1993 Team Selection Test, problem 2). Let n ≥ 2 be an integer and a, b, c, d be positive
integers such that a

b + c
d <1 and a+ c ≤ n. Find the maximum value of a

b + c
d for a fixed n.

5.13 IMO

Problem 5.181 (IMO 1995, problem 2). Let a, b, c be real numbers such that abc = 1. Prove that

1
a3(b+ c) +

1
b3(c+ a) +

1
c3(a+ b) ≥

3
2

Problem 5.182 (IMO 1999, problem 2). Let n ≥ 2 be an integer. Find the least constant C such that

Σ
1≤i<j≤n

xixj(x2i + x2j ) ≤C (
n

Σ
i=1

xi)
4

holds for all non-negative real numbers x1,… , xn. When does equality occur?

Problem 5.183 (IMO 2000, problem 2). Let a, b, c be positive real numbers such that abc = 1. Prove
that

(a− 1+ 1
b ) (b− 1+ 1

c ) (c− 1+ 1
a ) ≤ 1

Problem 5.184 (IMO 2001, problem 2). Let a, b, c be positive real numbers. Prove that

a√
a2 + 8bc

+ b√
b2 + 8ca

+ c√
c2 + 8ab

≥ 1
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Problem 5.185 (IMO 2003, problem 5). Let n be a positive integer and x1 ≤… ≤ xn be real numbers.
Prove that

(
n

Σ
i,j=1

|xi − xj|)
2

≤ 2(n2 − 1)
3

n

Σ
i,j=1

(xi − xj)2

Show that equality holds if and only if x1,… , xn forms an arithmetic sequence.

Problem 5.186 (IMO 2004, problem 4). Let n ≥ 3 be an integer. Let t1,… , tn be positive real numbers
such that

n2 + 1 > (t1 +…+ tn) (
1
t1

+…+ 1
tn
)

Show that ti, tj, tk are the sides of a triangle for all 1 ≤ i < j <k ≤ n.

Problem 5.187 (IMO 2005, problem 3). Let x, y, z be real numbers such that xyz ≥ 1. Prove that

x5 − x2
x5 + y2 + z2 + y5 − y2

x2 + y5 + z2 + z5 − z2
x2 + y2 + z5 ≥ 0

Solution. We have already solved it in 3.10.

Problem 5.188 (IMO 2006, problem 3). Determine the least real number M such that the inequality

|ab (a2 − b2)+ bc (b2 − c2)+ ca (c2 − a2)| ≤M(a2 + b2 + c2)2

holds for all real numbers a, b, c.
Problem 5.189 (IMO 2008, problem 2). Let x, y, z ≠ 1 be real numbers such that xyz = 1. Prove
that

x2
(x− 1)2

+ y2
(y− 1)2

+ z2
(z− 1)2

≥ 1

Also, prove that equality holds for infinitely many rational x, y, z such that xyz = 1 and x, y, z ≠ 1.

Problem 5.190 (IMO 2012, problem 2). Let n ≥ 3 be a positive integer and a2,… , an be positive real
numbers such that a1⋯an = 1. Prove that

(1+ a2)2⋯ (1+ an)n ≥ nn

Problem 5.191 (IMO 2020, problem 2). Let a, b, c, d be positive real numbers such that a ≥ b ≥ c ≥ d
and a+ b+ c+ d = 1. Prove that

(a+ 2b+ 3c+ 4d)aabbccdd <1

Solution. Since a+b+c+d = 1, byWeighted PowerMean Inequality onω = (a, b, c, d) and a = (a, b, c, d),

a ⋅ a+ b ⋅ a+ c ⋅ c+ d ⋅ d ≥ aabbccdd

So it is enough to prove that

(a+ 2b+ 3c+ 4d)(a2 + b2 + c2 + d2) ≤ (a+ b+ c+ d)3
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Expanding these we can easily see that the inequality has to follow. But we can prove it in a smarter
way.

(a+ b+ c+ d)3 = (a+ b+ c+ d) (a2 + b2 + c2 + d2 + 2Σab)

where the sum runs over all possible (42) pairs. Then
(a+ 2b+ 3c+ 4d)(a2 + b2 + c2 + d2) < (a+ b+ c+ d)3

⟺ (b+ 2c+ 3d)(a2 + b2 + c2 + d2) <2(a+ b+ c+ d) (Σab)

Now, using a ≥ b ≥ c,

a2 + b2 + c2 + d2 ≤ a(a+ b+ c+ d)

So, it is enough to show that

a(b+ 2c+ 3d)(a+ b+ c+ d) ≤ 2(a+ b+ c+ d) (Σab)
⟺ a(b+ 2c+ 3d) ≤ 2Σab

⟺ 3da ≤ ab+ 2ca
⟺ da+ da+ da ≤ ab+ ca+ ca

This inequality obviously holds.

Remark. We could also use Weighted Jensen’s inequality after using the fact that log(x) is concave. The
buffalo way works here as well. But the calculation is not going to be pretty if you go that way. This
problem was highly criticized within some forums such as the Art of Problem Solving. It was the
first inequality problem at the IMO since 2012. A lot of people thought that the days of inequality at
the IMO was over. But when this problem appeared at the IMO 2020, many people complained and
expressed their disappointment that the no inequality problem at the IMO streak was finally broken
with such a problem.

Problem 5.192 (IMO Shortlist 2015, A1). Let a, b, c be positive real numbers such thatmin{ab, bc, ca} ≥
1. Prove that

3√(a2 + 1)(b2 + 1)(c2 + 1) ≤ (
a+ b+ c

3
)
2

+ 1

Problem 5.193 (IMO Shortlist 2015, A8). Determine the largest real number a such that for all n ≥ 1
and for all real numbers x0,… , xn satisfying

0 = x0 <x1 <… <xn
we have

1
x1 − x0

+ 1
x2 − x1

+…+ 1
xn − xn−1

≥ a ( 2x1
+ 3

x2
+…+ n+ 1

xn
)

Problem 5.194 (IMO Shortlist 2018, A7). Find the maximal value of

S = 3√ a
b+ 7

+ 3√ c
d+ 7

+ 3√ d
a+ 7

where a, b, c, d are non-negative real numbers which satisfy a+ b+ c+ d = 100.
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Problem 5.195 (2002 Team Selection Test, problem 6). Let x1,… , xn be positive real numbers such
that x21 + … + x2n = n, λ be a real number such that 0 ≤ λ ≤ 1 and s be a positive real number such
that Σn

i=1 xi ≥ s. Prove that at least

⌈s
2(1− λ)2

n ⌉

of these numbers are larger than λs
n .

Problem 5.196 (2003 Round 2, problem 1). Let x, y, z be real numbers such that xyz = −1. Prove
that

x4 + y4 + z4 + 3(x+ y+ z) ≥ x2
y + y2

z + z2
x + y2

x + z2
x + x2

z

Problem 5.197 (2005 Team Selection Test, problem 1). Let a1,… , an be real numbers and

a1 +…+ an
n = m

a21 +…+ a2n
n = 1

If there is an i such that ai ≤m, prove that

n− i ≥ n(m− ai)2

Problem 5.198 (2006 Team Selection Test, problem 4). Let x1,… , xn be real numbers. Prove that
n

Σ
i,j=1

|xi + xj| ≥ n
n

Σ
i=1

|xi|

Problem 5.199 (2008 Team Selection Test, problem 5). Let a, b, c be positive real numbers such that
ab+ bc+ ca = 1. Prove that

√a3 + a+√b3 + b+√c3 + c ≥ 2
√
a+ b+ c

Problem 5.200 (2009 Team Selection Test, problem 3). Let a, b, c be positive real numbers such that
a+ b+ c = 3. Prove that

1
2+ a2 + b2 + 1

2+ b2 + c2 + 1
2+ c2 + a2 ≤ 3

4

Problem 5.201 (2010 Third Round, problem 6). We call a sequence of real numbers a10,… , a1389
concave if 2ai ≥ ai−1 + ai+1 for 0 < i <1389. Find the largest real number c such that

1389

Σ
i=0

iai ≥ c
1389

Σ
i=0

a2i

for all concave sequence of non-negative real numbers (an).
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Problem 5.202 (2011 Third Round, problem 10). Find the smallest real number k such that

√(a2 + 1)(b2 + 1)(c2 + 1)+√(b2 + 1)(c2 + 1)(d2 + 1)+√(c2 + 1)(d2 + 1)(a2 + 1)+√(d2 + 1)(a2 + 1)(b2 + 1) ≥ 2(ab+ bc+ cd+ da+ ac+ bd)− k

for all real numbers a, b, c, d.

Problem 5.203 (2012 Third Round, problem 10). Let a, b, c be positive real numbers such that ab +
bc+ ca = 1. Show that

√
3(
√
a+

√
b+√

c) ≤ a√a
bc + b

√
b

ca + c√c
ab

Problem 5.204 (2013 Team Selection Test, problem 11). Let a, b, c be the sides of a triangle such that
a ≥ b ≥ c. Prove that

√a(a+ b−
√
ab)+√b(b+ c−

√
bc)+√c(c+ a−√

ca) ≥ a+ b+ c

Problem 5.205 (2014 Round 2, problem 3). Let x, y, z be non-negative real numbers such that x2 +
y2 + z2 = 2(xy+ yz+ zx). Prove that

x+ y+ z
3

3√2xyz

Problem 5.206 (2014 Team Selection Test, problem 5). Let n be a positive integer and x1,… , xn+1 be
positive real numbers such that x1⋯xn = 1. Prove that

x1
√
n+…+ xn+1

√
n ≥ n n√x1 +…+ n n√xn+1

Problem 5.207 (2014 Team Selection Test 2, problem 5). Let x, y, z be positive real numbers such that

x2 + y2 + z2 = x2y2 + y2z2 + z2x2

Prove that

((x− y)(y− z)(z− x))2 ≤ 2 ((x2 − y2)2 + (y2 − z2)2 + (z2 − x2)2)

Problem 5.208 (2015 Team Selection Test, problem 6). If a, b, c are positive real numbers such that
a+ b+ c = abc, prove that

abc
3
√
2
(Σ
cyc

√
a3 + b3
ab+ 1

) ≥Σ
cyc

a
a2 + 1

Problem 5.209 (2016 Team Selection Test, problem 1). Let a, b, c, d be positive real numbers such that

1
a+ 1

+ 1
b+ 1

+ 1
c+ 1

+ 1
d+ 1

= 2

Prove that

√a2 + 1
2

+√a2 + 1
2

+√c2 + 1
2

+√d2 + 1
2

≥ 3(
√
a+

√
b+√

c+
√
d)− 8
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Problem 5.210 (2016 Round 2, problem 1). Let a, b, c be positive real numbers such that c ≥ b ≥ a.
Prove that

(c− a)2
6c ≤ a+ b+ c

3
− 3

1
a + 1

b + 1
c

Problem 5.211 (2017 Round 2, problem 4). Let x, y be two positive real numbers such that x4 − y4 =
x− y. Prove that

x− y
x6 − y6 ≤ 4

3
(x+ y)

Problem 5.212 (2017 Team Selection Test, problem 1). Let a, b, c, d be positive real numbers such that
a+ b+ c+ d = 2. Prove that

(a+ c)2
ad+ bc + (b+ d)2

ac+ bd + 4 ≥ 4 (
a+ b+ 1
c+ d+ 1

+ c+ d+ 1
a+ b+ 1

)

Problem 5.213 (2018 Team Selection Test, problem 2). Find the smallest real number k such that

(
2a

a− b )
2

+ (
2b

b− c )
2

+ (
2c

c− a )
2

+ k4 (
2a

a− b + 2b
b− c +

2c
c− a )

for all real numbers a, b, c.
Problem 5.214 (2020 Second Round, problem 2). Let x, y, z be positive real numbers such that x +
y+ z = 1399. Find

max (⌊x⌋y, ⌊y⌋z, ⌊z⌋x)

5.15 MMO

Problem 5.215 (2018, problem 1). Let n > 1 be an integer and a1,… , an be real numbers such that
0 ≤ ai ≤ π

2 . Prove that

(
1
n

n

Σ
i=1

1
1+ sin ai

) (1+
n

∏
i=1

n√sin ai) ≤ 1

Problem 5.216 (2017, problem 4). Let x, y, z and a, b, c be positive real numbers such that a+b+c = 1.
Prove that

(x2 + y2 + z2) ( a3
x2 + 2y2 + b3

y2 + 2z2 + c3
z2 + 2x2 ) ≥

1
9

Problem 5.217 (2016, problem 2). Let a, b, c be positive real numbers such that a+ b+ c = 3. Prove
that

√ b
a2 + 3

+√ c
b2 + 3

+√ a
c2 + 3

≤ 3
2

4√ 1
abc
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Problem 5.218 (2014, problem 1). Let n be a positive integer and a1,… , an, b1,… , bn be 2n real num-
bers. Prove that there exists a positive integer k ≤ n such that

n

Σ
i=1

|ai − ak| ≤
n

Σ
i=1

|bi − ak|

Problem 5.219 (2013, problem 3). Let x, y, z be positive real numbers such that x2y2 + y2z2 + z2x2 =
6xyz. Prove that

√ x
x+ yz +√ y

y+ zx +√ z
z+ xy ≥

√
3

Problem 5.220 (2010, problem 2). Let n > 2 be an integer and a1,… , an be positive real numbers
such that a1 +…+ an = 1. Prove that

a2⋯an
a1 + n− 2

+ a1a3⋯an
a2 + n− 2

+…+ a1⋯an−1

an + n− 2
≤ 1

(n− 1)2

Problem 5.221 (2009, problem 4). Let x, y, z be positive real numbers. Prove that

Σ
cyc

xy
x2 + xy+ y2 ≤Σ

cyc

x
2x+ z

Problem 5.222 (2007, problem 1). Let x ≥ y ≥ z be real numbers such that xy+ yz+ zx = 1. Prove
that xz < 1

2 . Is it possible to improve the constant 1
2?

Problem 5.223 (2007, problem 4). Let x > 1 be a non-integer real number. Prove that

(
x+ {x}
⌊x⌋ − ⌊x⌋

x+ {x})+ (
x+ ⌊x⌋
{x} − {x}

x+ ⌊x⌋ ) > 9
2

Problem 5.224 (2007, problem 4). Let (xij)m×n be a matrix of real numbers such that 0 ≤ xij ≤ 1.
Prove that

n

∏
j=1

(1−
m

∏
i=1

xij)+
m

∏
i=1

(1−
m

∏
j=1

(1− xij)) ≥ 1

Problem 5.225 (2004, problem 3). Let a, b, c be positive real numbers such that ab+bc+ca+2abc = 1.
Prove that

2(a+ b+ c)+ 1 ≥ 32abc
Problem 5.226 (2003, problem 3). Let a, b, c be non-negative real numbers such that a+ b+ c = 3.
Prove that

a
b2 + 1

+ b
c2 + 1

+ c
a2 + 1

≥ 3
2

Problem 5.227 (2002, problem 4). Let a, b, c be non-negative real numbers such that a2+b2+ c2 = 1.
Prove that

a
b2 + 1

+ b
c2 + 1

+ c
a2 + 1

≥ 3
4
(a
√
a+ b

√
b+ c

√
c)

2

Problem 5.228 (1999, problem 3). Let a, b, c be non-zero real numbers and x, y, z be positive real
numbers such that x+ y+ z = 3. Prove that

3
2
√ 1

a2 + 1
b2 + 1

c2 ≥ x
1+ a2 + y

1+ b2 + z
1+ c2
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Problem 5.229 (2019 Finals, problem 5). Let a0, a1,… be a sequence of positive real numbers such
that a0 is an integer, ai ≤ ai−1 + 1 for 1 ≤ i ≤ n and

n

Σ
i=1

1
ai

≤ 1

Prove that

n ≤ 4a0
n

Σ
i=1

1
ai

Problem 5.230 (2017 Finals, problem 6). Three sequences a0,… , an; b0,… , bn; c0,… , c2n of non-negative
real numbers are given such that for all 0 ≤ i, j ≤ n, we have aibj ≤ c2i+j. Prove that

(
n

Σ
i=0

ai) (
n

Σ
i=0

bi) ≤ (
2n

Σ
i=0

ci)
2

Problem 5.231 (2014 Finals, problem 2). Let n be a positive integer, k ≥ 2 be an integer and
a1,… , ak; b1,… , bn be integers such that

1 <a1 <… <ak <b1 <… <bn
Prove that if

a1 +…+ ak > b1 +…+ bn
then

a1⋯ak > b1⋯bn
Problem 5.232 (2013 Finals, problem 5). Let k,m, n be distinct positive integers. Prove that

(k− 1
k ) (m− 1

m ) (n− 1
n ) ≤ kmn− (k+ m+ n)

Problem 5.233 (2012 Finals, problem 6). Show that for any positive real numbers a, b, c,

(
a− b
c )

2

+ (
c− a
b )

2
+ (

a− b
c )

2

≥ 2
√
2 (

a− b
c + b− c

a + c− a
b )

Problem 5.234 (2008 Finals, problem 1). In each cell of an n× n matrix, a positive integer at most
n2 is written. In the first row, 1,… , n are written, in the second n + 1,… , 2n are written and so on.
n numbers are selected such that no two numbers are in the same row or column. If ai is the number
chosen from row i, prove that

1
a1

+ 22

a2
+…+ n2

an
≥ n+ 2

2
− 1

n2 + 1
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Problem 5.235 (2004 Finals, problem 4). Let a, b, c be real numbers. Prove that

√2(a2 + b2)+√2(b2 + c2)+√2(c2 + a2) ≥√3(a+ b)2 + 3(b+ c)2 + 3(c+ a)2

Problem 5.236 (2003 Finals, problem 2). Let a be a real number such that 0 <a <1. Prove that
for all finite strictly increasing sequences k1,… , kn of non-negative integers,

(
n

Σ
i=1

aki)
2

< (
1+ a
1− a )

n

Σ
i=1

a2ki

Problem 5.237 (2002 Finals, problem 4). Let n ≥ 3 be an integer and x1,… , xn be non-negative real
numbers. Prove that at least one of the following inequalities are true.

n

Σ
i=1

xi
xi+1 + xi+2

≥ n
2

n

Σ
i=1

xi
xi−1 + xi−2

≥ n
2

where xn+2 = x2, xn+1 = x1, x0 = xn, x−1 = xn−1.

Problem 5.238 (2001 Finals, problem 1). Let n be a positive integer and x1,… , xn be positive real
numbers. Prove that

x1 +…+ nxn ≤
n(n− 1)

2
+ x1 +…+ xnn

Problem 5.239 (1999 Finals, problem 2). Let n be a positive integer and a1,… , an; b1,… , bn be positive
real numbers. Prove that

Σ
1≤i<j≤n

|ai − aj|+ Σ
1≤i<j≤n

|bi − bj| ≤
n

Σ
i=1

n

Σ
j=1

|ai − bj|

Problem 5.240 (1996 Finals, problem 3). Let n be a positive integer and a1,… , an; x1,… , xn be positive
real numbers such that

a1 +…+ an = x1 +…+ xn = 1

Show that

2 Σ
1≤i<j≤n

xixj ≤
n− 2
n− 1

+
n

Σ
i=1

aix2i
1− ai

When do we have equality?

Problem 5.241 (1995 Finals, problem 1). Let n be a positive integer and x = (x1,… , xn) be positive
real numbers such that ℌ(x) = 1. Find the smallest possible value of

x1 +…+ xnn
n

Problem 5.242 (1994 Finals, problem 3). Let n > 3 be an integer and X = {x1,… , xn} be set of
distinct real numbers such that Σn

i=1 xi = 0 and Σn
i=1 x

2
i = 1. Show that there are real numbers

a, b, c, d ∈ X such that

a+ b+ c+ nabc ≤
n

Σ
i=1

x3i ≤ a+ b+ d+ nabd
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5.17 RNO

Problem 5.243 (2019 Team Selection Test, Day 5, problem 1). Determine the largest value of the
expression

Σ
1≤i<j≤4

(xi + xj)√xixj

where x1, x2, x3, x4 non-negative real numbers such that x1 + x2 + x3 + x4 = 1. Also, find the specific
values where this maximum is achieved.

Problem 5.244 (2018 Team Selection Test, Day 1, problem 1). Let x1,… , xn ≥ −1 be real numbers
such that Σn

i=1 x
3
i = 0. Find the least constant c such that

n

Σ
i=1

x2i ≤ cn

Problem 5.245 (2014 Team Selection Test, Day 3, problem 3). Determine the smallest positive con-
stant c such that

n

Σ
i=1

(
1
i

i

Σ
j=1

xj)
2

≤ c
n

Σ
i=1

x2i

for all positive integer n and all positive real numbers x1,… , xn.
Problem 5.246 (2012 Team Selection Test, Day 2, problem 4). Let k be a positive integer. Find the
maximum value of

a3k−1b+ b3k−1c+ c3k−1a+ k2akbkck

where a, b, c are non-negative real numbers such that a+ b+ c = 3k.
Problem 5.247 (2011 Team Selection Test, Day 3, problem 2). Given real numbers x, y, z such that
x+ y+ z = 0. Show that

x(x+ 2)
2x2 + 1

+ y(y+ 2)
2y2 + 1

+ z(z+ 2)
2z2 + 1

≥ 0

Problem 5.248 (2011 Team Selection Test, Day 5, problem 2). Let n ≥ 2 be an integer and x1,… , xn
be positive real numbers such that

n

Σ
i=1

1
xi + 1

= 1

and k > 1 be a real number. Show that
n

Σ
i=1

1
xki + 1

≥ n
(n− 1)k + 1

and determine the case of equality.
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Problem 5.249 (2010 Team Selection Test 1, problem 2). Let n be a positive integer and a1,… , an be
positive real numbers. Prove that f ∶ [0,∞) → ℝ defined by

f(x) = a1 + x
a2 + x + a2 + x

a3 + x +…+ an + x
a1 + x

is decreasing.

Problem 5.250 (2010 Team Selection 2, problem 1). Let n be a positive integer. Determine the max-
imum value of

max {
x1

1+ x1
,… , xn

1+ x1 +…+ xn
}

as x1,… , xn runs through all non-negative real numbers such that x1 +…+ xn = 1.

Problem 5.251 (2010 Team Selection Test 3, problem 1). Let n be a positive integer and x1,… , xn be
positive real numbers such that x1⋯xn = 1. Prove that

n

Σ
i=1

xni (1+ xi) ≥
n

2n−1

n

∏
i=1

(1+ xi)

Problem 5.252 (2009 Team Selection Test, Day 4, problem 1). Let n ≥ 2 be an integer and x1,… , xn
be positive integers such that x1 ≤… ≤ xn and x1 +…+ xn = x1⋯xn. What is the maximum possible
value of x1 +…+ xn.
Problem 5.253 (2008 Team Selection Test, Day 1, problem 2). Let n ≥ 2 be an integer and a1,… , an; b1,… , bn
be positive real numbers such that ai <bi and

b1 +…+ bn <1+ a1 +…+ an
Prove that there exists a real number c such that

(ai + c+ k)(bi + c+ k) >0

for 1 ≤ i ≤ n and any integer k.
Problem 5.254 (2008 Team Selection Test, Day 2, problem 1). Let n ≥ 3 be an odd integer. Determine
the maximum value of

√|x1 − x2|+…+√|xn − x1|

where x1,… , xn are real numbers in the interval [0, 1].
Problem 5.255 (2007 Team Selection Test, Day 1, problem 1). Let a1,… , an be non-negative real
numbers such that a21 +…+ a2n = 1. Find the maximum value of

(1− a1)⋯ (1− an)

Problem 5.256 (2007 Team Selection Test, Day 3, problem 2). Let n,p ≥ 4 be integers and x1,… , xn
be positive real numbers such that x1 +…+ xn = n. Prove that

n

Σ
i=1

1
xpi

≥
n

Σ
i=1

xpi

is false.
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Problem 5.257 (2007 Team Selection Test, Day 7, problem 1). Let n ≥ 2 be an integer and a1,… , an; b1,… , bn
be real numbers such that

n

Σ
i=1

a2i =
n

Σ
i=1

b2i = 1

n

Σ
i=1

aibi = 0

Prove that

(
n

Σ
i=1

ai)
2

+ (
n

Σ
i=1

bi)
2

≤ n

Problem 5.258 (2006 Team Selection Test, Day 1, problem 4). Let n be a positive integer and a1,… , an
be real numbers such that |ai| ≤ 1 for 1 ≤ i ≤ n and a1+…+an = 0. Prove that there exists a positive
integer k ≤ n such that

|1 ⋅ a1 +…+ kak| ≤
2k+ 1

4
Also show that this is the best bound possible for n >2.

Problem 5.259 (2006 Team Selection Test, Day 2, problem 4). Let n be a positive integer and x1,… , xn
be real numbers. Prove that

Σ
1≤i<j≤n

|xi + xj| ≥
n− 2
2

n

Σ
i=1

|xi|

Problem 5.260 (2005 Team Selection Test, Day 5, problem 2). Let n ≥ 2 be an integer and x1,… , xn
be positive real numbers such that x1⋯xn = 1. Find the smallest real value ρ(n) such that for any
x1,… , xn,

n

Σ
i=1

1
xi

≤
n

Σ
i=1

xri

is true for all r ≥ ρ(n).
Problem 5.261 (2004 Team Selection Test, Day 1, problem 1). Let a1,… , a4 be the sides of a quadri-
lateral with perimeter 2s. Prove that

4

Σ
i=1

1
ai + s ≤

2
9 Σ

1≤i<j≤4

1

√(s− ai)(s− aj)

When does equality hold?

Problem 5.262 (2002 Team Selection Test, Day 3, problem 2). Let n ≥ 4 be an integer and a1,… , an
be positive real numbers such that

a21 +…+ a2n = 1

Prove that
a1

a21 + 1
+…+ an

a2n + 1
≥ 4

5
(a1

√a1 +…+ an
√an)

2
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Problem 5.263 (2001 Team Selection Test, Day 1, problem 3). Let a, b, c be the sides of a triangle.
Prove that

(−a+ b+ c)(a− b+ c)+ (a− b+ c)(a+ b− c)+ (a+ b− c)(−a+ b+ c) ≤
√
abc(

√
a+

√
b+√

c)
Problem 5.264 (2000 Team Selection Test, Day 1, problem 2). Let n be a positive integer and x1,… , xn
be real numbers such that |xk+1 − xk| ≤ 1 for 1 ≤ k ≤ n− 1. Prove that

n

Σ
i=1

|xi|− |
n

Σ
i=1

xi| ≤
n2 − 1

4

Problem 5.265 (1999 Team Selection Test, Day 2, problem 2). Let n and x1,… , xn be positive integers.
Prove that

x21 +…+ x2n ≥
2n+ 1

3
(x1 +…+ xn)

Problem 5.266 (1996 Team Selection Test, Day 2, problem 4). If p1,… ,pk are the distinct prime
divisors of n, define

an =
1
p1

+…+ 1
pn

Prove that
n

Σ
i=2

a1⋯ai <1

for n ≥ 2.

Problem 5.267 (1996 Team Selection Test, Day 3, problem 1). Let n ≥ 3 be an integer and x1,… , xn−1
be non-negative integers such that

x1 +…+ xn−1 = n
1 ⋅ x1 +…+ (n− 1)xn = 2(n− 2)

Find the minimum value of
n

Σ
i=1

i(2n− i)xi

Problem 5.268 (1996 Team Selection Test, Day 4, problem 1). Let n be a positive integer and x1,… , xn
be positive real numbers such that

xn+1 = x1 +…+ xn
Prove that

n

Σ
i=1

√xi(xn+1 − xi) ≤
√√
⎷

n

Σ
i=1

xn+1(xn+1 − xi)

Problem 5.269 (1993 Team Selection Test, Day 1, problem 1). Find the maximum possible constant
A such that

x
√y2 + z2

+ y√
z2 + x2

+ z
√x2 + y2

≥A

for all positive real numbers x, y, z.
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5.18 SgMO

Problem 5.270 (Singapore Team Selection Test 2009, problem 2). If a, b, c are three positive real
numbers such that ab+ bc+ ca = 1, prove that

3√1
a + 6b+ 3√1

b + 6c+ 3√1
c + 6a ≤ 1

abc
Problem 5.271 (Singapore Team Selection Test 2008, problem 2). Let x1,… , xn be positive real num-
bers such that x1⋯xn = 1. Prove that

n

Σ
i=1

1
n− 1+ xi

≤ 1

Problem 5.272 (Singapore Team Selection Test 2007, problem 2). Prove the inequality

Σ
i<j

aiaj
ai + aj

≤ n
2(a1 +…+ an)Σi<j

aiaj

for all positive real numbers a1,… , an.
Problem 5.273 (Singapore 2006, problem 2). Let n > 1 be an integer and x1,… , xn be real numbers
such that

|x1|+…+ |xn| = 1 and
x1 +…+ xn = 0

Prove that

|
x1
1

+…+ xn
n | ≤ 1

2
(1− 1

n )

Problem 5.274 (Singapore 2004, problem 2). Let a, b, c be real numbers such that ab + bc + ca = 1
and 0 <a, b, c <1. Prove that

a
1− a2 + b

1− b2 + c
1− c2 ≥ 3

√
3

2

5.19 TNO

Problem 5.275 (2005 Day 1, problem 1). Let a, b, c be positive real numbers such that abc = 1. Prove
that

1+ 3
a+ b+ c ≥

6
ab+ bc+ ca
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Problem 5.276 (2005 Day 2, problem 3). Let a1,… , a95 be positive real numbers. Prove that

95

Σ
i=1

ai ≤ 94+
n

∏
i=1

max{1, ai}

Problem 5.277 (2002 Day 1, problem 3). Let x, y, z, a, b, c, d, e, f be real numbers satisfying

max{a, 0}+max{b, 0} <x+ ay+ bz <1+min{a, 0}+min{b, 0}
max{c, 0}+max{d, 0} < cx+ y+ dz <1+min{c, 0}+min{d, 0}
max{e, 0}+max{f, 0} < ex+ fy+ z <1+min{e, 0}+min{d, 0}

Prove that 0 <x, y, z <1.

Problem 5.278 (2002 Day 2, problem 1). Let x1, , x2, x3, x4 be positive real numbers at most 1
2 . Prove

that

x1x2x3x4
(1− x1)(1− x2)(1− x3)(1− x4)

≤ x41 + x42 + x43 + x44
(1− x1)4 + (1− x2)4 + (1− x3)4 + (1− x4)4

Problem 5.279 (1996 Day 1, problem 2). Let a be a positive real number at most 1 and a1,… , a1996
be real numbers such that a ≤ ai ≤ 1

ai . If k1,… , k1996 are any non-negative real numbers such that
k1 +…+ k1996 = 1, prove that

(
1996

Σ
i=1

kiai) (
n

Σ
i=1

ki
ai
) ≤ (a+ 1

a )
2

Problem 5.280 (1996 Day 2, problem 2). Determine integers a1,… , a99 = a0 satisfying |ak− ak+1| ≥
1996 for 1 ≤ k ≤ 1995 such that

max
1≤i≤1995

|ai − ai+1|

is as minimum as possible. What is this minimum value?

Problem 5.281 (1994 Day 1, problem 2). Let a, b, c be positive real numbers and α be a real number.

f(α) = abc (aα + bα + cα)
g(α) = a2+α(b+ c− a)+ b2+α(c+ a− b)+ c2+α(a+ b− c)

Determine min |f(α)− g(α)| and max |f(α)− g(α) if they exist.

5.20 USAMO

Problem 5.282 (USAMO 2020, problem 6). Let n ≥ 2 be an integer and x1 ≥… ≥ xn, y1 ≥… ≥ yn
be 2n real numbers such that

0 = x1 +…+ xn = y1 +…+ yn
1 = x21 +…+ x2n = y21 +…+ y2n
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Prove that
n

Σ
i=1

(xiyi − xiyn+i−1)2 ≥
2√
n− 1

Problem 5.283 (USAMO 2018, problem 1). Let a, b, c be positive real numbers such that a+ b+ c =
4 3
√
abc. Prove that

2(ab+ bc+ ca)+ 4min{a2, b2, c2} ≥ a2 + b2 + c2

Problem 5.284 (USAMO 2017, problem 6). Find the minimum possible value of

a
b3 + 4

+ b
c3 + 4

+ c
d3 + 4

+ d
a3 + 4

given that a, b, c, d are non-negative real numbers such that a+ b+ c+ d = 4.

Problem 5.285 (USAMO 2013, problem 4). Find all real numbers x, y, z ≥ 1 such that

min{√x+ xyz,√y+ xyz,√z+ xyz} =
√
x− 1+√y− 1+

√
z− 1

This is actually a special case of the following.

Problem 5.286. Prove that for real numbers a, b, c ≥ 1, the following inequality holds:

√
a− 1+

√
b− 1+

√
c− 1 ≤√a(bc+ 1)

Problem 5.287 (USAMO 2012, problem 6). Let n ≥ 2 be an integer and x1 ≥… ≥ xn, y1 ≥… ≥ yn
be 2n real numbers such that

0 = x1 +…+ xn = y1 +…+ yn
1 = x21 +…+ x2n = y21 +…+ y2n

For each subset A of {1, 2,… , n}, define

SA =Σ
i∈A

xi

SA = 0 if A is empty. Prove that for any positive number λ, the number of sets A satisfying SA > λ
is at most

2n−3

λ2

For which choices of x1,… , xn, λ does equality hold?

Problem 5.288 (USAMO 2011, problem 1). Let a, b, c be positive real numbers such that

a2 + b2 + c2 + (a+ b+ c)2 ≤ 4

Prove that

ab+ 1
(a+ b)2 + bc+ 1

(b+ c)2 + ca+ 1
(c+ a)2 ≥ 3
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Problem 5.289 (USAMO 2009, problem 4). Let n ≥ 2 be an a1,… , an be positive real numbers such
that

(a1 +…+ an) (
1
a1

+…+ 1
an

) ≤ (n+ 1
2
)
2

Prove that

max{a1,… , an} ≤ 4min{a1,… , an}

Problem 5.290 (USAMO 2004, problem 5). Let a, b, c be positive real numbers. Prove that

(a5 − a2 + 3)(b5 − b2 + 3)(c5 − c2 + 3) ≥ (a+ b+ c)3

Problem 5.291 (USAMO 2003, problem 5). Let a, b, c be positive real numbers. Prove that

(2a+ b+ c)2
2a2 + (b+ c)2 + (2b+ c+ a)2

2b2 + (c+ a)2 + (2c+ a+ b)2
2c2 + (a+ b)2 ≤ 8

Solution. We have already solved it in 3.3.

Problem 5.292 (USAMO 2001, problem 3). Let a, b, c be positive real numbers such that a2 + b2 +
c2 + abc = 4. Prove that

0 ≤ ab+ bc+ ca− abc ≤ 2

Problem 5.293 (USAMO 2000, problem 6). Let a1,… , an, b1,… , bn be non-negative real numbers.
Prove that

n

Σ
i,j=1

min{aiaj, bibj} ≤
n

Σ
i,j=1

min{aibj, ajbi}

Problem 5.294 (USAMO 1999, problem 4). Let n > 3 be an integer and a1,… , an be positive real
numbers such that

a1 +…+ an ≥ n and
a21 +…+ a2n ≥ n2

Prove that max{a1,… , an} ≥ 2.

Problem 5.295 (USAMO 1996, problem 3). Let a1,… , an be real numbers in the interval (0,π/2) such
that

tan (a0 −
π
4
)+…+ tan (a1 −

π
4
) ≥ n− 1

Prove that

tan a0⋯ tan an ≥ nn+1

Solution. See (3.4).
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Problem 5.296 (USAMO 1994, problem 4). Let a1,… , an be a sequence of positive real numbers such
that

n

Σ
i=1

a2i ≥
√
n

for all n. Prove that
n

Σ
i=1

a2i > 1
4
(1+ 1

2
+…+ 1

n )

Problem 5.297 (USAMO 1993, problem 5). Let a0,… , an be positive real numbers such that ai−1ai+1 ≤
a2i (such a sequence is called log concave). Show that for n > 1,

a0 +…+ an
n+ 1

a1 +…+ an−1

n− 1
≥ a0 +…+ an−1

n
a1 +…+ an

n
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Glossary

ABMO Albania-Balkan Mathematical Olympiad 57

AlMO Albania Mathematical Olympiad 57

AMC Abel’s Mathematical Contest (Norwegian Mathematical Olympiad) 57

APC Austrian-Polish Competition 57

APMO Asian Pacific Mathematical Olympiad 57

AzNO Azerbaĳan National Olympiad 57

BkMO Balkan Mathematical Olympiad 57

BMO British Mathematical Olympiad 57

BNO Brazil National Olympiad 57

BrNO Belarusian National Olympiad 57

BuNO Bulgarian National Olympiad 57

ChMO China Mathematical Olympiad 57

Elementary polynomials All symmetric polynomials in x1,… , xn can be written as a sum of elementary
polynomials. Elementary polynomials Ek are defined as

E0(x1,… , xn) = 1
E1(x1,… , xn) = x1 +…+ xn
E2(x1,… , xn) = x1x2 + x1x3 +…+ xn−1xn

= Σ
1≤i<j≤n

xixj

⋮
Ek(x1,… , xn) = Σ

1≤i1<…<in≤n
xi1 ⋯xin

If k >n, then Ek(x1,… , xn) = 0. A special case which is very useful for us is

E1(a, b, c) = a+ b+ c
E2(a, b, c) = ab+ bc+ ca
E3(a, b, c) = abc
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We can show that any symmetric polynomial can be written as a sum of elementary polynomials
using induction. The main idea behind this is to show that

σk = xk1 +…+ xkn

can be represented in terms of E0,… ,Ek. For k ∈ {0, 1}, the proof is obvious. 48

Global maximum and minimum A global minimum (absolute minimum) and a global maximum (resp.
absolute maximum) is the smallest possible value of a set or a function. 47

IMO International Mathematical Olympiad 57

IrMO Iranian Mathematical Olympiad 57

MMO Mediterranean Mathematical Olympiad 57

PMO Poland Mathematical Olympiad 57

RNO Romania National Olympiad 57

SgMO Singapore Mathematical Olympiad 57

TNO Taiwan National Olympiad 57

USAMO United States of America Mathematical Olympiad 57
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arithmetic mean, 2
Arithmetic-Geometric Inequality, 1, 19, 28, 47, 50

Bergström’s inequality, 23
Bernoulli inequality, 16

Cauchy-Bunyakovsky-Schwarz, 11
Cauchy-Schwarz, 10
converse of Hölder’s inequality, 18

Engel form of Cauchy-Schwarz, 23

Generalized Bernoulli inequality, 16
Generalized Hölder’s inequality, 18
geometric mean, 2
Gram’s inequality, 15

Hölder’s inequality, 18
harmonic mean, 2

inner product, 11

Jensen convex, 20
Jordan’s inequality, 10

Karamata’s inequality, 34

Lagrange Identity, 14
linearly dependent, 15
linearly independent, 15
Ljapunov’s inequality, 19

majorization, 32
Minkowski’s inequality, 19
monotone function, 8
mother of all inequality, 1
Muirhead’s inequality, 35

Nesbitt’s inequality, 5, 7, 24
norm of vector, 12

Power mean, 17

Radon’s inequality, 43
Redheffer’s inequality, 10

Schur’s inequality, 41
symmetrical mean, 34

The buffalo way, 29
the bunching principle, 35
Titu’s lemma, 23
triangle inequality, 10

Variable reduction, 6

weighted arithmetic-geometric mean inequality, 17
weighted power mean, 17

Young’s inequality, 18
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